metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­{2,2′-dimeth­­oxy-6,6′-[(1E,1′E)-propane-1,3-diylbis(aza­nylyl­­idene)bis­­(methanylyl­­idene)]diphenolato}nickel(II)

aDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, bDepartment of Inorganic and Radiation Chemistry, Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland, and cDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City 71101, Taiwan
*Correspondence e-mail: scschem@mail.cjcu.edu.tw

(Received 26 May 2013; accepted 11 June 2013; online 15 June 2013)

In the mol­ecule of the title compound, [Ni(C19H20N2O4)(H2O)2], the central NiII ion lies on a mirror plane and is surrounded by an N2O4 coordination set in the form of a distorted octa­hedron defined by the O atoms of two water mol­ecules and by two phenolic O and two imine N atoms of the tetra­dentate Schiff base ligand. In the crystal, O—H⋯O hydrogen bonds between the water mol­ecules and the phenolic and meth­oxy O atoms of neighbouring mol­ecules lead to the formation of rods propagating parallel to [100].

Related literature

For related complexes with similar ligands, see: Sen et al. (2006[Sen, S., Mitra, S., Luneau, D., El Fallah, M. S. & Ribas, J. (2006). Polyhedron, 25, 2737-2744.]); Thakurta et al. (2009a[Thakurta, S., Chakraborty, J., Rosair, G. M., Butcher, R. J. & Mitra, S. (2009a). Inorg. Chim. Acta, 362, 2828-2836.],b[Thakurta, S., Butcher, R. J., Pilet, G. & Mitra, S. (2009b). J. Mol. Struct. 929, 112-119.], 2010a[Thakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010a). Inorg. Chim. Acta, 363, 2395-1403.],b[Thakurta, S., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010b). Inorg. Chim. Acta, 363, 3981-3986.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H20N2O4)(H2O)2]

  • Mr = 435.11

  • Orthorhombic, P n m a

  • a = 7.4920 (2) Å

  • b = 22.1442 (6) Å

  • c = 11.6045 (3) Å

  • V = 1925.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 1.000

  • 20064 measured reflections

  • 1745 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.073

  • S = 1.06

  • 1745 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1i 2.0131 (13)
Ni1—O1 2.0131 (13)
Ni1—N1 2.0684 (16)
Ni1—N1i 2.0684 (16)
Ni1—O4 2.1048 (19)
Ni1—O3 2.113 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2ii 0.83 (1) 2.49 (2) 3.1433 (19) 136 (2)
O4—H4O⋯O1ii 0.83 (1) 2.11 (2) 2.823 (2) 143 (2)
O3—H3O⋯O1iii 0.83 (1) 2.37 (2) 3.059 (2) 140 (2)
O3—H3O⋯O2iii 0.83 (1) 2.21 (2) 2.9432 (18) 147 (2)
Symmetry codes: (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the title compound, [Ni(C19H20N2O4)(H2O)2], the Ni(II) ion has site symmetry m and exhibits a distorted octahedral coordination environment defined by two water molecules and the tetradentate ligand, 6,6'-(1E,1'E)-(propane-1,3-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(2-methoxyphenol) (L) that coordinates via two phenolic O and two imine N atoms (Fig. 1). The bond angles around the Ni(II) ion are slightly distorted from those of a regular octahedron and range from 85.57 (7)° to 175.62 (8)°. The two Owater molecules lie at the trans position of the octahedron. The cis Ni—Ophenolic bond lengths [2.0131 (13) Å] is considerably smaller than the trans Ni—Owater bond lengths [2.113 (2) and 2.1048 (19) Å] (Table 1). In the molecule, the dihedral angle between the (C1—C7, N1) plane and its symmetry-related counterpart (C1A—C7A, N1A) is 27.58 (7)° [A) x, 1/2 - y, z].

The resulting coordination geometry around the metal cation is comparable to that of complexes with similar Schiff-bases. See, for example: Thakurta et al. (2009a,b,2010a,b).

In the crystal structure of the title comound, intermolecular O—H···O hydrogen bonds between water molecules as donor groups and phenolic O and methoxy O atoms of neighbouring molecules as acceptor groups are observed (Table 2). The hydrogen bonding interactions lead to the formation of rods propagating parallel to [100] (Fig. 2).

Related literature top

For related complexes with similar ligands, see: Sen et al. (2006); Thakurta et al. (2009a,b, 2010a,b).

Experimental top

The tetradentate Schiff base precursor was prepared according to the literature procedure (Sen et al., 2006). To a hot methanolic solution (20 ml) of Ni(CH3COO)2.4H2O (0.248 g, 1.0 mmol), the ligand (1.0 mmol) was added, which produced immediately an intensely brown solution. The mixture was then kept at room temperature. After slow evaporation of the brown solution, dark chocolate-brown single crystals with a rectangular form were separated out in 5 days. The crystals were filtered off and washed with water and dried in air.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation. The H atoms of the water molecules were located in a difference map and were refined with an O—H distances restraint of 0.85 (1) Å.

Structure description top

In the title compound, [Ni(C19H20N2O4)(H2O)2], the Ni(II) ion has site symmetry m and exhibits a distorted octahedral coordination environment defined by two water molecules and the tetradentate ligand, 6,6'-(1E,1'E)-(propane-1,3-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(2-methoxyphenol) (L) that coordinates via two phenolic O and two imine N atoms (Fig. 1). The bond angles around the Ni(II) ion are slightly distorted from those of a regular octahedron and range from 85.57 (7)° to 175.62 (8)°. The two Owater molecules lie at the trans position of the octahedron. The cis Ni—Ophenolic bond lengths [2.0131 (13) Å] is considerably smaller than the trans Ni—Owater bond lengths [2.113 (2) and 2.1048 (19) Å] (Table 1). In the molecule, the dihedral angle between the (C1—C7, N1) plane and its symmetry-related counterpart (C1A—C7A, N1A) is 27.58 (7)° [A) x, 1/2 - y, z].

The resulting coordination geometry around the metal cation is comparable to that of complexes with similar Schiff-bases. See, for example: Thakurta et al. (2009a,b,2010a,b).

In the crystal structure of the title comound, intermolecular O—H···O hydrogen bonds between water molecules as donor groups and phenolic O and methoxy O atoms of neighbouring molecules as acceptor groups are observed (Table 2). The hydrogen bonding interactions lead to the formation of rods propagating parallel to [100] (Fig. 2).

For related complexes with similar ligands, see: Sen et al. (2006); Thakurta et al. (2009a,b, 2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level. [Symmetry code: (A) x, 1/2 - y, z].
[Figure 2] Fig. 2. Packing diagram of the title compound as viewed down the a axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
Diaqua{2,2'-dimethoxy-6,6'-[(1E,1'E)-propane-1,3-diylbis(azanylylidene)bis(methanylylidene)]diphenolato}nickel(II) top
Crystal data top
[Ni(C19H20N2O4)(H2O)2]F(000) = 912
Mr = 435.11Dx = 1.501 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8168 reflections
a = 7.4920 (2) Åθ = 3.4–29.2°
b = 22.1442 (6) ŵ = 1.05 mm1
c = 11.6045 (3) ÅT = 295 K
V = 1925.24 (9) Å3Rectangular, brown
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1745 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.782, Tmax = 1.000k = 2626
20064 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.966P]
where P = (Fo2 + 2Fc2)/3
1745 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.80 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C19H20N2O4)(H2O)2]V = 1925.24 (9) Å3
Mr = 435.11Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.4920 (2) ŵ = 1.05 mm1
b = 22.1442 (6) ÅT = 295 K
c = 11.6045 (3) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1745 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1578 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.035
20064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.80 e Å3
1745 reflectionsΔρmin = 0.31 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.47233 (4)0.25000.10284 (3)0.02817 (13)
N10.4635 (2)0.31989 (7)0.01527 (14)0.0375 (4)
O10.48285 (18)0.31175 (5)0.22998 (11)0.0359 (3)
O20.4497 (2)0.36489 (7)0.42580 (13)0.0531 (4)
O30.7532 (3)0.25000.08662 (18)0.0406 (5)
O40.1914 (3)0.25000.10516 (17)0.0376 (4)
C10.4402 (2)0.36858 (8)0.22558 (17)0.0324 (4)
C20.4123 (3)0.40152 (8)0.12334 (18)0.0378 (4)
C30.3675 (3)0.46364 (9)0.1292 (2)0.0512 (6)
H30.35150.48530.06130.061*
C40.3474 (3)0.49203 (10)0.2318 (2)0.0605 (7)
H40.31660.53270.23390.073*
C50.3728 (3)0.46043 (9)0.3339 (2)0.0527 (6)
H50.35810.47990.40420.063*
C60.4197 (3)0.40052 (8)0.33109 (18)0.0396 (5)
C70.4323 (3)0.37529 (9)0.01098 (18)0.0423 (5)
H70.42120.40180.05080.051*
C80.4391 (4)0.39102 (12)0.5356 (2)0.0696 (8)
H8A0.52510.42300.54170.104*
H8B0.46360.36090.59300.104*
H8C0.32140.40700.54740.104*
C90.4892 (4)0.30703 (12)0.1376 (2)0.0594 (6)
H9A0.61620.30420.15310.071*
H9B0.44280.34060.18220.071*
C100.4007 (5)0.25000.1775 (3)0.0624 (9)
H10A0.27820.25000.15040.075*
H10B0.39760.25000.26100.075*
H4O0.150 (3)0.2810 (7)0.1357 (19)0.059 (7)*
H3O0.802 (3)0.2808 (8)0.113 (2)0.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0280 (2)0.0281 (2)0.0284 (2)0.0000.00017 (12)0.000
N10.0365 (9)0.0418 (9)0.0342 (9)0.0008 (7)0.0009 (7)0.0074 (7)
O10.0469 (8)0.0247 (6)0.0360 (7)0.0037 (5)0.0038 (6)0.0011 (5)
O20.0838 (12)0.0355 (8)0.0401 (8)0.0063 (7)0.0054 (8)0.0076 (6)
O30.0287 (10)0.0336 (11)0.0596 (13)0.0000.0046 (9)0.000
O40.0288 (10)0.0396 (12)0.0443 (11)0.0000.0044 (8)0.000
C10.0260 (9)0.0251 (8)0.0461 (11)0.0024 (7)0.0001 (8)0.0005 (7)
C20.0306 (10)0.0315 (10)0.0514 (12)0.0004 (8)0.0014 (8)0.0058 (8)
C30.0481 (13)0.0344 (11)0.0711 (16)0.0043 (9)0.0079 (11)0.0100 (10)
C40.0610 (15)0.0280 (10)0.093 (2)0.0089 (10)0.0026 (13)0.0029 (12)
C50.0551 (13)0.0333 (11)0.0698 (16)0.0011 (9)0.0075 (11)0.0142 (10)
C60.0383 (10)0.0310 (10)0.0494 (12)0.0057 (8)0.0040 (9)0.0036 (8)
C70.0406 (11)0.0406 (11)0.0457 (12)0.0008 (9)0.0037 (9)0.0154 (9)
C80.099 (2)0.0630 (16)0.0469 (14)0.0099 (15)0.0072 (13)0.0182 (12)
C90.0818 (18)0.0607 (16)0.0357 (12)0.0025 (13)0.0073 (11)0.0096 (11)
C100.076 (2)0.077 (2)0.0342 (17)0.0000.0113 (16)0.000
Geometric parameters (Å, º) top
Ni1—O1i2.0131 (13)C3—C41.355 (3)
Ni1—O12.0131 (13)C3—H30.9300
Ni1—N12.0684 (16)C4—C51.389 (3)
Ni1—N1i2.0684 (16)C4—H40.9300
Ni1—O42.1048 (19)C5—C61.373 (3)
Ni1—O32.113 (2)C5—H50.9300
N1—C71.286 (3)C7—H70.9300
N1—C91.461 (3)C8—H8A0.9600
O1—C11.299 (2)C8—H8B0.9600
O2—C61.372 (3)C8—H8C0.9600
O2—C81.402 (3)C9—C101.500 (3)
O3—H3O0.830 (10)C9—H9A0.9700
O4—H4O0.833 (9)C9—H9B0.9700
C1—C21.408 (3)C10—C9i1.500 (3)
C1—C61.422 (3)C10—H10A0.9700
C2—C31.418 (3)C10—H10B0.9700
C2—C71.435 (3)
O1i—Ni1—O185.57 (7)C3—C4—C5120.0 (2)
O1i—Ni1—N1174.34 (6)C3—C4—H4120.0
O1—Ni1—N188.78 (6)C5—C4—H4120.0
O1i—Ni1—N1i88.78 (6)C6—C5—C4120.1 (2)
O1—Ni1—N1i174.34 (6)C6—C5—H5119.9
N1—Ni1—N1i96.88 (9)C4—C5—H5119.9
O1i—Ni1—O491.71 (6)O2—C6—C5125.4 (2)
O1—Ni1—O491.71 (6)O2—C6—C1112.71 (16)
N1—Ni1—O488.65 (6)C5—C6—C1121.9 (2)
N1i—Ni1—O488.65 (6)N1—C7—C2128.35 (18)
O1i—Ni1—O391.51 (6)N1—C7—H7115.8
O1—Ni1—O391.51 (6)C2—C7—H7115.8
N1—Ni1—O388.44 (6)O2—C8—H8A109.5
N1i—Ni1—O388.44 (6)O2—C8—H8B109.5
O4—Ni1—O3175.62 (8)H8A—C8—H8B109.5
C7—N1—C9116.12 (18)O2—C8—H8C109.5
C7—N1—Ni1124.25 (14)H8A—C8—H8C109.5
C9—N1—Ni1119.60 (15)H8B—C8—H8C109.5
C1—O1—Ni1128.27 (12)N1—C9—C10113.9 (2)
C6—O2—C8118.81 (18)N1—C9—H9A108.8
Ni1—O3—H3O113.9 (19)C10—C9—H9A108.8
Ni1—O4—H4O112.4 (17)N1—C9—H9B108.8
O1—C1—C2124.84 (17)C10—C9—H9B108.8
O1—C1—C6118.32 (17)H9A—C9—H9B107.7
C2—C1—C6116.85 (16)C9i—C10—C9114.7 (3)
C1—C2—C3119.82 (19)C9i—C10—H10A108.6
C1—C2—C7122.70 (17)C9—C10—H10A108.6
C3—C2—C7117.45 (19)C9i—C10—H10B108.6
C4—C3—C2121.2 (2)C9—C10—H10B108.6
C4—C3—H3119.4H10A—C10—H10B107.6
C2—C3—H3119.4
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2ii0.83 (1)2.49 (2)3.1433 (19)136 (2)
O4—H4O···O1ii0.83 (1)2.11 (2)2.823 (2)143 (2)
O3—H3O···O1iii0.83 (1)2.37 (2)3.059 (2)140 (2)
O3—H3O···O2iii0.83 (1)2.21 (2)2.9432 (18)147 (2)
Symmetry codes: (ii) x1/2, y, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C19H20N2O4)(H2O)2]
Mr435.11
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)7.4920 (2), 22.1442 (6), 11.6045 (3)
V3)1925.24 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20064, 1745, 1578
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.073, 1.06
No. of reflections1745
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O1i2.0131 (13)Ni1—N1i2.0684 (16)
Ni1—O12.0131 (13)Ni1—O42.1048 (19)
Ni1—N12.0684 (16)Ni1—O32.113 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2ii0.833 (9)2.491 (18)3.1433 (19)136 (2)
O4—H4O···O1ii0.833 (9)2.111 (17)2.823 (2)143 (2)
O3—H3O···O1iii0.830 (10)2.374 (18)3.059 (2)140 (2)
O3—H3O···O2iii0.830 (10)2.214 (16)2.9432 (18)147 (2)
Symmetry codes: (ii) x1/2, y, z+1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationSen, S., Mitra, S., Luneau, D., El Fallah, M. S. & Ribas, J. (2006). Polyhedron, 25, 2737–2744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurta, S., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010b). Inorg. Chim. Acta, 363, 3981–3986.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakurta, S., Butcher, R. J., Pilet, G. & Mitra, S. (2009b). J. Mol. Struct. 929, 112–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakurta, S., Chakraborty, J., Rosair, G. M., Butcher, R. J. & Mitra, S. (2009a). Inorg. Chim. Acta, 362, 2828–2836.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakurta, S., Rizzoli, C., Butcher, R. J., Gómez-García, C. J., Garribba, E. & Mitra, S. (2010a). Inorg. Chim. Acta, 363, 2395–1403.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds