organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbamo­yl(di­amino­methyl­­idene)aza­nium 3-nitro-5-oxo-4,5-di­hydro-1H-1,2,4-triazol-4-ide

aXi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China, bDepartment of Mathematics, Jining Teachers College, Wulanchabu 012000, People's Republic of China, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 May 2013; accepted 5 June 2013; online 12 June 2013)

In the anion of the title salt, C2H7N4O+·C2HN4O3, the negative charge resides formally on the N3 atom of the triazole ring. In the crystal, the N3 and exocyclic O atoms are hydrogen-bond acceptors with respect to the formally double-bond iminium and amido N atoms of the cation. The cation and anion are almost planar (r.m.s. deviations = 0.012 and 0.051 Å, respectively), but they are slightly bent with respect to each other [dihedral angle = 12.6 (1)°]. In the crystal, adjacent anions and cations are linked by extensive N—H⋯N and N—H⋯O hydrogen bonds, generating a ribbon running along the b-axis direction.

Related literature

For background to applications of similar compounds as propellants and explosives, see: Liu et al. (2006[Liu, Q., Wang, B.-Z., Zhang, Z.-Z., Zhu, Z.-H. & Lian, P. (2006). Chin. J. Explosives Propellants, 29, 29-31.]); Östmark et al. (2002[Östmark, H., Bemm, U., Bergman, H. & Langlet, A. (2002). Thermochim. Acta, 384, 253-259.]).

[Scheme 1]

Experimental

Crystal data
  • C2H7N4O+·C2HN4O3

  • Mr = 232.18

  • Monoclinic, P 21 /n

  • a = 3.7100 (5) Å

  • b = 13.4195 (19) Å

  • c = 18.033 (3) Å

  • β = 94.143 (3)°

  • V = 895.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 5217 measured reflections

  • 2032 independent reflections

  • 1297 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.00

  • 2032 reflections

  • 177 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.87 (2) 1.97 (2) 2.819 (2) 166 (2)
N5—H2⋯N3 0.94 (2) 1.99 (3) 2.926 (3) 173 (2)
N5—H3⋯O1ii 0.90 (3) 2.13 (3) 3.005 (2) 164 (2)
N6—H4⋯O1 0.89 (2) 1.96 (2) 2.824 (2) 163 (2)
N8—H5⋯O1 0.95 (3) 2.15 (3) 2.966 (3) 142 (2)
N8—H6⋯O3iii 0.87 (2) 2.32 (3) 3.183 (3) 173 (2)
N7—H7⋯N2iii 0.90 (2) 2.03 (3) 2.913 (2) 166 (2)
N7—H8⋯O4 0.85 (2) 2.02 (2) 2.645 (2) 129 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported organic compounds that do not possess carbon-bound hydrogen atoms; N-guanylurea dinitramide, NH2C(NH)NHC(O)NH2.NH(NO2)2 (Liu et al., 2006), exemplifies such a compound that has been evaluated for use as a propellant and an insensitive-munitions explosive (Östmark et al., 2002). The title salt (Scheme I, Fig. 1) features an (NH2)2C(NH)C(O)NH2 cation that has been protonated by 3-nitro-1,2,4-triazol-5-one, which is acidic owing to the electron-withdrawing nitro group. The N3 and exocyclic O atoms are hydrogen bond acceptors with respect to the formally double-bond iminium and amido N atoms of the cation. The cation and anion are planar but they are slightly bent with respect to each other. Adjacent ion-pairs are linked by extensive N···N and N···O hydrogen bonds to generate a ribbon structure (Table 1).

Related literature top

For background to applications of similar compounds as propellants and explosives, see: Liu et al. (2006); Östmark et al. (2002).

Experimental top

3-Nitro-1,2,4-triazol-5-one (26.0 g, 0.2 mol) was suspended in water (150 ml) kept at 303–313 K. Sodium hydroxide (8.2 g, 0.2 mol) dissolved in water (50 ml) was added. Guanylurea hydrochloride (27.8 g, 0.2 mol) dissolved in water (175 ml) was aded. The mixture was warmed to 323–333 K for 1.5 h. This was then cooled to 275–278 K. The solid material was collected and recrystallized from water (yield 35.0 g, 85% yield).

Refinement top

Hydrogen atoms were located in a difference Fourier map, and were freely refined.

Structure description top

We have reported organic compounds that do not possess carbon-bound hydrogen atoms; N-guanylurea dinitramide, NH2C(NH)NHC(O)NH2.NH(NO2)2 (Liu et al., 2006), exemplifies such a compound that has been evaluated for use as a propellant and an insensitive-munitions explosive (Östmark et al., 2002). The title salt (Scheme I, Fig. 1) features an (NH2)2C(NH)C(O)NH2 cation that has been protonated by 3-nitro-1,2,4-triazol-5-one, which is acidic owing to the electron-withdrawing nitro group. The N3 and exocyclic O atoms are hydrogen bond acceptors with respect to the formally double-bond iminium and amido N atoms of the cation. The cation and anion are planar but they are slightly bent with respect to each other. Adjacent ion-pairs are linked by extensive N···N and N···O hydrogen bonds to generate a ribbon structure (Table 1).

For background to applications of similar compounds as propellants and explosives, see: Liu et al. (2006); Östmark et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C2H7N4O.C2HN4O3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram.
Carbamoyl(diaminomethylidene)azanium 3-nitro-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-ide top
Crystal data top
C2H7N4O+·C2HN4O3F(000) = 480
Mr = 232.18Dx = 1.722 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 976 reflections
a = 3.7100 (5) Åθ = 2.3–24.8°
b = 13.4195 (19) ŵ = 0.15 mm1
c = 18.033 (3) ÅT = 293 K
β = 94.143 (3)°Prism, yellow
V = 895.5 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1297 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 44
5217 measured reflectionsk = 1417
2032 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
2032 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C2H7N4O+·C2HN4O3V = 895.5 (2) Å3
Mr = 232.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.7100 (5) ŵ = 0.15 mm1
b = 13.4195 (19) ÅT = 293 K
c = 18.033 (3) Å0.30 × 0.30 × 0.20 mm
β = 94.143 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1297 reflections with I > 2σ(I)
5217 measured reflectionsRint = 0.035
2032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.00Δρmax = 0.17 e Å3
2032 reflectionsΔρmin = 0.23 e Å3
177 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3898 (4)0.79686 (10)0.74934 (8)0.0387 (4)
O20.9393 (5)0.48678 (10)0.86971 (9)0.0526 (5)
O31.2361 (4)0.56912 (12)0.95758 (9)0.0502 (5)
O40.0042 (5)0.49420 (10)0.59852 (8)0.0429 (4)
N10.7380 (5)0.80376 (12)0.86167 (9)0.0309 (4)
N20.9228 (5)0.73874 (11)0.90892 (8)0.0301 (4)
N30.6699 (5)0.65784 (11)0.80734 (9)0.0288 (4)
N41.0257 (5)0.56440 (12)0.90216 (9)0.0343 (4)
N50.3102 (5)0.50638 (14)0.71153 (9)0.0356 (5)
N60.1708 (5)0.64808 (12)0.64482 (9)0.0304 (4)
N70.1373 (5)0.66445 (15)0.52843 (10)0.0364 (5)
N80.0601 (6)0.80164 (14)0.59459 (12)0.0465 (6)
C10.8697 (5)0.65588 (13)0.87193 (10)0.0257 (4)
C20.5814 (5)0.75613 (14)0.80084 (10)0.0281 (5)
C30.1543 (6)0.54422 (14)0.64972 (10)0.0291 (5)
C40.0251 (6)0.70408 (14)0.58795 (10)0.0283 (4)
H10.703 (6)0.8651 (17)0.8753 (12)0.042 (6)*
H20.434 (6)0.5511 (18)0.7446 (12)0.046 (7)*
H30.290 (7)0.440 (2)0.7190 (14)0.064 (8)*
H40.257 (7)0.6841 (19)0.6834 (13)0.053 (7)*
H50.177 (8)0.8310 (19)0.6379 (16)0.076 (9)*
H60.034 (7)0.8406 (18)0.5601 (13)0.052 (7)*
H70.248 (6)0.7032 (18)0.4929 (13)0.051 (7)*
H80.162 (6)0.6015 (18)0.5248 (13)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (10)0.0337 (8)0.0302 (8)0.0054 (7)0.0120 (7)0.0002 (6)
O20.0776 (13)0.0250 (8)0.0544 (10)0.0059 (8)0.0017 (9)0.0022 (7)
O30.0493 (10)0.0527 (10)0.0459 (10)0.0033 (8)0.0145 (8)0.0133 (8)
O40.0670 (11)0.0287 (8)0.0307 (8)0.0121 (7)0.0130 (7)0.0012 (6)
N10.0418 (11)0.0222 (8)0.0274 (9)0.0024 (8)0.0054 (8)0.0039 (7)
N20.0362 (11)0.0268 (8)0.0262 (9)0.0003 (7)0.0050 (7)0.0025 (7)
N30.0338 (10)0.0244 (9)0.0272 (9)0.0000 (7)0.0036 (7)0.0030 (7)
N40.0375 (11)0.0305 (9)0.0348 (10)0.0012 (8)0.0027 (8)0.0045 (8)
N50.0521 (12)0.0251 (9)0.0276 (10)0.0028 (9)0.0099 (9)0.0016 (8)
N60.0434 (11)0.0234 (8)0.0231 (9)0.0028 (8)0.0071 (8)0.0013 (7)
N70.0484 (12)0.0306 (10)0.0283 (10)0.0027 (9)0.0103 (9)0.0033 (8)
N80.0717 (16)0.0240 (10)0.0413 (12)0.0037 (10)0.0129 (11)0.0019 (9)
C10.0271 (11)0.0260 (10)0.0238 (10)0.0004 (8)0.0004 (8)0.0009 (8)
C20.0341 (12)0.0246 (10)0.0252 (10)0.0009 (8)0.0014 (9)0.0020 (8)
C30.0362 (12)0.0263 (10)0.0244 (10)0.0025 (9)0.0002 (9)0.0013 (8)
C40.0313 (11)0.0275 (10)0.0263 (10)0.0003 (9)0.0024 (8)0.0003 (8)
Geometric parameters (Å, º) top
O1—C21.253 (2)N5—H20.94 (2)
O2—N41.226 (2)N5—H30.90 (3)
O3—N41.224 (2)N6—C41.352 (2)
O4—C31.240 (2)N6—C31.398 (2)
N1—C21.363 (2)N6—H40.89 (2)
N1—N21.369 (2)N7—C41.306 (3)
N1—H10.87 (2)N7—H70.90 (2)
N2—C11.304 (2)N7—H80.85 (2)
N3—C11.335 (2)N8—C41.320 (3)
N3—C21.362 (2)N8—H50.95 (3)
N4—C11.447 (2)N8—H60.87 (2)
N5—C31.320 (2)
C2—N1—N2111.56 (15)H7—N7—H8119 (2)
C2—N1—H1127.4 (15)C4—N8—H5121.4 (16)
N2—N1—H1120.3 (15)C4—N8—H6120.0 (16)
C1—N2—N1100.07 (14)H5—N8—H6118 (2)
C1—N3—C2102.08 (15)N2—C1—N3118.90 (16)
O3—N4—O2124.25 (18)N2—C1—N4119.28 (17)
O3—N4—C1118.53 (17)N3—C1—N4121.82 (16)
O2—N4—C1117.21 (17)O1—C2—N3127.31 (18)
C3—N5—H2117.0 (14)O1—C2—N1125.30 (18)
C3—N5—H3118.0 (17)N3—C2—N1107.39 (16)
H2—N5—H3125 (2)O4—C3—N5124.49 (19)
C4—N6—C3125.80 (17)O4—C3—N6120.77 (18)
C4—N6—H4113.2 (16)N5—C3—N6114.74 (18)
C3—N6—H4120.6 (16)N7—C4—N8121.0 (2)
C4—N7—H7120.5 (15)N7—C4—N6122.19 (18)
C4—N7—H8120.5 (16)N8—C4—N6116.81 (19)
C2—N1—N2—C11.2 (2)C1—N3—C2—O1179.1 (2)
N1—N2—C1—N31.0 (2)C1—N3—C2—N10.4 (2)
N1—N2—C1—N4179.47 (16)N2—N1—C2—O1178.41 (19)
C2—N3—C1—N20.4 (2)N2—N1—C2—N31.1 (2)
C2—N3—C1—N4179.90 (17)C4—N6—C3—O41.9 (3)
O3—N4—C1—N27.9 (3)C4—N6—C3—N5178.53 (19)
O2—N4—C1—N2172.69 (18)C3—N6—C4—N73.2 (3)
O3—N4—C1—N3172.61 (18)C3—N6—C4—N8178.0 (2)
O2—N4—C1—N36.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (2)1.97 (2)2.819 (2)166 (2)
N5—H2···N30.94 (2)1.99 (3)2.926 (3)173 (2)
N5—H3···O1ii0.90 (3)2.13 (3)3.005 (2)164 (2)
N6—H4···O10.89 (2)1.96 (2)2.824 (2)163 (2)
N8—H5···O10.95 (3)2.15 (3)2.966 (3)142 (2)
N8—H6···O3iii0.87 (2)2.32 (3)3.183 (3)173 (2)
N7—H7···N2iii0.90 (2)2.03 (3)2.913 (2)166 (2)
N7—H8···O40.85 (2)2.02 (2)2.645 (2)129 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x3/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC2H7N4O+·C2HN4O3
Mr232.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)3.7100 (5), 13.4195 (19), 18.033 (3)
β (°) 94.143 (3)
V3)895.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5217, 2032, 1297
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.00
No. of reflections2032
No. of parameters177
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (2)1.97 (2)2.819 (2)166 (2)
N5—H2···N30.94 (2)1.99 (3)2.926 (3)173 (2)
N5—H3···O1ii0.90 (3)2.13 (3)3.005 (2)164 (2)
N6—H4···O10.89 (2)1.96 (2)2.824 (2)163 (2)
N8—H5···O10.95 (3)2.15 (3)2.966 (3)142 (2)
N8—H6···O3iii0.87 (2)2.32 (3)3.183 (3)173 (2)
N7—H7···N2iii0.90 (2)2.03 (3)2.913 (2)166 (2)
N7—H8···O40.85 (2)2.02 (2)2.645 (2)129 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2; (iii) x3/2, y+3/2, z1/2.
 

Acknowledgements

We thank the Scientific Research Project of Higher Education of Inner Mongolia (No. NJZY13284 and No. NJZC13283), the Inner Mongolia Science & Technology Plan and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR-MOHE/SC/03) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Q., Wang, B.-Z., Zhang, Z.-Z., Zhu, Z.-H. & Lian, P. (2006). Chin. J. Explosives Propellants, 29, 29–31.  Google Scholar
First citationÖstmark, H., Bemm, U., Bergman, H. & Langlet, A. (2002). Thermochim. Acta, 384, 253–259.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds