organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(1,3-Benzo­thia­zol-2-yl)meth­­oxy]-5-fluoro­phen­yl}(4-chloro­phen­yl)methanone

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France, and cSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: venugopala@ukzn.ac.za, nksusa@gmail.com

(Received 13 May 2013; accepted 27 May 2013; online 8 June 2013)

The asymmetric unit of the title compound, C21H13ClFNO2S, contains two independent mol­ecules with similar conformations. In the mol­ecules, the thia­zole ring is essentially planar [maximum atomic deviations = 0.014 (4) and 0.023 (5) Å] and is oriented with respect to the fluoro­phenyl ring and chloro­phenyl rings at 9.96 (18) and 70.39 (18)° in one mol­ecule and at 7.50 (18) and 68.43 (18)° in the other; the dihedral angles between the fluoro­phenyl and chloro­phenyl rings are 64.9 (2) and 64.6 (2)°, respectively. Inter­molecular C—H⋯O and C—H⋯F hydrogen bonds stabilize the three-dimensional supra­molecular architecture. Weak C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.877 (3) Å] lead to a criss-cross mol­ecular packing along the c axis.

Related literature

For background to the applications of benzo­thia­zole derivatives, see: Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10-17.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]); Telvekar et al. (2012[Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649-652.]); Kelarev et al. (2003[Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267-1306.]). For crystal structures of related benzo­thia­zoles, see: Nayak et al. (2013[Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70.]); Venugopala et al. (2012[Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13ClFNO2S

  • Mr = 397.84

  • Orthorhombic, P n a 21

  • a = 19.7280 (6) Å

  • b = 7.4755 (3) Å

  • c = 24.4847 (7) Å

  • V = 3611.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 292 K

  • 0.18 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.939, Tmax = 0.972

  • 36561 measured reflections

  • 7100 independent reflections

  • 4182 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.118

  • S = 0.99

  • 7100 reflections

  • 488 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.05 (8), ???? Friedel pairs

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the thia­zole rings S1/C1/C6/N1/C7 and S2/C22/C27/N2/C28, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F1i 0.93 2.52 3.091 (6) 120
C5—H5⋯O2ii 0.93 2.46 3.340 (5) 158
C26—H26⋯O4iii 0.93 2.51 3.369 (5) 154
C18—H18⋯Cg1iv 0.93 2.83 3.686 (5) 154
C39—H39⋯Cg2v 0.93 2.82 3.619 (5) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) x, y-1, z; (v) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted benzothiazole derivatives exhibit various pharmacological properties such as analgesic, antimicrobial, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). Thus the biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010; Rana et al., 2007). Several crystal structures of the benzothiazoles have been reported (Nayak et al., 2013; Venugopala et al., 2012). Here, we report the single-crystal structure of the title compound.

The title compound, C21H13ClFNO2S, prefers two symmetry independent molecules in the asymmetric unit (Fig. 1). The conformation of the individual molecules adopt the dihedral angles of 64.8 (2)° and 66.6 (2)° between the planes of their respective benzothiazole and chlorophenylmethanone groups. Intermolecular C—H···O and C—H···F hydrogen bond chains stabilize the three dimension molecular assembly. Further, the C—H···π [2.83 Å, Cg1 = Centroid of five membered ring S1/C1/C6/N1/C7; 2.82 Å, Cg2 = Centroid of five membered ring S2/C22/C27/N2/C28] and π···π [Cg3···Cg4 = 3.877 (3) Å, Cg3 = Centroid of six membered ring C16—C21 and Cg4 = Centroid of six membered ring C30—C35] interactions lead to criss-cross molecular packing along the c axis.

Related literature top

For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Kelarev et al. (2003). For crystal structures of related benzothiazoles, see: Nayak et al. (2013); Venugopala et al. (2012).

Experimental top

To a solution of (2-chloromethyl)benzo[d]thiazole (1 mmol) and (4-chlorophenyl)(5-fluoro-2-hydroxyphenyl)methanone (1 mmol) in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature. The reaction mixture was added and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.70) to afford the product in 78% as a white solid (m. p. 419 (2) K). Suitable crystals for single-crystal X-ray study were obtained from acetone solvent using slow evaporation technique at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Structure description top

Substituted benzothiazole derivatives exhibit various pharmacological properties such as analgesic, antimicrobial, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). Thus the biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010; Rana et al., 2007). Several crystal structures of the benzothiazoles have been reported (Nayak et al., 2013; Venugopala et al., 2012). Here, we report the single-crystal structure of the title compound.

The title compound, C21H13ClFNO2S, prefers two symmetry independent molecules in the asymmetric unit (Fig. 1). The conformation of the individual molecules adopt the dihedral angles of 64.8 (2)° and 66.6 (2)° between the planes of their respective benzothiazole and chlorophenylmethanone groups. Intermolecular C—H···O and C—H···F hydrogen bond chains stabilize the three dimension molecular assembly. Further, the C—H···π [2.83 Å, Cg1 = Centroid of five membered ring S1/C1/C6/N1/C7; 2.82 Å, Cg2 = Centroid of five membered ring S2/C22/C27/N2/C28] and π···π [Cg3···Cg4 = 3.877 (3) Å, Cg3 = Centroid of six membered ring C16—C21 and Cg4 = Centroid of six membered ring C30—C35] interactions lead to criss-cross molecular packing along the c axis.

For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Kelarev et al. (2003). For crystal structures of related benzothiazoles, see: Nayak et al. (2013); Venugopala et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 30% probability level, hydrogen atoms are arbitrary circle.
[Figure 2] Fig. 2. (a)The C—H···O and C—H···F hydrogen bond chains. (b) additional C—H···π and π···π interactions lead to criss-cross molecular assembly along c axis.
{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-fluorophenyl}(4-chlorophenyl)methanone top
Crystal data top
C21H13ClFNO2SDx = 1.464 Mg m3
Mr = 397.84Melting point: 419(2) K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2c -2nCell parameters from 340 reflections
a = 19.7280 (6) Åθ = 2.7–27.0°
b = 7.4755 (3) ŵ = 0.35 mm1
c = 24.4847 (7) ÅT = 292 K
V = 3611.0 (2) Å3Block, colorless
Z = 80.18 × 0.12 × 0.08 mm
F(000) = 1632
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
7100 independent reflections
Radiation source: Mova (Mo) X-ray Source4182 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.076
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 2.7°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.939, Tmax = 0.972l = 3030
36561 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.31 e Å3
7100 reflectionsΔρmin = 0.21 e Å3
488 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0012 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C21H13ClFNO2SV = 3611.0 (2) Å3
Mr = 397.84Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 19.7280 (6) ŵ = 0.35 mm1
b = 7.4755 (3) ÅT = 292 K
c = 24.4847 (7) Å0.18 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
7100 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4182 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.972Rint = 0.076
36561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.31 e Å3
S = 0.99Δρmin = 0.21 e Å3
7100 reflectionsAbsolute structure: Flack (1983)
488 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.06104 (6)0.33720 (18)0.47599 (5)0.0583 (4)
S10.17610 (6)0.63708 (17)0.25881 (5)0.0595 (4)
Cl20.06464 (8)0.7998 (2)0.57593 (6)0.1029 (6)
Cl10.18806 (8)0.1307 (2)0.15892 (6)0.1061 (6)
O10.22799 (14)0.5887 (4)0.36472 (11)0.0561 (8)
N10.08765 (16)0.8291 (5)0.31021 (13)0.0426 (9)
O20.41192 (16)0.4498 (5)0.33659 (13)0.0686 (10)
O30.00885 (14)0.3921 (4)0.37068 (11)0.0537 (8)
N20.14867 (17)0.1432 (5)0.42445 (14)0.0442 (9)
F10.37852 (17)0.3630 (5)0.53847 (12)0.1056 (12)
F20.14027 (16)0.6181 (5)0.19584 (12)0.0965 (11)
C350.0842 (2)0.5483 (6)0.33474 (16)0.0444 (11)
C60.06876 (18)0.8298 (5)0.25537 (18)0.0420 (10)
C270.1675 (2)0.1403 (6)0.47895 (18)0.0427 (10)
C280.0952 (2)0.2386 (5)0.41793 (18)0.0406 (10)
C160.3100 (2)0.3434 (5)0.29917 (17)0.0397 (10)
C370.0700 (2)0.6470 (6)0.43582 (17)0.0443 (11)
C240.1953 (2)0.1670 (7)0.5891 (2)0.0622 (14)
H240.20590.17690.62600.075*
C180.2180 (2)0.1664 (6)0.26527 (19)0.0530 (12)
H180.18160.09000.27170.064*
C260.2223 (2)0.0503 (6)0.50034 (18)0.0532 (12)
H260.25010.01840.47790.064*
C340.1231 (2)0.6039 (6)0.29010 (19)0.0553 (13)
H340.16270.66880.29550.066*
C90.2631 (2)0.5326 (6)0.40965 (16)0.0446 (11)
C10.1111 (2)0.7311 (6)0.22139 (19)0.0492 (12)
C190.2358 (3)0.2103 (7)0.21246 (19)0.0571 (13)
C380.0117 (2)0.7485 (5)0.4272 (2)0.0473 (12)
H380.00040.78090.39180.057*
C150.3522 (2)0.4139 (6)0.34429 (18)0.0472 (11)
C210.3291 (2)0.3796 (6)0.24532 (17)0.0500 (12)
H210.36730.44870.23840.060*
O40.17413 (16)0.5686 (5)0.39716 (13)0.0701 (10)
C170.2540 (2)0.2356 (6)0.30809 (19)0.0461 (12)
H170.24060.21000.34370.055*
C400.0101 (3)0.7524 (7)0.5223 (2)0.0609 (14)
C20.0976 (2)0.7182 (7)0.1656 (2)0.0652 (14)
H20.12580.65270.14270.078*
C100.2421 (2)0.5674 (6)0.46288 (17)0.0515 (12)
H100.20190.62910.46930.062*
C410.0482 (2)0.6569 (7)0.53269 (19)0.0623 (14)
H410.06040.62710.56820.075*
C320.0457 (3)0.4639 (7)0.22913 (18)0.0631 (14)
H320.03330.43580.19350.076*
C290.0633 (2)0.2694 (6)0.36384 (19)0.0507 (12)
H29A0.09640.31790.33850.061*
H29B0.04650.15740.34910.061*
C140.3237 (2)0.4423 (6)0.39979 (17)0.0426 (11)
C50.0125 (2)0.9163 (6)0.23477 (18)0.0535 (12)
H50.01580.98250.25750.064*
C310.0069 (2)0.4062 (6)0.27210 (17)0.0546 (13)
H310.03210.33930.26580.066*
C220.1258 (2)0.2402 (6)0.51368 (18)0.0453 (12)
C420.0883 (2)0.6062 (7)0.48870 (19)0.0585 (13)
H420.12820.54350.49500.070*
C110.2812 (3)0.5095 (6)0.50601 (18)0.0633 (14)
H110.26740.52950.54180.076*
C360.1134 (2)0.5866 (6)0.39001 (17)0.0488 (11)
C330.1023 (3)0.5621 (7)0.2386 (2)0.0635 (14)
C390.0280 (2)0.8013 (6)0.4703 (2)0.0546 (12)
H390.06670.86960.46440.066*
C80.1729 (2)0.7062 (6)0.37194 (18)0.0504 (12)
H8A0.18840.81930.38680.061*
H8B0.14010.65480.39690.061*
C300.0263 (2)0.4483 (6)0.32504 (18)0.0458 (11)
C40.0004 (2)0.9022 (7)0.1803 (2)0.0667 (15)
H40.03840.95920.16590.080*
C70.1416 (2)0.7339 (6)0.31678 (18)0.0444 (11)
C250.2354 (2)0.0638 (7)0.55564 (19)0.0610 (13)
H250.27200.00210.57050.073*
C200.2919 (2)0.3138 (6)0.20268 (19)0.0574 (13)
H200.30460.33940.16700.069*
C120.3407 (3)0.4220 (7)0.49521 (19)0.0641 (14)
C130.3629 (2)0.3886 (6)0.4435 (2)0.0575 (13)
H130.40390.33040.43780.069*
C230.1399 (2)0.2553 (6)0.5689 (2)0.0595 (13)
H230.11240.32360.59170.071*
C30.0414 (2)0.8049 (8)0.1455 (2)0.0702 (16)
H30.03140.79850.10850.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0601 (8)0.0648 (8)0.0499 (7)0.0205 (7)0.0044 (6)0.0056 (7)
S10.0573 (7)0.0733 (9)0.0478 (7)0.0237 (6)0.0023 (6)0.0068 (7)
Cl20.1140 (12)0.1242 (14)0.0707 (10)0.0212 (11)0.0177 (9)0.0367 (10)
Cl10.1281 (13)0.1298 (15)0.0602 (10)0.0478 (11)0.0180 (9)0.0170 (10)
O10.0629 (19)0.067 (2)0.0387 (17)0.0271 (17)0.0047 (15)0.0040 (16)
N10.0363 (19)0.045 (2)0.047 (2)0.0055 (17)0.0011 (16)0.0016 (17)
O20.045 (2)0.088 (3)0.072 (2)0.0047 (19)0.0011 (18)0.006 (2)
O30.0607 (19)0.060 (2)0.0403 (17)0.0167 (17)0.0029 (15)0.0032 (16)
N20.0402 (19)0.048 (2)0.044 (2)0.0019 (18)0.0020 (17)0.0069 (18)
F10.113 (2)0.145 (3)0.0588 (19)0.009 (2)0.0385 (18)0.025 (2)
F20.102 (2)0.122 (3)0.065 (2)0.007 (2)0.0297 (17)0.033 (2)
C350.045 (3)0.047 (3)0.041 (3)0.011 (2)0.004 (2)0.006 (2)
C60.041 (2)0.043 (3)0.043 (3)0.001 (2)0.001 (2)0.003 (2)
C270.044 (2)0.043 (3)0.041 (3)0.000 (2)0.008 (2)0.007 (2)
C280.043 (2)0.041 (3)0.038 (3)0.000 (2)0.003 (2)0.0030 (19)
C160.039 (2)0.036 (2)0.044 (2)0.004 (2)0.001 (2)0.000 (2)
C370.050 (3)0.041 (3)0.042 (3)0.007 (2)0.003 (2)0.003 (2)
C240.071 (3)0.071 (4)0.044 (3)0.001 (3)0.004 (3)0.003 (3)
C180.061 (3)0.043 (3)0.055 (3)0.013 (2)0.002 (2)0.004 (2)
C260.044 (3)0.061 (3)0.055 (3)0.007 (2)0.003 (2)0.005 (2)
C340.052 (3)0.054 (3)0.060 (3)0.007 (2)0.010 (2)0.011 (3)
C90.047 (3)0.046 (3)0.041 (3)0.002 (2)0.004 (2)0.001 (2)
C10.043 (2)0.058 (3)0.046 (3)0.010 (2)0.001 (2)0.004 (2)
C190.073 (3)0.051 (3)0.047 (3)0.007 (3)0.006 (3)0.012 (2)
C380.051 (3)0.039 (3)0.052 (3)0.002 (2)0.006 (2)0.002 (2)
C150.046 (3)0.041 (3)0.054 (3)0.004 (2)0.006 (2)0.001 (2)
C210.042 (2)0.059 (3)0.049 (3)0.001 (2)0.009 (2)0.000 (2)
O40.046 (2)0.095 (3)0.069 (2)0.002 (2)0.0001 (17)0.003 (2)
C170.050 (3)0.042 (3)0.046 (3)0.001 (2)0.008 (2)0.003 (2)
C400.068 (3)0.062 (3)0.053 (3)0.003 (3)0.004 (3)0.022 (3)
C20.053 (3)0.096 (4)0.046 (3)0.002 (3)0.005 (3)0.001 (3)
C100.062 (3)0.054 (3)0.038 (3)0.002 (3)0.001 (2)0.005 (2)
C410.067 (3)0.074 (4)0.045 (3)0.006 (3)0.013 (3)0.008 (3)
C320.079 (4)0.070 (4)0.040 (3)0.021 (3)0.005 (3)0.004 (3)
C290.049 (3)0.054 (3)0.050 (3)0.007 (2)0.006 (2)0.011 (2)
C140.047 (3)0.043 (3)0.038 (2)0.002 (2)0.010 (2)0.001 (2)
C50.046 (3)0.063 (3)0.052 (3)0.005 (2)0.002 (2)0.007 (2)
C310.060 (3)0.056 (3)0.048 (3)0.003 (2)0.002 (2)0.001 (2)
C220.048 (2)0.046 (3)0.042 (3)0.001 (2)0.001 (2)0.002 (2)
C420.052 (3)0.066 (3)0.058 (3)0.000 (3)0.009 (2)0.005 (3)
C110.084 (4)0.067 (4)0.039 (3)0.019 (3)0.008 (3)0.005 (3)
C360.046 (3)0.044 (3)0.056 (3)0.005 (2)0.002 (2)0.006 (2)
C330.068 (3)0.068 (4)0.055 (3)0.011 (3)0.018 (3)0.015 (3)
C390.053 (3)0.048 (3)0.063 (3)0.007 (2)0.006 (3)0.008 (3)
C80.056 (3)0.052 (3)0.043 (3)0.020 (2)0.000 (2)0.002 (2)
C300.057 (3)0.040 (3)0.041 (3)0.003 (2)0.008 (2)0.003 (2)
C40.052 (3)0.085 (4)0.063 (3)0.007 (3)0.003 (3)0.020 (3)
C70.046 (2)0.046 (3)0.041 (3)0.003 (2)0.003 (2)0.001 (2)
C250.056 (3)0.069 (4)0.058 (3)0.009 (3)0.007 (2)0.001 (3)
C200.067 (3)0.064 (4)0.041 (3)0.005 (3)0.003 (2)0.001 (2)
C120.075 (4)0.072 (4)0.045 (3)0.002 (3)0.025 (3)0.018 (3)
C130.057 (3)0.060 (3)0.056 (3)0.004 (3)0.013 (2)0.010 (3)
C230.067 (3)0.067 (4)0.044 (3)0.009 (3)0.008 (3)0.004 (3)
C30.059 (3)0.107 (5)0.045 (3)0.005 (3)0.007 (3)0.014 (3)
Geometric parameters (Å, º) top
S2—C221.735 (4)C1—C21.395 (6)
S2—C281.737 (4)C19—C201.371 (6)
S1—C11.726 (4)C38—C391.373 (6)
S1—C71.733 (4)C38—H380.9300
Cl2—C401.734 (5)C15—C141.486 (6)
Cl1—C191.721 (5)C21—C201.368 (6)
O1—C91.366 (5)C21—H210.9300
O1—C81.408 (4)O4—C361.218 (5)
N1—C71.291 (5)C17—H170.9300
N1—C61.393 (5)C40—C391.369 (7)
O2—C151.224 (5)C40—C411.378 (6)
O3—C301.380 (5)C2—C31.374 (6)
O3—C291.422 (5)C2—H20.9300
N2—C281.283 (5)C10—C111.378 (6)
N2—C271.386 (5)C10—H100.9300
F1—C121.369 (5)C41—C421.389 (6)
F2—C331.354 (5)C41—H410.9300
C35—C301.387 (6)C32—C331.356 (7)
C35—C341.398 (5)C32—C311.371 (6)
C35—C361.498 (6)C32—H320.9300
C6—C51.380 (5)C29—H29A0.9700
C6—C11.391 (6)C29—H29B0.9700
C27—C261.376 (5)C14—C131.381 (5)
C27—C221.399 (5)C5—C41.363 (6)
C28—C291.485 (6)C5—H50.9300
C16—C171.385 (5)C31—C301.388 (5)
C16—C211.398 (6)C31—H310.9300
C16—C151.480 (6)C22—C231.386 (6)
C37—C421.378 (6)C42—H420.9300
C37—C381.394 (5)C11—C121.369 (7)
C37—C361.481 (6)C11—H110.9300
C24—C231.369 (6)C39—H390.9300
C24—C251.376 (6)C8—C71.500 (6)
C24—H240.9300C8—H8A0.9700
C18—C171.368 (6)C8—H8B0.9700
C18—C191.380 (6)C4—C31.391 (6)
C18—H180.9300C4—H40.9300
C26—C251.382 (6)C25—H250.9300
C26—H260.9300C20—H200.9300
C34—C331.362 (7)C12—C131.362 (6)
C34—H340.9300C13—H130.9300
C9—C101.392 (5)C23—H230.9300
C9—C141.394 (6)C3—H30.9300
C22—S2—C2888.4 (2)C33—C32—C31119.9 (4)
C1—S1—C788.4 (2)C33—C32—H32120.0
C9—O1—C8118.8 (3)C31—C32—H32120.0
C7—N1—C6110.0 (3)O3—C29—C28108.4 (4)
C30—O3—C29118.7 (3)O3—C29—H29A110.0
C28—N2—C27110.4 (3)C28—C29—H29A110.0
C30—C35—C34118.6 (4)O3—C29—H29B110.0
C30—C35—C36125.0 (4)C28—C29—H29B110.0
C34—C35—C36116.1 (4)H29A—C29—H29B108.4
C5—C6—N1124.7 (4)C13—C14—C9119.2 (4)
C5—C6—C1120.9 (4)C13—C14—C15117.1 (4)
N1—C6—C1114.5 (4)C9—C14—C15123.5 (4)
C26—C27—N2125.8 (4)C4—C5—C6118.2 (5)
C26—C27—C22119.4 (4)C4—C5—H5120.9
N2—C27—C22114.8 (4)C6—C5—H5120.9
N2—C28—C29123.1 (4)C32—C31—C30119.5 (4)
N2—C28—S2116.9 (3)C32—C31—H31120.3
C29—C28—S2120.0 (3)C30—C31—H31120.3
C17—C16—C21118.5 (4)C23—C22—C27121.3 (4)
C17—C16—C15122.5 (4)C23—C22—S2129.2 (4)
C21—C16—C15118.9 (4)C27—C22—S2109.5 (3)
C42—C37—C38118.6 (4)C37—C42—C41121.3 (4)
C42—C37—C36119.5 (4)C37—C42—H42119.4
C38—C37—C36121.9 (4)C41—C42—H42119.4
C23—C24—C25121.1 (5)C12—C11—C10118.8 (4)
C23—C24—H24119.5C12—C11—H11120.6
C25—C24—H24119.5C10—C11—H11120.6
C17—C18—C19119.7 (4)O4—C36—C37119.6 (4)
C17—C18—H18120.1O4—C36—C35119.1 (4)
C19—C18—H18120.1C37—C36—C35121.4 (4)
C27—C26—C25119.0 (4)F2—C33—C32119.4 (5)
C27—C26—H26120.5F2—C33—C34118.6 (5)
C25—C26—H26120.5C32—C33—C34122.0 (4)
C33—C34—C35119.4 (4)C40—C39—C38119.4 (4)
C33—C34—H34120.3C40—C39—H39120.3
C35—C34—H34120.3C38—C39—H39120.3
O1—C9—C10123.1 (4)O1—C8—C7106.9 (3)
O1—C9—C14116.4 (4)O1—C8—H8A110.3
C10—C9—C14120.5 (4)C7—C8—H8A110.3
C2—C1—C6120.5 (4)O1—C8—H8B110.3
C2—C1—S1129.3 (4)C7—C8—H8B110.3
C6—C1—S1110.2 (3)H8A—C8—H8B108.6
C20—C19—C18120.3 (4)O3—C30—C31123.3 (4)
C20—C19—Cl1120.3 (4)O3—C30—C35116.1 (4)
C18—C19—Cl1119.5 (4)C31—C30—C35120.6 (4)
C39—C38—C37120.7 (5)C5—C4—C3121.9 (5)
C39—C38—H38119.7C5—C4—H4119.0
C37—C38—H38119.7C3—C4—H4119.0
O2—C15—C16120.3 (4)N1—C7—C8121.9 (4)
O2—C15—C14118.3 (4)N1—C7—S1116.9 (3)
C16—C15—C14121.4 (4)C8—C7—S1121.2 (3)
C20—C21—C16120.4 (4)C24—C25—C26121.0 (4)
C20—C21—H21119.8C24—C25—H25119.5
C16—C21—H21119.8C26—C25—H25119.5
C18—C17—C16120.9 (4)C21—C20—C19120.2 (4)
C18—C17—H17119.6C21—C20—H20119.9
C16—C17—H17119.6C19—C20—H20119.9
C39—C40—C41121.7 (5)C13—C12—F1119.0 (5)
C39—C40—Cl2119.3 (4)C13—C12—C11122.9 (4)
C41—C40—Cl2118.9 (4)F1—C12—C11118.2 (5)
C3—C2—C1118.2 (5)C12—C13—C14119.1 (4)
C3—C2—H2120.9C12—C13—H13120.4
C1—C2—H2120.9C14—C13—H13120.4
C11—C10—C9119.5 (4)C24—C23—C22118.1 (4)
C11—C10—H10120.3C24—C23—H23120.9
C9—C10—H10120.3C22—C23—H23120.9
C40—C41—C42118.2 (4)C2—C3—C4120.4 (5)
C40—C41—H41120.9C2—C3—H3119.8
C42—C41—H41120.9C4—C3—H3119.8
C7—N1—C6—C5178.7 (4)C26—C27—C22—S2179.7 (3)
C7—N1—C6—C10.1 (5)N2—C27—C22—S20.6 (5)
C28—N2—C27—C26179.8 (4)C28—S2—C22—C23177.5 (5)
C28—N2—C27—C220.5 (5)C28—S2—C22—C270.4 (3)
C27—N2—C28—C29179.1 (4)C38—C37—C42—C413.1 (7)
C27—N2—C28—S20.2 (5)C36—C37—C42—C41178.5 (4)
C22—S2—C28—N20.1 (3)C40—C41—C42—C371.2 (7)
C22—S2—C28—C29178.8 (4)C9—C10—C11—C121.2 (7)
N2—C27—C26—C25178.5 (4)C42—C37—C36—O429.3 (6)
C22—C27—C26—C251.2 (6)C38—C37—C36—O4148.9 (4)
C30—C35—C34—C331.4 (7)C42—C37—C36—C35151.1 (4)
C36—C35—C34—C33175.2 (4)C38—C37—C36—C3530.6 (6)
C8—O1—C9—C108.4 (6)C30—C35—C36—O4134.0 (5)
C8—O1—C9—C14169.3 (4)C34—C35—C36—O439.3 (6)
C5—C6—C1—C20.2 (7)C30—C35—C36—C3746.5 (7)
N1—C6—C1—C2179.1 (4)C34—C35—C36—C37140.2 (4)
C5—C6—C1—S1179.3 (3)C31—C32—C33—F2179.9 (4)
N1—C6—C1—S10.4 (5)C31—C32—C33—C341.1 (8)
C7—S1—C1—C2178.8 (5)C35—C34—C33—F2179.5 (4)
C7—S1—C1—C60.6 (3)C35—C34—C33—C321.7 (8)
C17—C18—C19—C204.0 (7)C41—C40—C39—C382.4 (7)
C17—C18—C19—Cl1177.1 (4)Cl2—C40—C39—C38173.6 (3)
C42—C37—C38—C392.3 (6)C37—C38—C39—C400.4 (7)
C36—C37—C38—C39179.4 (4)C9—O1—C8—C7176.1 (4)
C17—C16—C15—O2153.1 (4)C29—O3—C30—C316.9 (6)
C21—C16—C15—O223.8 (6)C29—O3—C30—C35171.6 (4)
C17—C16—C15—C1426.6 (6)C32—C31—C30—O3178.4 (4)
C21—C16—C15—C14156.5 (4)C32—C31—C30—C350.1 (7)
C17—C16—C21—C201.9 (6)C34—C35—C30—O3177.9 (4)
C15—C16—C21—C20178.9 (4)C36—C35—C30—O34.8 (6)
C19—C18—C17—C162.8 (7)C34—C35—C30—C310.7 (6)
C21—C16—C17—C180.1 (6)C36—C35—C30—C31173.9 (4)
C15—C16—C17—C18177.1 (4)C6—C5—C4—C30.4 (7)
C6—C1—C2—C30.2 (7)C6—N1—C7—C8178.8 (4)
S1—C1—C2—C3179.2 (4)C6—N1—C7—S10.6 (5)
O1—C9—C10—C11178.5 (4)O1—C8—C7—N1176.7 (4)
C14—C9—C10—C110.9 (7)O1—C8—C7—S12.7 (5)
C39—C40—C41—C421.7 (7)C1—S1—C7—N10.8 (4)
Cl2—C40—C41—C42174.4 (4)C1—S1—C7—C8178.7 (4)
C30—O3—C29—C28176.6 (3)C23—C24—C25—C262.0 (8)
N2—C28—C29—O3175.2 (4)C27—C26—C25—C240.9 (7)
S2—C28—C29—O33.6 (5)C16—C21—C20—C190.7 (7)
O1—C9—C14—C13177.4 (4)C18—C19—C20—C212.3 (7)
C10—C9—C14—C130.4 (7)Cl1—C19—C20—C21178.9 (4)
O1—C9—C14—C153.1 (6)C10—C11—C12—C130.3 (8)
C10—C9—C14—C15174.7 (4)C10—C11—C12—F1179.1 (4)
O2—C15—C14—C1343.0 (6)F1—C12—C13—C14177.7 (4)
C16—C15—C14—C13136.7 (4)C11—C12—C13—C141.0 (8)
O2—C15—C14—C9131.3 (5)C9—C14—C13—C121.4 (7)
C16—C15—C14—C949.0 (6)C15—C14—C13—C12176.0 (4)
N1—C6—C5—C4178.7 (4)C25—C24—C23—C220.9 (7)
C1—C6—C5—C40.1 (7)C27—C22—C23—C241.1 (7)
C33—C32—C31—C300.3 (7)S2—C22—C23—C24178.9 (4)
C26—C27—C22—C232.2 (6)C1—C2—C3—C40.1 (8)
N2—C27—C22—C23177.5 (4)C5—C4—C3—C20.4 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the thiazole rings S1/C1/C6/N1/C7 and S2/C22/C27/N2/C28, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.932.523.091 (6)120
C5—H5···O2ii0.932.463.340 (5)158
C26—H26···O4iii0.932.513.369 (5)154
C18—H18···Cg1iv0.932.833.686 (5)154
C39—H39···Cg2v0.932.823.619 (5)145
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H13ClFNO2S
Mr397.84
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)292
a, b, c (Å)19.7280 (6), 7.4755 (3), 24.4847 (7)
V3)3611.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Nova)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.939, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
36561, 7100, 4182
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.118, 0.99
No. of reflections7100
No. of parameters488
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21
Absolute structureFlack (1983)
Absolute structure parameter0.05 (8)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the thiazole rings S1/C1/C6/N1/C7 and S2/C22/C27/N2/C28, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.932.523.091 (6)120
C5—H5···O2ii0.932.463.340 (5)158
C26—H26···O4iii0.932.513.369 (5)154
C18—H18···Cg1iv0.932.833.686 (5)154
C39—H39···Cg2v0.932.823.619 (5)145
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y1, z; (v) x, y+1, z.
 

Acknowledgements

We are grateful to SSCU, IISc, India, for the Oxford Diffraction facility funded under DST–FIST (Level II) and the University of KwaZulu-Natal, South Africa, for facilities.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649–652.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVenugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds