organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Chloro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium

aUnité de recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté du sciences exactes, Université Mentouri de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

(Received 15 May 2013; accepted 30 May 2013; online 8 June 2013)

The title zwitterion,, C16H11ClN2O, is approximately planar, the dihedral angle between the benzene ring and naphthalene ring system is 1.55 (13)°; an intra­molecular N—H⋯O hydrogen bond stabilizes the planar conformation. In the crystal, ππ stacking between the benzene ring and the naphthalene ring system of adjacent mol­ecules links the mol­ecules into supra­molecular chains running along the b axis, the centroid–centroid distance being 3.765 (2) Å.

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]). Many azo compounds have been synthesized by diazo­tization and diazo-coupling reactions; for information, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77-86.]). For a related structure, see: Elmali et al. (2001[Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485-486.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClN2O

  • Mr = 282.72

  • Monoclinic, P 21 /c

  • a = 16.340 (2) Å

  • b = 5.7665 (4) Å

  • c = 15.632 (2) Å

  • β = 113.604 (4)°

  • V = 1349.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.09 × 0.04 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4488 measured reflections

  • 2418 independent reflections

  • 1289 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.185

  • S = 1.01

  • 2418 reflections

  • 171 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.94 1.82 2.564 (4) 135

Data collection: KappaCCD Reference Manual (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azo-compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004; Oueslati et al., 2004). Azo-dyes are synthetic pigments that contain an azo-group, as part of the structure. Azo-groups do not occur naturally. Many azo-compounds have been synthesized by the diazotization and diazo coupling reaction (Wang et al., 2003). The title compound was obtained through the diazotization of 3-chloroaniline followed by a coupling reaction with 2-naphthol.

This compound, which has a non-planar molecular structure, contains two aromatic rings linked through a imine group. The dihedral angle between the two aromatic rings C1—C6 and C7—C16 is 1.55 (13)°. Intramolecular N—H···O hydrogen bond is observed in the molecular structure, similar to that in a reported structure (Elmali et al., 2001). In the crystal structure, molecules are linked through π-π stacking between benzene ring and naphthalene ring system of adjacent molecules, the centroid-centroid distance between C1-ring and C7i-ring being 3.765 (2) Å (symmetry code: i = x, -1+y, z).

Related literature top

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions; for information, see: Wang et al. (2003). For a related structure, see: Elmali et al. (2001).

Experimental top

The title compound was obtained through the diazotization of 3-chloroaniline followed by a coupling reaction with 2-naphthol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a pentane solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.94 Å, and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

Azo-compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004; Oueslati et al., 2004). Azo-dyes are synthetic pigments that contain an azo-group, as part of the structure. Azo-groups do not occur naturally. Many azo-compounds have been synthesized by the diazotization and diazo coupling reaction (Wang et al., 2003). The title compound was obtained through the diazotization of 3-chloroaniline followed by a coupling reaction with 2-naphthol.

This compound, which has a non-planar molecular structure, contains two aromatic rings linked through a imine group. The dihedral angle between the two aromatic rings C1—C6 and C7—C16 is 1.55 (13)°. Intramolecular N—H···O hydrogen bond is observed in the molecular structure, similar to that in a reported structure (Elmali et al., 2001). In the crystal structure, molecules are linked through π-π stacking between benzene ring and naphthalene ring system of adjacent molecules, the centroid-centroid distance between C1-ring and C7i-ring being 3.765 (2) Å (symmetry code: i = x, -1+y, z).

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazotization and diazo coupling reactions; for information, see: Wang et al. (2003). For a related structure, see: Elmali et al. (2001).

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure.
(E)-1-(3-Chlorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium top
Crystal data top
C16H11ClN2OF(000) = 584
Mr = 282.72Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2548 reflections
a = 16.340 (2) Åθ = 2.9–25.4°
b = 5.7665 (4) ŵ = 0.28 mm1
c = 15.632 (2) ÅT = 293 K
β = 113.604 (4)°Needle, red
V = 1349.7 (3) Å30.09 × 0.04 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1289 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Horizonally mounted graphite crystal monochromatorθmax = 25.3°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 1919
CCD rotation images, thick slices scansk = 66
4488 measured reflectionsl = 1818
2418 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.1732P]
where P = (Fo2 + 2Fc2)/3
2418 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H11ClN2OV = 1349.7 (3) Å3
Mr = 282.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.340 (2) ŵ = 0.28 mm1
b = 5.7665 (4) ÅT = 293 K
c = 15.632 (2) Å0.09 × 0.04 × 0.02 mm
β = 113.604 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1289 reflections with I > 2σ(I)
4488 measured reflectionsRint = 0.042
2418 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
2418 reflectionsΔρmin = 0.28 e Å3
171 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06364 (8)0.5972 (2)0.37478 (9)0.1078 (5)
O10.46478 (16)0.1141 (4)0.38441 (18)0.0786 (9)
N10.33259 (17)0.1220 (4)0.38634 (18)0.0572 (9)
N20.27805 (17)0.0115 (4)0.32242 (17)0.0528 (8)
C10.2977 (2)0.3084 (5)0.4184 (2)0.0535 (10)
C20.2070 (2)0.3500 (5)0.3853 (2)0.0583 (11)
C30.1771 (2)0.5415 (6)0.4175 (2)0.0667 (12)
C40.2351 (3)0.6891 (6)0.4821 (3)0.0746 (14)
C50.3258 (3)0.6464 (6)0.5165 (2)0.0708 (14)
C60.3578 (2)0.4547 (6)0.4852 (2)0.0666 (12)
C70.3117 (2)0.1901 (5)0.2907 (2)0.0523 (11)
C80.4066 (2)0.2395 (5)0.3238 (2)0.0613 (11)
C90.4306 (2)0.4390 (6)0.2841 (3)0.0714 (14)
C100.3705 (3)0.5765 (6)0.2221 (3)0.0670 (12)
C110.2759 (2)0.5349 (5)0.1888 (2)0.0572 (11)
C120.2463 (2)0.3361 (5)0.2220 (2)0.0504 (10)
C130.1542 (2)0.2970 (5)0.1879 (2)0.0618 (11)
C140.0948 (2)0.4492 (6)0.1263 (3)0.0730 (12)
C150.1241 (3)0.6417 (6)0.0963 (2)0.0698 (14)
C160.2134 (3)0.6844 (5)0.1264 (2)0.0684 (13)
H10.394400.102200.405900.0690*
H20.166700.250500.342000.0700*
H40.213500.817400.502700.0900*
H50.365500.745600.560600.0850*
H60.418800.424500.508600.0800*
H90.490900.473800.302500.0860*
H100.390400.704300.199500.0800*
H130.132900.166200.207200.0740*
H140.033800.420600.104800.0870*
H150.083200.744000.055200.0840*
H160.232700.815100.105100.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0856 (8)0.1168 (9)0.1281 (10)0.0275 (6)0.0501 (7)0.0075 (7)
O10.0545 (15)0.0780 (15)0.0954 (19)0.0021 (12)0.0218 (14)0.0107 (14)
N10.0531 (16)0.0556 (14)0.0611 (17)0.0055 (13)0.0212 (14)0.0046 (14)
N20.0587 (16)0.0505 (13)0.0489 (15)0.0023 (12)0.0213 (13)0.0068 (12)
C10.066 (2)0.0448 (16)0.0501 (18)0.0040 (14)0.0237 (17)0.0070 (14)
C20.067 (2)0.0518 (17)0.059 (2)0.0067 (16)0.0284 (17)0.0001 (16)
C30.076 (2)0.068 (2)0.063 (2)0.0122 (18)0.035 (2)0.0072 (18)
C40.111 (3)0.056 (2)0.065 (2)0.010 (2)0.044 (2)0.0048 (18)
C50.096 (3)0.058 (2)0.056 (2)0.0043 (19)0.028 (2)0.0039 (17)
C60.072 (2)0.066 (2)0.058 (2)0.0013 (17)0.0222 (18)0.0094 (17)
C70.055 (2)0.0517 (17)0.0529 (18)0.0054 (14)0.0244 (16)0.0074 (15)
C80.059 (2)0.0605 (19)0.067 (2)0.0076 (17)0.0281 (18)0.0088 (17)
C90.058 (2)0.077 (2)0.086 (3)0.0100 (19)0.036 (2)0.003 (2)
C100.076 (2)0.063 (2)0.071 (2)0.0154 (18)0.039 (2)0.0017 (17)
C110.070 (2)0.0540 (17)0.0536 (19)0.0028 (16)0.0310 (17)0.0088 (15)
C120.0576 (19)0.0468 (16)0.0502 (18)0.0044 (14)0.0251 (15)0.0082 (14)
C130.060 (2)0.0612 (19)0.062 (2)0.0075 (16)0.0220 (18)0.0024 (17)
C140.058 (2)0.082 (2)0.069 (2)0.0026 (19)0.0149 (18)0.003 (2)
C150.078 (3)0.063 (2)0.059 (2)0.0111 (19)0.0177 (19)0.0035 (17)
C160.097 (3)0.0522 (19)0.057 (2)0.0012 (18)0.032 (2)0.0015 (17)
Geometric parameters (Å, º) top
Cl1—C31.731 (4)C11—C161.393 (5)
O1—C81.266 (4)C11—C121.421 (4)
N1—N21.293 (4)C12—C131.399 (5)
N1—C11.400 (4)C13—C141.375 (5)
N2—C71.352 (4)C14—C151.364 (5)
N1—H10.9400C15—C161.364 (7)
C1—C21.381 (5)C2—H20.9300
C1—C61.395 (4)C4—H40.9300
C2—C31.382 (5)C5—H50.9300
C3—C41.370 (5)C6—H60.9300
C4—C51.381 (7)C9—H90.9300
C5—C61.393 (5)C10—H100.9300
C7—C81.453 (5)C13—H130.9300
C7—C121.444 (4)C14—H140.9300
C8—C91.434 (5)C15—H150.9300
C9—C101.331 (6)C16—H160.9300
C10—C111.440 (6)
N2—N1—C1118.7 (3)C7—C12—C11118.9 (3)
N1—N2—C7118.8 (3)C7—C12—C13123.5 (3)
C1—N1—H1121.00C12—C13—C14120.9 (3)
N2—N1—H1120.00C13—C14—C15120.9 (4)
N1—C1—C6117.8 (3)C14—C15—C16120.2 (3)
C2—C1—C6120.2 (3)C11—C16—C15120.9 (3)
N1—C1—C2121.9 (3)C1—C2—H2120.00
C1—C2—C3119.0 (3)C3—C2—H2121.00
Cl1—C3—C4119.2 (3)C3—C4—H4120.00
Cl1—C3—C2119.2 (3)C5—C4—H4120.00
C2—C3—C4121.6 (3)C4—C5—H5120.00
C3—C4—C5119.6 (4)C6—C5—H5120.00
C4—C5—C6120.0 (3)C1—C6—H6120.00
C1—C6—C5119.5 (3)C5—C6—H6120.00
C8—C7—C12121.1 (3)C8—C9—H9119.00
N2—C7—C8123.5 (3)C10—C9—H9119.00
N2—C7—C12115.4 (3)C9—C10—H10119.00
C7—C8—C9116.2 (3)C11—C10—H10119.00
O1—C8—C9121.9 (3)C12—C13—H13119.00
O1—C8—C7121.9 (3)C14—C13—H13120.00
C8—C9—C10122.9 (4)C13—C14—H14120.00
C9—C10—C11122.4 (4)C15—C14—H14120.00
C12—C11—C16119.6 (3)C14—C15—H15120.00
C10—C11—C12118.4 (3)C16—C15—H15120.00
C10—C11—C16122.0 (3)C11—C16—H16120.00
C11—C12—C13117.6 (3)C15—C16—H16120.00
C1—N1—N2—C7179.3 (3)N2—C7—C12—C131.3 (4)
N2—N1—C1—C21.5 (4)C8—C7—C12—C111.9 (4)
N2—N1—C1—C6178.0 (3)C8—C7—C12—C13179.8 (3)
N1—N2—C7—C80.8 (4)O1—C8—C9—C10178.3 (4)
N1—N2—C7—C12177.7 (3)C7—C8—C9—C101.5 (5)
N1—C1—C2—C3177.8 (3)C8—C9—C10—C110.7 (6)
C6—C1—C2—C31.7 (5)C9—C10—C11—C121.6 (6)
N1—C1—C6—C5177.9 (3)C9—C10—C11—C16177.7 (4)
C2—C1—C6—C51.6 (5)C10—C11—C12—C72.8 (4)
C1—C2—C3—Cl1178.9 (2)C10—C11—C12—C13179.2 (3)
C1—C2—C3—C40.8 (5)C16—C11—C12—C7176.5 (3)
Cl1—C3—C4—C5179.9 (3)C16—C11—C12—C131.5 (4)
C2—C3—C4—C50.2 (6)C10—C11—C16—C15179.6 (3)
C3—C4—C5—C60.3 (6)C12—C11—C16—C150.4 (5)
C4—C5—C6—C10.7 (5)C7—C12—C13—C14176.4 (3)
N2—C7—C8—O11.1 (5)C11—C12—C13—C141.6 (5)
N2—C7—C8—C9178.7 (3)C12—C13—C14—C150.4 (5)
C12—C7—C8—O1179.6 (3)C13—C14—C15—C160.8 (6)
C12—C7—C8—C90.2 (4)C14—C15—C16—C110.8 (5)
N2—C7—C12—C11176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.941.822.564 (4)135

Experimental details

Crystal data
Chemical formulaC16H11ClN2O
Mr282.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.340 (2), 5.7665 (4), 15.632 (2)
β (°) 113.604 (4)
V3)1349.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.09 × 0.04 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4488, 2418, 1289
Rint0.042
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.185, 1.01
No. of reflections2418
No. of parameters171
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.941.822.564 (4)135
 

Acknowledgements

We are grateful to Mr L. Ouahab (University of Rennes, France) for his collaboration in the recording and inter­pretation of XRD data and express our gratitude for the valuable assistance he has provided throughout the realisation of this work.

References

First citationElmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77–86.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds