metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-μ4-[1-(4-chloro­phen­yl)-4,4,4-tri­fluoro­butane-1,3-dionato]-potassium]

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bChemistry Department, University of Coimbra, P-3004 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 13 June 2013; accepted 24 June 2013; online 29 June 2013)

In the title compound, [K(C10H5ClO2F3)(H2O)]n, the two independent K+ ions are located on a twofold rotation axis. For each of the cations, the distorted cubic coordination environment is defined by two F and four O atoms of symmetry-related 1,4-chloro­phenyl-4,4,4-tri­fluoro­butane-1,3-dionate anions and by two O atoms of water mol­ecules. The μ4-bridging character of the anion and the μ2-bridging of the water mol­ecule lead to the formation of layers parallel to (100). The coordinating water mol­ecules are also involved in O—H⋯O hydrogen bonds that reinforce the mol­ecular cohesion within the layers, which are stacked along [100]. The β-diketonate anion is not planar, with an angle of 31.78 (10)° between the mean planes of the diketonate group and the chloro­phenyl ring.

Related literature

For background to lanthanide complexes with diketonate ligands, see: Martín-Ramos et al. (2013a[Martín-Ramos, P., Coya, C., Alvarez, A. L., Ramos Silva, M., Zaldo, C., Paixão, J. A., Chamorro-Posada, P. & Martín-Gil, J. (2013a). J. Phys. Chem. C, 117, 10020-10030.],b[Martín-Ramos, P., Ramos-Silva, M., Coya, C., Zaldo, C., Alvarez, A. L., Alvarez-García, S., Matos-Beja, A. M. & Martín-Gil, J. (2013b). J. Mater. Chem. C, 1, 2725-2734.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C10H5ClF3O2)(H2O)]

  • Mr = 306.71

  • Monoclinic, C 2/c

  • a = 30.164 (2) Å

  • b = 8.0739 (4) Å

  • c = 10.2696 (5) Å

  • β = 98.752 (2)°

  • V = 2471.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.20 × 0.11 × 0.08 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.999

  • 11396 measured reflections

  • 2182 independent reflections

  • 1559 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.01

  • 2182 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1W⋯O2 0.82 (3) 1.90 (3) 2.709 (2) 173 (3)
O3—H2W⋯O1i 0.87 (3) 2.06 (3) 2.843 (3) 150 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [K(C10H5ClO2F3)(H2O)], Fig. 1, was obtained serendipitously as part of a project to synthesize new lanthanide coordination complexes as potential emissive layers in organic light emitting diodes (OLEDs) (Martín-Ramos, 2013a,b).

The title compound contains two potassium ions, one 1,4-chlorophenyl-4,4,4-trifluoro-1,3-butanedionate anion and one coordinating water molecule in the asymmetric unit. Both potassium ions are situated on twofold rotation axes and are in the centres of distorted cubes, that are formed by two F and six O atoms. The cations are arranged in alternating chains along [010], Fig. 2, with K···K distances of 3.6379 (11) and 4.4360 (11) Å, respectively. The cations are bridged by two water molecules and one bis-monodentate CF3 group, as well as by four oxygen atoms of two β-diketonate groups. The chains are joined into layers parallel to (100) since each diketonate coordinates potassium ions from two adjacent chains. The β-diketonate ligand is not planar with an angle of 31.78 (10)° between the mean planes of the diketonate group and the chlorophenyl ring. Within the layers, there are hydrogen bonds between the coordinating water molecules and adjacent diketonate O atoms (Table 1, Fig. 3). The unit cell does not contain any residual solvent acessible voids.

Related literature top

For background to lanthanide complexes with diketonate ligands, see: Martín-Ramos et al. (2013a,b).

Experimental top

Firstly, 0.5 mmol of europium(III) nitrate pentahydrate were dissolved in 20 ml of methanol followed by the addition of 0.9 ml of potassium methoxide. This solution was left to reflux at 353 K for 15 min. Secondly, 1.5 mmol of 1,14 chlorophenyl-4,4,4-trifluoro-1,3-butanedionate were dissolved in 15 ml of methanol and added to the main solution. After decanting the resulting solution, 0.5 mmol of bathophenanthroline were dissolved in 10 ml of methanol and added to the main solution. The main solution was then transferred from a volumetric balloon to a beaker covered with paraffin film and placed on a water bath at 303 K until complete evaporation was verified. Since from the evaporation process no crystals were obtained, all the material from this batch was dissolved in 25 ml of chloroform. A light orange powder was formed alongside with some transparent crystals. The powder was studied by X-ray powder diffraction and was proven to be amorphous; the transparent crystals were studied by single-crystal X-ray diffraction, and as a result, the title compound was revealed.

Refinement top

All hydrogen atoms bound to carbon atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å (aromatic) and with Uiso(H) = 1.2 Ueq(C). The H atoms belonging to the water molecule were found in a difference electron density synthesis and subsequently refined with Uiso(H)=1.2Uiso(O).

Structure description top

The title compound, [K(C10H5ClO2F3)(H2O)], Fig. 1, was obtained serendipitously as part of a project to synthesize new lanthanide coordination complexes as potential emissive layers in organic light emitting diodes (OLEDs) (Martín-Ramos, 2013a,b).

The title compound contains two potassium ions, one 1,4-chlorophenyl-4,4,4-trifluoro-1,3-butanedionate anion and one coordinating water molecule in the asymmetric unit. Both potassium ions are situated on twofold rotation axes and are in the centres of distorted cubes, that are formed by two F and six O atoms. The cations are arranged in alternating chains along [010], Fig. 2, with K···K distances of 3.6379 (11) and 4.4360 (11) Å, respectively. The cations are bridged by two water molecules and one bis-monodentate CF3 group, as well as by four oxygen atoms of two β-diketonate groups. The chains are joined into layers parallel to (100) since each diketonate coordinates potassium ions from two adjacent chains. The β-diketonate ligand is not planar with an angle of 31.78 (10)° between the mean planes of the diketonate group and the chlorophenyl ring. Within the layers, there are hydrogen bonds between the coordinating water molecules and adjacent diketonate O atoms (Table 1, Fig. 3). The unit cell does not contain any residual solvent acessible voids.

For background to lanthanide complexes with diketonate ligands, see: Martín-Ramos et al. (2013a,b).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII plot of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the components in the title structure. For clarity, the Cl and H atoms were omitted. Atoms C5 to C10 defining the benzene ring were also omitted.
[Figure 3] Fig. 3. Packing of the components showing the hydrogen bonding interactions as dashed lines.
Poly[µ2-aqua-µ4-[1-(4-chlorophenyl)-4,4,4-trifluorobutane-1,3-dionato]-potassium] top
Crystal data top
[K(C10H5ClF3O2)(H2O)]F(000) = 1232
Mr = 306.71Dx = 1.648 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3474 reflections
a = 30.164 (2) Åθ = 2.7–23.9°
b = 8.0739 (4) ŵ = 0.68 mm1
c = 10.2696 (5) ÅT = 293 K
β = 98.752 (2)°Prism, colourless
V = 2471.9 (2) Å30.20 × 0.11 × 0.08 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3536
Tmin = 0.830, Tmax = 0.999k = 99
11396 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.5088P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[K(C10H5ClF3O2)(H2O)]V = 2471.9 (2) Å3
Mr = 306.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.164 (2) ŵ = 0.68 mm1
b = 8.0739 (4) ÅT = 293 K
c = 10.2696 (5) Å0.20 × 0.11 × 0.08 mm
β = 98.752 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1559 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.999Rint = 0.032
11396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
2182 reflectionsΔρmin = 0.20 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.00000.01267 (9)0.75000.0468 (2)
K20.00000.53676 (9)0.75000.0505 (2)
Cl10.25418 (2)0.31387 (12)0.31250 (7)0.0774 (3)
F10.08518 (5)0.13336 (19)0.59626 (14)0.0684 (5)
F20.14447 (5)0.2619 (2)0.51303 (15)0.0765 (5)
F30.08456 (5)0.3946 (2)0.58351 (15)0.0742 (5)
O10.06701 (5)0.22988 (19)0.11627 (16)0.0462 (4)
O20.04203 (5)0.2360 (2)0.39484 (16)0.0536 (5)
O30.02269 (7)0.2670 (2)0.60726 (18)0.0554 (5)
H1W0.0018 (10)0.254 (3)0.548 (3)0.067*
H2W0.0446 (10)0.267 (3)0.561 (3)0.067*
C10.10053 (8)0.2594 (3)0.5178 (2)0.0463 (6)
C20.08424 (7)0.2490 (3)0.3853 (2)0.0390 (6)
C30.11551 (7)0.2554 (3)0.2741 (2)0.0433 (6)
H30.14550.26510.28480.052*
C40.10548 (7)0.2484 (3)0.1436 (2)0.0388 (6)
C50.14351 (7)0.2644 (3)0.0318 (2)0.0387 (6)
C60.18115 (7)0.3592 (3)0.0416 (2)0.0479 (6)
H60.18380.41160.12070.058*
C70.21485 (7)0.3765 (3)0.0651 (2)0.0532 (7)
H70.23970.44280.05890.064*
C80.21129 (8)0.2955 (3)0.1788 (2)0.0504 (7)
C90.17475 (8)0.1981 (3)0.1915 (2)0.0552 (7)
H90.17300.14190.26960.066*
C100.14087 (7)0.1860 (3)0.0857 (2)0.0481 (6)
H100.11560.12320.09380.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0449 (4)0.0434 (5)0.0523 (5)0.0000.0085 (3)0.000
K20.0554 (5)0.0446 (5)0.0519 (5)0.0000.0097 (4)0.000
Cl10.0570 (4)0.1091 (7)0.0574 (5)0.0104 (4)0.0191 (3)0.0140 (4)
F10.0833 (10)0.0700 (11)0.0512 (9)0.0116 (8)0.0084 (8)0.0191 (8)
F20.0436 (9)0.1365 (16)0.0512 (10)0.0094 (8)0.0132 (7)0.0033 (9)
F30.0891 (11)0.0680 (11)0.0655 (10)0.0008 (8)0.0123 (8)0.0252 (9)
O10.0340 (9)0.0642 (12)0.0406 (9)0.0020 (7)0.0066 (7)0.0005 (8)
O20.0340 (9)0.0819 (13)0.0434 (10)0.0043 (7)0.0013 (7)0.0037 (9)
O30.0436 (10)0.0839 (14)0.0388 (11)0.0022 (9)0.0063 (8)0.0031 (9)
C10.0429 (14)0.0520 (16)0.0430 (15)0.0037 (11)0.0034 (11)0.0001 (13)
C20.0368 (12)0.0393 (14)0.0408 (14)0.0012 (9)0.0055 (10)0.0001 (10)
C30.0309 (12)0.0586 (16)0.0402 (15)0.0010 (10)0.0050 (10)0.0022 (12)
C40.0332 (12)0.0410 (14)0.0416 (15)0.0022 (9)0.0035 (10)0.0018 (11)
C50.0335 (12)0.0437 (14)0.0385 (14)0.0046 (9)0.0047 (10)0.0012 (11)
C60.0411 (13)0.0571 (17)0.0441 (15)0.0034 (11)0.0017 (11)0.0026 (12)
C70.0395 (13)0.0629 (18)0.0543 (17)0.0059 (11)0.0018 (12)0.0059 (14)
C80.0386 (14)0.0657 (18)0.0429 (16)0.0107 (12)0.0064 (11)0.0128 (14)
C90.0522 (15)0.0742 (19)0.0384 (15)0.0107 (13)0.0044 (12)0.0042 (13)
C100.0396 (13)0.0591 (16)0.0457 (16)0.0009 (11)0.0064 (11)0.0006 (13)
Geometric parameters (Å, º) top
K1—O2i2.7648 (17)O1—C41.244 (3)
K1—O2ii2.7648 (17)O2—C21.266 (3)
K1—O3iii2.832 (2)O3—H1W0.82 (3)
K1—O32.832 (2)O3—H2W0.87 (3)
K1—O1i2.8640 (15)C1—C21.518 (4)
K1—O1ii2.8641 (15)C2—C31.367 (3)
K1—F1iii3.0415 (15)C3—C41.419 (3)
K1—F13.0415 (15)C3—H30.9300
K2—O32.7686 (19)C4—C51.500 (3)
K2—O3iii2.7686 (19)C5—C101.376 (3)
K2—O2iv2.7859 (17)C5—C61.385 (3)
K2—O2v2.7860 (17)C6—C71.384 (3)
K2—O1iv2.9457 (16)C6—H60.9300
K2—O1v2.9457 (16)C7—C81.357 (3)
K2—F3iii3.0692 (16)C7—H70.9300
K2—F33.0692 (16)C8—C91.376 (4)
Cl1—C81.744 (2)C9—C101.378 (3)
F1—C11.336 (3)C9—H90.9300
F2—C11.319 (3)C10—H100.9300
F3—C11.334 (3)
O2i—K1—O2ii98.61 (7)O2iv—K2—F3110.86 (4)
O2i—K1—O3iii164.81 (6)O2v—K2—F397.85 (4)
O2ii—K1—O3iii94.28 (5)O1iv—K2—F3162.20 (5)
O2i—K1—O394.29 (5)O1v—K2—F361.73 (4)
O2ii—K1—O3164.80 (5)F3iii—K2—F3136.07 (7)
O3iii—K1—O374.25 (8)C1—F3—K2142.49 (14)
O2i—K1—O1i60.71 (5)C4—O1—K1i125.44 (14)
O2ii—K1—O1i71.98 (5)C4—O1—K2iv114.54 (13)
O3iii—K1—O1i116.65 (5)K1i—O1—K2iv77.52 (4)
O3—K1—O1i121.86 (5)C2—O2—K1i123.39 (13)
O2i—K1—O1ii71.98 (5)C2—O2—K2iv115.97 (13)
O2ii—K1—O1ii60.71 (5)K1i—O2—K2iv81.90 (5)
O3iii—K1—O1ii121.86 (5)K2—O3—K1104.74 (6)
O3—K1—O1ii116.65 (5)H1W—O3—H2W99 (3)
O1i—K1—O1ii104.48 (7)F2—C1—F3106.9 (2)
O2i—K1—F1iii96.41 (4)F2—C1—F1106.7 (2)
O2ii—K1—F1iii113.20 (4)F3—C1—F1104.6 (2)
O3iii—K1—F1iii70.97 (5)F2—C1—C2115.3 (2)
O3—K1—F1iii73.02 (5)F3—C1—C2111.0 (2)
O1i—K1—F1iii60.63 (4)F1—C1—C2111.62 (19)
O1ii—K1—F1iii164.83 (5)O2—C2—C3128.8 (2)
O2i—K1—F1113.19 (4)O2—C2—C1113.20 (19)
O2ii—K1—F196.41 (4)C3—C2—C1118.0 (2)
O3iii—K1—F173.02 (5)O2—C2—K2iv45.21 (11)
O3—K1—F170.97 (5)C3—C2—K2iv95.70 (15)
O1i—K1—F1164.83 (5)C1—C2—K2iv132.56 (14)
O1ii—K1—F160.63 (4)C2—C3—C4124.6 (2)
F1iii—K1—F1134.38 (6)C2—C3—H3117.7
O3—K2—O3iii76.27 (8)C4—C3—H3117.7
O3—K2—O2iv93.79 (5)O1—C4—C3124.0 (2)
O3iii—K2—O2iv165.95 (6)O1—C4—C5117.9 (2)
O3—K2—O2v165.95 (6)C3—C4—C5118.12 (19)
O3iii—K2—O2v93.79 (5)C10—C5—C6118.4 (2)
O2iv—K2—O2v97.60 (7)C10—C5—C4119.5 (2)
O3—K2—O1iv122.86 (5)C6—C5—C4122.1 (2)
O3iii—K2—O1iv117.62 (5)C7—C6—C5120.7 (2)
O2iv—K2—O1iv59.46 (5)C7—C6—H6119.7
O2v—K2—O1iv70.46 (5)C5—C6—H6119.7
O3—K2—O1v117.62 (5)C8—C7—C6119.2 (2)
O3iii—K2—O1v122.86 (5)C8—C7—H7120.4
O2iv—K2—O1v70.46 (5)C6—C7—H7120.4
O2v—K2—O1v59.46 (5)C7—C8—C9121.8 (2)
O1iv—K2—O1v100.47 (6)C7—C8—Cl1119.4 (2)
O3—K2—F3iii75.48 (5)C9—C8—Cl1118.9 (2)
O3iii—K2—F3iii70.27 (5)C8—C9—C10118.3 (2)
O2iv—K2—F3iii97.85 (4)C8—C9—H9120.8
O2v—K2—F3iii110.86 (5)C10—C9—H9120.8
O1iv—K2—F3iii61.73 (4)C5—C10—C9121.6 (2)
O1v—K2—F3iii162.20 (5)C5—C10—H10119.2
O3—K2—F370.26 (5)C9—C10—H10119.2
O3iii—K2—F375.48 (5)
O2i—K1—K2—O313.40 (8)O3iii—K1—F1—C174.8 (2)
O2ii—K1—K2—O3166.60 (8)O3—K1—F1—C13.9 (2)
O3iii—K1—K2—O3180.0O1i—K1—F1—C1153.4 (2)
O1i—K1—K2—O394.77 (8)O1ii—K1—F1—C1141.6 (2)
O1ii—K1—K2—O385.23 (8)F1iii—K1—F1—C135.7 (2)
F1iii—K1—K2—O391.76 (7)K2vi—K1—F1—C1144.3 (2)
F1—K1—K2—O388.24 (7)K2—K1—F1—C135.7 (2)
O2i—K1—K2—O3iii166.60 (8)O3—K2—F3—C118.3 (2)
O2ii—K1—K2—O3iii13.40 (8)O3iii—K2—F3—C162.1 (2)
O3—K1—K2—O3iii179.998 (1)O2iv—K2—F3—C1104.8 (2)
O1i—K1—K2—O3iii85.23 (8)O2v—K2—F3—C1154.0 (2)
O1ii—K1—K2—O3iii94.77 (8)O1iv—K2—F3—C1158.5 (2)
F1iii—K1—K2—O3iii88.25 (7)O1v—K2—F3—C1157.1 (3)
F1—K1—K2—O3iii91.75 (7)F3iii—K2—F3—C122.6 (2)
O2i—K1—K2—O2iv0.0C2iv—K2—F3—C189.0 (2)
O2ii—K1—K2—O2iv180.0C2v—K2—F3—C1150.4 (2)
O3iii—K1—K2—O2iv166.60 (8)K1vii—K2—F3—C1157.4 (2)
O3—K1—K2—O2iv13.40 (8)K1—K2—F3—C122.6 (2)
O1i—K1—K2—O2iv81.37 (6)O3iii—K2—O3—K10.0
O1ii—K1—K2—O2iv98.63 (6)O2iv—K2—O3—K1169.93 (6)
F1iii—K1—K2—O2iv78.35 (5)O2v—K2—O3—K145.9 (2)
F1—K1—K2—O2iv101.65 (5)O1iv—K2—O3—K1114.23 (6)
O2i—K1—K2—O2v180.0O1v—K2—O3—K1120.17 (5)
O2ii—K1—K2—O2v0.0F3iii—K2—O3—K172.79 (6)
O3iii—K1—K2—O2v13.40 (8)F3—K2—O3—K179.25 (6)
O3—K1—K2—O2v166.60 (8)C2iv—K2—O3—K1152.89 (7)
O1i—K1—K2—O2v98.63 (6)C2v—K2—O3—K158.15 (12)
O1ii—K1—K2—O2v81.36 (6)K1vii—K2—O3—K1180.0
F1iii—K1—K2—O2v101.65 (5)O2i—K1—O3—K2169.85 (6)
F1—K1—K2—O2v78.35 (5)O2ii—K1—O3—K242.1 (2)
O2i—K1—K2—O1iv81.37 (6)O3iii—K1—O3—K20.0
O2ii—K1—K2—O1iv98.63 (6)O1i—K1—O3—K2111.93 (6)
O3iii—K1—K2—O1iv85.23 (8)O1ii—K1—O3—K2118.17 (6)
O3—K1—K2—O1iv94.77 (8)F1iii—K1—O3—K274.44 (6)
O1i—K1—K2—O1iv0.0F1—K1—O3—K277.08 (6)
O1ii—K1—K2—O1iv179.999 (1)K2vi—K1—O3—K2180.0
F1iii—K1—K2—O1iv3.01 (5)K2—F3—C1—F2155.52 (15)
F1—K1—K2—O1iv176.99 (5)K2—F3—C1—F142.6 (3)
O2i—K1—K2—O1v98.63 (6)K2—F3—C1—C278.0 (3)
O2ii—K1—K2—O1v81.36 (6)K1—F1—C1—F2165.34 (14)
O3iii—K1—K2—O1v94.77 (8)K1—F1—C1—F352.3 (3)
O3—K1—K2—O1v85.23 (8)K1—F1—C1—C267.8 (3)
O1i—K1—K2—O1v180.0K1i—O2—C2—C345.8 (3)
O1ii—K1—K2—O1v0.0K2iv—O2—C2—C351.9 (3)
F1iii—K1—K2—O1v176.99 (5)K1i—O2—C2—C1134.65 (16)
F1—K1—K2—O1v3.01 (5)K2iv—O2—C2—C1127.69 (16)
O2i—K1—K2—F3iii80.95 (5)K1i—O2—C2—K2iv97.66 (15)
O2ii—K1—K2—F3iii99.05 (5)F2—C1—C2—O2175.63 (19)
O3iii—K1—K2—F3iii85.65 (7)F3—C1—C2—O262.7 (3)
O3—K1—K2—F3iii94.36 (7)F1—C1—C2—O253.6 (3)
O1i—K1—K2—F3iii0.41 (5)F2—C1—C2—C34.7 (3)
O1ii—K1—K2—F3iii179.59 (5)F3—C1—C2—C3116.9 (2)
F1iii—K1—K2—F3iii2.60 (4)F1—C1—C2—C3126.8 (2)
F1—K1—K2—F3iii177.40 (4)F2—C1—C2—K2iv134.69 (17)
O2i—K1—K2—F399.05 (5)F3—C1—C2—K2iv13.0 (3)
O2ii—K1—K2—F380.95 (5)F1—C1—C2—K2iv103.3 (2)
O3iii—K1—K2—F394.35 (7)O2—C2—C3—C40.1 (4)
O3—K1—K2—F385.64 (7)C1—C2—C3—C4179.5 (2)
O1i—K1—K2—F3179.59 (5)K2iv—C2—C3—C434.1 (2)
O1ii—K1—K2—F30.41 (5)K1i—O1—C4—C340.2 (3)
F1iii—K1—K2—F3177.40 (4)K2iv—O1—C4—C351.7 (2)
F1—K1—K2—F32.60 (4)K1i—O1—C4—C5139.83 (15)
O2i—K1—K2—C2iv18.02 (6)K2iv—O1—C4—C5128.26 (16)
O2ii—K1—K2—C2iv161.98 (6)C2—C3—C4—O12.5 (4)
O3iii—K1—K2—C2iv148.58 (8)C2—C3—C4—C5177.4 (2)
O3—K1—K2—C2iv31.42 (8)O1—C4—C5—C1030.2 (3)
O1i—K1—K2—C2iv63.35 (6)C3—C4—C5—C10149.8 (2)
O1ii—K1—K2—C2iv116.65 (6)O1—C4—C5—C6148.3 (2)
F1iii—K1—K2—C2iv60.33 (5)C3—C4—C5—C631.6 (3)
F1—K1—K2—C2iv119.67 (5)C10—C5—C6—C71.1 (3)
O2i—K1—K2—C2v161.98 (6)C4—C5—C6—C7177.5 (2)
O2ii—K1—K2—C2v18.02 (6)C5—C6—C7—C81.9 (4)
O3iii—K1—K2—C2v31.42 (8)C6—C7—C8—C90.8 (4)
O3—K1—K2—C2v148.58 (8)C6—C7—C8—Cl1178.80 (19)
O1i—K1—K2—C2v116.65 (6)C7—C8—C9—C101.1 (4)
O1ii—K1—K2—C2v63.35 (6)Cl1—C8—C9—C10179.34 (18)
F1iii—K1—K2—C2v119.67 (5)C6—C5—C10—C90.8 (4)
F1—K1—K2—C2v60.33 (5)C4—C5—C10—C9179.5 (2)
O2i—K1—F1—C190.4 (2)C8—C9—C10—C51.9 (4)
O2ii—K1—F1—C1167.4 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y, z+3/2; (iv) x, y+1, z+1; (v) x, y+1, z+1/2; (vi) x, y1, z; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O20.82 (3)1.90 (3)2.709 (2)173 (3)
O3—H2W···O1viii0.87 (3)2.06 (3)2.843 (3)150 (2)
Symmetry code: (viii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[K(C10H5ClF3O2)(H2O)]
Mr306.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)30.164 (2), 8.0739 (4), 10.2696 (5)
β (°) 98.752 (2)
V3)2471.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.20 × 0.11 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.830, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
11396, 2182, 1559
Rint0.032
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.01
No. of reflections2182
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O20.82 (3)1.90 (3)2.709 (2)173 (3)
O3—H2W···O1i0.87 (3)2.06 (3)2.843 (3)150 (2)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE through projects PEst-C/FIS/UI0036/2011, PTDC/FIS/102284/2008, PTDC/AAC-CLI/098308/2008 and PTDC/AAC-CLI/118092/2010-Fundação para a Ciência e a Tecnologia (FCT).

References

First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMartín-Ramos, P., Coya, C., Alvarez, A. L., Ramos Silva, M., Zaldo, C., Paixão, J. A., Chamorro-Posada, P. & Martín-Gil, J. (2013a). J. Phys. Chem. C, 117, 10020–10030.  Google Scholar
First citationMartín-Ramos, P., Ramos-Silva, M., Coya, C., Zaldo, C., Alvarez, A. L., Alvarez-García, S., Matos-Beja, A. M. & Martín-Gil, J. (2013b). J. Mater. Chem. C, 1, 2725–2734.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds