organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(6-Chloro­pyridin-3-yl)meth­yl]-10-nitro-1,2,3,5,6,7,8,9-octa­hydro-5,9-methano­imidazo[1,2-a]azocin-5-ol

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_tianzz@ujn.edu.cn

(Received 10 April 2013; accepted 24 May 2013; online 8 June 2013)

In the title compound, C16H19ClN4O3, the cyclo­hexane ring displays a chair formation and the tetra­hydro­pyridine ring displays an envelope conformation with the methyl­ene C atom as the flap; the imidazolidine ring also displays an envelope conformation with a methyl­ene C atom as the flap. In the crystal, O—H⋯N hydrogen bonds between hy­droxy groups and pyridine rings link inversion-related mol­ecules into dimers. Weak C—H⋯O hydrogen bonds further link the dimers into supra­molecular chains running along the c axis.

Related literature

For background to the title compound, see: Jeschkel & Nauen (2008[Jeschkel, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.]). For the synthesis, see: Tian et al. (2007[Tian, Z.-Z., Shao, X.-S., Li, Z., Qian, X.-H. & Huang, Q.-C. (2007). J. Agric. Food Chem. 55, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19ClN4O3

  • Mr = 350.80

  • Monoclinic, P 21 /c

  • a = 13.3975 (14) Å

  • b = 18.7124 (18) Å

  • c = 6.5721 (8) Å

  • β = 97.897 (10)°

  • V = 1632.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.38 × 0.24 × 0.23 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.94

  • 7705 measured reflections

  • 2921 independent reflections

  • 1727 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.217

  • S = 1.05

  • 2921 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N4i 0.82 2.04 2.855 (4) 174
C11—H11A⋯O1ii 0.97 2.53 3.467 (5) 161
C13—H13⋯O2ii 0.93 2.48 3.265 (5) 142
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The past decades have witnessed the great power and versatile ability of neonicotinoids as a novel class of insecticides (Jeschkel & Nauen, 2008), Several commercial neonicotinoid compounds were launched successively in the latest two decades, and they presented a broad spectrum performance in controlling various insects. Our interest was introducing bicyclic struture to fix the direction of the nitro group, and synthesized a class of novel cis-neonicotinoid compounds with carbon bicyclic, in which the title compound exhibited good insecticidal activities against pea aphids.

The structure of compound is shown in Fig. 1 with the atom-numbering scheme. In the title compound, the the cyclohexane ring displays a chair formation while the hexahydroazocine ring displays an envelope conformation with the methylene C atom on the flap; the imidazolidine ring also displays an envelope confromation with a methylene C atom on the flap. In the crystal, intermolecular O—H···N hydrogen bonds between hydroxyl groups and pyridine rings link inversion-related molecules into dimer. Weak C—H···O hydrogen bonds further link the dimers into the supramolecular arichiecture.

Related literature top

For background to the title compound, see: Jeschkel & Nauen (2008). For the synthesis, see: Tian et al. (2007).

Experimental top

The title compound was synthesized according to the literature (Tian et al., 2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of dichloromethane and ether of the title compound.

Refinement top

Hydroxyl H atom was located in a difference map and refined with distance restraints of O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å, Uiso(H) = 1.2Ueq(C).

Structure description top

The past decades have witnessed the great power and versatile ability of neonicotinoids as a novel class of insecticides (Jeschkel & Nauen, 2008), Several commercial neonicotinoid compounds were launched successively in the latest two decades, and they presented a broad spectrum performance in controlling various insects. Our interest was introducing bicyclic struture to fix the direction of the nitro group, and synthesized a class of novel cis-neonicotinoid compounds with carbon bicyclic, in which the title compound exhibited good insecticidal activities against pea aphids.

The structure of compound is shown in Fig. 1 with the atom-numbering scheme. In the title compound, the the cyclohexane ring displays a chair formation while the hexahydroazocine ring displays an envelope conformation with the methylene C atom on the flap; the imidazolidine ring also displays an envelope confromation with a methylene C atom on the flap. In the crystal, intermolecular O—H···N hydrogen bonds between hydroxyl groups and pyridine rings link inversion-related molecules into dimer. Weak C—H···O hydrogen bonds further link the dimers into the supramolecular arichiecture.

For background to the title compound, see: Jeschkel & Nauen (2008). For the synthesis, see: Tian et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as circles of arbitrary size.
1-[(6-Chloropyridin-3-yl)methyl]-10-nitro-1,2,3,5,6,7,8,9-octahydro-5,9-methanoimidazo[1,2-a]azocin-5-ol top
Crystal data top
C16H19ClN4O3F(000) = 736
Mr = 350.80Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1166 reflections
a = 13.3975 (14) Åθ = 2.6–25.2°
b = 18.7124 (18) ŵ = 0.26 mm1
c = 6.5721 (8) ÅT = 296 K
β = 97.897 (10)°Prism, colourless
V = 1632.0 (3) Å30.38 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2921 independent reflections
Radiation source: fine-focus sealed tube1727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 16.03 pixels mm-1θmax = 25.2°, θmin = 2.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 2122
Tmin = 0.93, Tmax = 0.94l = 76
7705 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.1363P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H19ClN4O3V = 1632.0 (3) Å3
Mr = 350.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3975 (14) ŵ = 0.26 mm1
b = 18.7124 (18) ÅT = 296 K
c = 6.5721 (8) Å0.38 × 0.24 × 0.23 mm
β = 97.897 (10)°
Data collection top
Bruker APEXII
diffractometer
2921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1727 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.94Rint = 0.056
7705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2921 reflectionsΔρmin = 0.34 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41200 (9)0.65584 (9)0.0781 (3)0.0997 (6)
N10.1452 (3)0.65779 (16)0.7861 (5)0.0462 (9)
N20.2189 (2)0.53441 (15)0.4048 (5)0.0366 (8)
N30.0721 (2)0.59219 (15)0.3726 (5)0.0437 (8)
N40.2457 (2)0.63479 (18)0.3227 (6)0.0571 (10)
O10.1870 (2)0.69232 (16)0.9378 (5)0.0673 (9)
O20.0505 (2)0.65481 (15)0.7522 (5)0.0588 (8)
O30.35157 (19)0.45270 (13)0.4224 (4)0.0510 (8)
H30.32160.42520.49010.077*
C10.1637 (3)0.58526 (18)0.4877 (6)0.0373 (9)
C20.1721 (3)0.5161 (2)0.1983 (6)0.0533 (11)
H2A0.17690.46530.17160.064*
H2B0.20170.54270.09490.064*
C30.0639 (3)0.5387 (2)0.2069 (7)0.0563 (12)
H3A0.03410.55940.07740.068*
H3B0.02330.49840.23860.068*
C40.2050 (3)0.62191 (19)0.6634 (6)0.0388 (9)
C50.3162 (3)0.61790 (18)0.7288 (6)0.0443 (10)
H50.33020.62970.87510.053*
C60.3494 (3)0.54049 (19)0.6983 (6)0.0455 (10)
H6A0.42080.53520.74670.055*
H6B0.31230.50800.77520.055*
C70.3281 (3)0.52359 (18)0.4689 (6)0.0388 (9)
C80.3893 (3)0.57185 (19)0.3484 (7)0.0477 (10)
H8A0.37410.56090.20320.057*
H8B0.46050.56300.39040.057*
C90.3664 (3)0.65028 (19)0.3831 (7)0.0515 (11)
H9A0.41280.67970.31880.062*
H9B0.29870.66090.31770.062*
C100.3751 (3)0.6691 (2)0.6090 (7)0.0564 (12)
H10A0.35020.71730.62290.068*
H10B0.44550.66820.66800.068*
C110.0317 (3)0.66343 (18)0.3105 (6)0.0400 (9)
H11A0.06470.68110.19800.048*
H11B0.04650.69630.42480.048*
C120.0792 (3)0.66095 (16)0.2453 (6)0.0347 (9)
C130.1215 (3)0.68244 (19)0.0504 (6)0.0450 (10)
H130.08010.69770.04350.054*
C140.2246 (3)0.6813 (2)0.0049 (7)0.0539 (11)
H140.25390.69610.13460.065*
C150.2822 (3)0.6576 (2)0.1372 (8)0.0518 (11)
C160.1457 (3)0.6367 (2)0.3742 (7)0.0495 (11)
H160.11900.62080.50440.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0386 (7)0.1346 (13)0.1228 (14)0.0014 (7)0.0000 (7)0.0343 (10)
N10.055 (2)0.042 (2)0.042 (2)0.0066 (15)0.0090 (17)0.0048 (16)
N20.0401 (17)0.0310 (17)0.0390 (18)0.0055 (12)0.0071 (14)0.0050 (14)
N30.0452 (19)0.0319 (17)0.052 (2)0.0061 (13)0.0022 (15)0.0140 (16)
N40.039 (2)0.056 (2)0.078 (3)0.0026 (15)0.0113 (18)0.014 (2)
O10.081 (2)0.070 (2)0.048 (2)0.0147 (15)0.0004 (16)0.0235 (16)
O20.0499 (19)0.071 (2)0.059 (2)0.0059 (14)0.0197 (14)0.0108 (15)
O30.0569 (18)0.0363 (16)0.064 (2)0.0123 (12)0.0222 (14)0.0068 (13)
C10.034 (2)0.032 (2)0.047 (2)0.0027 (15)0.0071 (16)0.0003 (18)
C20.067 (3)0.042 (2)0.049 (3)0.0120 (19)0.002 (2)0.012 (2)
C30.057 (3)0.046 (2)0.062 (3)0.0052 (18)0.007 (2)0.017 (2)
C40.042 (2)0.041 (2)0.033 (2)0.0023 (16)0.0033 (16)0.0090 (17)
C50.050 (2)0.041 (2)0.040 (2)0.0053 (17)0.0041 (18)0.0069 (18)
C60.044 (2)0.045 (2)0.046 (3)0.0069 (17)0.0016 (18)0.0036 (19)
C70.045 (2)0.026 (2)0.047 (2)0.0073 (15)0.0114 (18)0.0043 (17)
C80.044 (2)0.046 (2)0.055 (3)0.0071 (17)0.0116 (19)0.005 (2)
C90.050 (2)0.037 (2)0.069 (3)0.0002 (17)0.012 (2)0.014 (2)
C100.043 (2)0.043 (2)0.080 (3)0.0032 (17)0.003 (2)0.007 (2)
C110.043 (2)0.033 (2)0.046 (2)0.0023 (15)0.0127 (17)0.0021 (17)
C120.041 (2)0.0219 (18)0.041 (2)0.0019 (14)0.0067 (17)0.0027 (16)
C130.045 (2)0.040 (2)0.050 (3)0.0013 (16)0.0093 (18)0.0104 (19)
C140.050 (3)0.057 (3)0.053 (3)0.002 (2)0.001 (2)0.018 (2)
C150.043 (2)0.043 (2)0.069 (3)0.0056 (17)0.007 (2)0.013 (2)
C160.046 (2)0.047 (2)0.056 (3)0.0001 (17)0.005 (2)0.008 (2)
Geometric parameters (Å, º) top
Cl1—C151.729 (4)C5—H50.9800
N1—O11.254 (4)C6—C71.529 (5)
N1—O21.258 (4)C6—H6A0.9700
N1—C41.386 (5)C6—H6B0.9700
N2—C11.363 (5)C7—C81.515 (5)
N2—C21.456 (5)C8—C91.523 (5)
N2—C71.480 (4)C8—H8A0.9700
N3—C11.357 (4)C8—H8B0.9700
N3—C31.472 (5)C9—C101.515 (6)
N3—C111.475 (4)C9—H9A0.9700
N4—C151.320 (6)C9—H9B0.9700
N4—C161.337 (5)C10—H10A0.9700
O3—C71.407 (4)C10—H10B0.9700
O3—H30.8200C11—C121.490 (5)
C1—C41.391 (5)C11—H11A0.9700
C2—C31.518 (5)C11—H11B0.9700
C2—H2A0.9700C12—C161.387 (5)
C2—H2B0.9700C12—C131.387 (5)
C3—H3A0.9700C13—C141.380 (5)
C3—H3B0.9700C13—H130.9300
C4—C51.495 (5)C14—C151.364 (6)
C5—C101.527 (6)C14—H140.9300
C5—C61.537 (5)C16—H160.9300
O1—N1—O2119.6 (3)N2—C7—C8110.8 (3)
O1—N1—C4118.7 (3)O3—C7—C6113.1 (3)
O2—N1—C4121.6 (3)N2—C7—C6107.2 (3)
C1—N2—C2110.4 (3)C8—C7—C6110.5 (3)
C1—N2—C7123.4 (3)C7—C8—C9111.2 (3)
C2—N2—C7121.0 (3)C7—C8—H8A109.4
C1—N3—C3108.5 (3)C9—C8—H8A109.4
C1—N3—C11120.6 (3)C7—C8—H8B109.4
C3—N3—C11115.0 (3)C9—C8—H8B109.4
C15—N4—C16117.1 (4)H8A—C8—H8B108.0
C7—O3—H3109.5C10—C9—C8112.4 (3)
N3—C1—N2110.0 (3)C10—C9—H9A109.1
N3—C1—C4129.9 (3)C8—C9—H9A109.1
N2—C1—C4120.0 (3)C10—C9—H9B109.1
N2—C2—C3101.0 (3)C8—C9—H9B109.1
N2—C2—H2A111.6H9A—C9—H9B107.9
C3—C2—H2A111.6C9—C10—C5112.6 (3)
N2—C2—H2B111.6C9—C10—H10A109.1
C3—C2—H2B111.6C5—C10—H10A109.1
H2A—C2—H2B109.4C9—C10—H10B109.1
N3—C3—C2104.0 (3)C5—C10—H10B109.1
N3—C3—H3A110.9H10A—C10—H10B107.8
C2—C3—H3A110.9N3—C11—C12111.4 (3)
N3—C3—H3B110.9N3—C11—H11A109.4
C2—C3—H3B110.9C12—C11—H11A109.4
H3A—C3—H3B109.0N3—C11—H11B109.4
N1—C4—C1121.8 (3)C12—C11—H11B109.4
N1—C4—C5119.4 (3)H11A—C11—H11B108.0
C1—C4—C5118.7 (3)C16—C12—C13116.4 (3)
C4—C5—C10112.7 (3)C16—C12—C11122.2 (3)
C4—C5—C6107.8 (3)C13—C12—C11121.4 (3)
C10—C5—C6110.2 (4)C14—C13—C12120.4 (4)
C4—C5—H5108.7C14—C13—H13119.8
C10—C5—H5108.7C12—C13—H13119.8
C6—C5—H5108.7C15—C14—C13117.7 (4)
C7—C6—C5107.8 (3)C15—C14—H14121.2
C7—C6—H6A110.2C13—C14—H14121.2
C5—C6—H6A110.2N4—C15—C14124.4 (4)
C7—C6—H6B110.2N4—C15—Cl1115.8 (3)
C5—C6—H6B110.2C14—C15—Cl1119.8 (3)
H6A—C6—H6B108.5N4—C16—C12124.0 (4)
O3—C7—N2108.0 (3)N4—C16—H16118.0
O3—C7—C8107.2 (3)C12—C16—H16118.0
C3—N3—C1—N23.5 (4)C1—N2—C7—C887.0 (4)
C11—N3—C1—N2132.3 (3)C2—N2—C7—C865.2 (4)
C3—N3—C1—C4177.8 (4)C1—N2—C7—C633.7 (4)
C11—N3—C1—C446.5 (6)C2—N2—C7—C6174.1 (3)
C2—N2—C1—N313.0 (4)C5—C6—C7—O3177.5 (3)
C7—N2—C1—N3167.8 (3)C5—C6—C7—N258.5 (4)
C2—N2—C1—C4165.9 (3)C5—C6—C7—C862.4 (4)
C7—N2—C1—C411.1 (5)O3—C7—C8—C9178.1 (3)
C1—N2—C2—C322.7 (4)N2—C7—C8—C960.5 (4)
C7—N2—C2—C3178.2 (3)C6—C7—C8—C958.3 (4)
C1—N3—C3—C217.4 (4)C7—C8—C9—C1051.5 (4)
C11—N3—C3—C2121.1 (3)C8—C9—C10—C550.4 (5)
N2—C2—C3—N323.3 (4)C4—C5—C10—C965.2 (4)
O1—N1—C4—C1177.1 (3)C6—C5—C10—C955.2 (4)
O2—N1—C4—C15.0 (5)C1—N3—C11—C12162.0 (3)
O1—N1—C4—C57.4 (5)C3—N3—C11—C1264.9 (4)
O2—N1—C4—C5170.6 (3)N3—C11—C12—C1658.0 (4)
N3—C1—C4—N120.4 (6)N3—C11—C12—C13121.5 (4)
N2—C1—C4—N1160.9 (3)C16—C12—C13—C142.0 (5)
N3—C1—C4—C5164.0 (4)C11—C12—C13—C14178.5 (3)
N2—C1—C4—C514.7 (5)C12—C13—C14—C150.8 (6)
N1—C4—C5—C10103.5 (4)C16—N4—C15—C141.5 (6)
C1—C4—C5—C1080.8 (4)C16—N4—C15—Cl1178.9 (3)
N1—C4—C5—C6134.7 (4)C13—C14—C15—N41.1 (7)
C1—C4—C5—C641.0 (5)C13—C14—C15—Cl1179.3 (3)
C4—C5—C6—C763.1 (4)C15—N4—C16—C120.0 (6)
C10—C5—C6—C760.2 (4)C13—C12—C16—N41.7 (5)
C1—N2—C7—O3155.9 (3)C11—C12—C16—N4178.8 (3)
C2—N2—C7—O351.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N4i0.822.042.855 (4)174
C11—H11A···O1ii0.972.533.467 (5)161
C13—H13···O2ii0.932.483.265 (5)142
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H19ClN4O3
Mr350.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.3975 (14), 18.7124 (18), 6.5721 (8)
β (°) 97.897 (10)
V3)1632.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.38 × 0.24 × 0.23
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.93, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
7705, 2921, 1727
Rint0.056
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.217, 1.05
No. of reflections2921
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N4i0.822.042.855 (4)174
C11—H11A···O1ii0.972.533.467 (5)161
C13—H13···O2ii0.932.483.265 (5)142
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20902037), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (grant No. BS2010NY001), and the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008-08).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJeschkel, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084–1098.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z.-Z., Shao, X.-S., Li, Z., Qian, X.-H. & Huang, Q.-C. (2007). J. Agric. Food Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds