organic compounds
μ-(Acetic acid)-di-μ-chlorido-bis[triphenyltellurium(IV)] monohydrate
aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
The 38H34Cl2O2Te2·H2O, contains two independent TeIV cations, each coordinated by three phenyl ligands, two Cl− anions and one acetic acid molecule in a distorted octahedral C3Cl2O geometry; the longer Te⋯Cl distances ranging from 3.2007 (11) to 3.4407 (11) Å and the longer Te⋯O distances of 3.067 (3) and 3.113 (3) Å indicate the weak bridge coordination. The Cl− anion and acetic acid molecule bridge the two independent TeIV cations, forming the dimeric complex molecule, in which the Te⋯Te separation is 3.7314 (4) Å. In the crystal, the water molecules of crystallization link the TeIV complex molecules into chains running along the b-axis direction via O—H⋯O and O—H⋯Cl hydrogen bonds.
of the title compound, CRelated literature
For background to organotelluronium salts: see: Collins et al. (1988); Oilunkaniemi et al. (2001); Ziolo & Extine (1980); Ziolo & Troup (1979); Zhou et al. (1994). For related structures, see: Jeske et al. (1996); Oilunkaniemi et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681301739X/xu5713sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681301739X/xu5713Isup2.hkl
Ph3TeCl (212 mg, 0.55 mmol) in water (5 mL) was added into a hot aqueous solution (5 mL) containing the acetic acid (69%, 0.025 mL, 0.22 mmol). A pale brown precipitate was obtained almost immediately. The precipitate was filtered, washed with water and Et2O, and dried. Recrystallization from acetone-water (1:1) at room temperature afforded brown block crystals suitable for X-ray diffraction. Yield: 140 mg (57%).
Organotelluronium salts, R3TeX, have attracted considerable interest because of their application in organic synthetic chemistry (Zhou et al., 1994). In the past several decades, a large number of triorganotelluronium salts have been prepared and many of their structures have been determined. Previous studies on such triorganotelluronium salts have shown that the salts have relatively complex structures due to weak bonding interactions between the tellurium atom and the anion (Ziolo & Extine, 1980). It has become evident that the interactions are sensitive to the nature of both them. Moreover, the structural features are also influenced by the organic groups and the presence or absence of solvent of crystallization (Ziolo & Troup, 1979). The X-ray structure determinations of several (Ph3Te)X (X = halide, SCN-, NCO-, [NO3]-, 1/2[SO4]2-, 1/2[Hg2Cl6]2-, 1/2[PtCl6]2-, 1/2[IrCl6]2- and [AuCl4]-) salts have established that in the solid state the structural features are governed by weak secondary tellurium-anion interactions which may result in the trigonal pyramidal geometry around tellurium into a five- or six-coordinate entity (Collins et al., 1988; Oilunkaniemi et al., 2001; Ziolo & Extine, 1980; Ziolo & Troup, 1979). In this paper, we report the structural characterization of bis(µ2-chloride)-(µ2-acetic acid-O)- bis(triphenyltelluronium) hydrate monosolvate which is expected to expand the pool of the known organotelluronium chemistry.
The structure of the title compound, (µ-Cl)2(µ-CH3COOH)(Ph3Te)2.H2O (HAc = CH3COOH), consists of two Ph3Te+ cations, two chloride anions, one acetic acid molecule and one water molecule linked by a complex network of Te···Cl and Te···O secondery bonds and hydrogen bonds into infinate chains. The geometry around the tellurium atom is pseudo-octahedral, with three phenyl groups, two chloride atoms and one oxygen atom from the acetic acid. The two Ph3Te+ cations occupy on the opposite trigonal faces of octahedra, as shown in Fig. 1. The two tellurium atoms form two secondary bonds of 3.068 (4) and 3.113 (4) Å invoving the oxygen atom of the acetic acid molecule, which are longer than those in (Ph3Te)2SO4.5H2O (av. 2.797 (9) Å) (Collins et al., 1988), but are still shorter than the sum of the van der Waals radii of the tellurium and oxygen atoms. The two bridging Te···Cl distances involving non-hydrogen-bonded Cl(1) atom are almost equal (3.236 (3) and 3.279 (3) Å), while those involving hydrogen-bonded Cl(2) atom are inequal (3.199 (3) and 3.439 (3) Å). The average Te···Cl distances of 3.288 (3) Å in the title compound is in the range of the van der Waals radii of the tellurium and chloride atoms. The Ph3Te+ cation in the title compound has its expected structure as well as normal distances and angles (Allen, 2002), for example, the six Te—C bond lengths in the two cations are normal and have a mean value 2.124 (4) Ph3Te+ (Jeske et al., 1996). The [(µ-Cl)2(µ-HAc)(Ph3Te)2] moieties are further linked by two kinds of the intermolecular hydrogen bonds of (H2O)O—H···Cl (av. O···Cl = 3.205 (4) Å) and (HAc)O—H···O(H2O) (O···O = 2.962 (2) Å), forming one-dimensional infinate chains (see Fig. 2).
For background to organotelluronium salts: see: Collins et al. (1988); Oilunkaniemi et al. (2001); Ziolo & Extine (1980); Ziolo & Troup (1979); Zhou et al. (1994). For related structures, see: Jeske et al. (1996); Oilunkaniemi et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C38H34Cl2O2Te2·H2O | F(000) = 1704 |
Mr = 866.77 | Dx = 1.597 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2274 reflections |
a = 13.9469 (6) Å | θ = 2.0–23.6° |
b = 9.3616 (4) Å | µ = 1.80 mm−1 |
c = 27.7941 (12) Å | T = 296 K |
β = 96.584 (1)° | Block, brown |
V = 3605.0 (3) Å3 | 0.22 × 0.15 × 0.12 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 8145 independent reflections |
Radiation source: fine-focus sealed tube | 6494 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
phi and ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −15→18 |
Tmin = 0.692, Tmax = 0.813 | k = −11→12 |
23122 measured reflections | l = −36→36 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0323P)2 + 1.0404P] where P = (Fo2 + 2Fc2)/3 |
8145 reflections | (Δ/σ)max = 0.001 |
407 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C38H34Cl2O2Te2·H2O | V = 3605.0 (3) Å3 |
Mr = 866.77 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.9469 (6) Å | µ = 1.80 mm−1 |
b = 9.3616 (4) Å | T = 296 K |
c = 27.7941 (12) Å | 0.22 × 0.15 × 0.12 mm |
β = 96.584 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 8145 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 6494 reflections with I > 2σ(I) |
Tmin = 0.692, Tmax = 0.813 | Rint = 0.033 |
23122 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.85 e Å−3 |
8145 reflections | Δρmin = −0.51 e Å−3 |
407 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.755476 (16) | 0.46663 (2) | 0.414658 (7) | 0.03090 (7) | |
Te2 | 0.516642 (16) | 0.42865 (2) | 0.340189 (7) | 0.03245 (7) | |
Cl1 | 0.56267 (6) | 0.63914 (9) | 0.43435 (3) | 0.03886 (19) | |
Cl2 | 0.69532 (8) | 0.57571 (11) | 0.29684 (4) | 0.0540 (3) | |
O1 | 0.6465 (2) | 0.1871 (3) | 0.38938 (11) | 0.0633 (8) | |
O2 | 0.6185 (3) | −0.0486 (4) | 0.37876 (12) | 0.0844 (11) | |
H2A | 0.6414 | −0.0550 | 0.3521 | 0.127* | |
O1W | 0.7110 (4) | −0.0844 (4) | 0.28835 (14) | 0.1222 (17) | |
H1W | 0.7501 | −0.0326 | 0.2727 | 0.183* | |
H2W | 0.7111 | −0.1736 | 0.2797 | 0.183* | |
C11 | 0.8800 (2) | 0.3756 (4) | 0.38905 (12) | 0.0360 (8) | |
C12 | 0.8628 (3) | 0.2789 (4) | 0.35126 (13) | 0.0462 (9) | |
H12 | 0.7999 | 0.2523 | 0.3402 | 0.055* | |
C13 | 0.9382 (3) | 0.2225 (5) | 0.33024 (16) | 0.0623 (12) | |
H13 | 0.9266 | 0.1576 | 0.3049 | 0.075* | |
C14 | 1.0314 (3) | 0.2618 (5) | 0.34658 (16) | 0.0659 (13) | |
H14 | 1.0826 | 0.2226 | 0.3323 | 0.079* | |
C15 | 1.0495 (3) | 0.3588 (5) | 0.38395 (15) | 0.0577 (11) | |
H15 | 1.1126 | 0.3854 | 0.3947 | 0.069* | |
C16 | 0.9731 (3) | 0.4166 (4) | 0.40537 (13) | 0.0449 (9) | |
H16 | 0.9846 | 0.4822 | 0.4305 | 0.054* | |
C21 | 0.7740 (2) | 0.3768 (4) | 0.48528 (11) | 0.0338 (7) | |
C22 | 0.6948 (3) | 0.3806 (4) | 0.51135 (13) | 0.0456 (9) | |
H22 | 0.6373 | 0.4223 | 0.4980 | 0.055* | |
C23 | 0.7021 (3) | 0.3219 (5) | 0.55749 (14) | 0.0557 (11) | |
H23 | 0.6495 | 0.3243 | 0.5752 | 0.067* | |
C24 | 0.7873 (3) | 0.2602 (5) | 0.57685 (13) | 0.0549 (11) | |
H24 | 0.7920 | 0.2209 | 0.6078 | 0.066* | |
C25 | 0.8653 (3) | 0.2560 (5) | 0.55101 (14) | 0.0528 (10) | |
H25 | 0.9228 | 0.2146 | 0.5646 | 0.063* | |
C26 | 0.8587 (3) | 0.3134 (4) | 0.50456 (13) | 0.0439 (9) | |
H26 | 0.9111 | 0.3088 | 0.4867 | 0.053* | |
C31 | 0.8211 (2) | 0.6653 (4) | 0.43414 (12) | 0.0343 (7) | |
C32 | 0.8246 (3) | 0.7642 (4) | 0.39828 (14) | 0.0495 (10) | |
H32 | 0.8023 | 0.7412 | 0.3664 | 0.059* | |
C33 | 0.8616 (3) | 0.8995 (5) | 0.40968 (19) | 0.0657 (13) | |
H33 | 0.8662 | 0.9657 | 0.3851 | 0.079* | |
C34 | 0.8915 (3) | 0.9365 (5) | 0.45694 (19) | 0.0623 (12) | |
H34 | 0.9137 | 1.0283 | 0.4646 | 0.075* | |
C35 | 0.8881 (3) | 0.8355 (5) | 0.49287 (17) | 0.0613 (12) | |
H35 | 0.9099 | 0.8586 | 0.5248 | 0.074* | |
C36 | 0.8524 (3) | 0.6998 (4) | 0.48167 (14) | 0.0483 (10) | |
H36 | 0.8496 | 0.6323 | 0.5060 | 0.058* | |
C41 | 0.5044 (2) | 0.3287 (4) | 0.27097 (12) | 0.0343 (7) | |
C42 | 0.5441 (3) | 0.1965 (4) | 0.26687 (14) | 0.0520 (10) | |
H42 | 0.5711 | 0.1479 | 0.2943 | 0.062* | |
C43 | 0.5437 (3) | 0.1352 (5) | 0.22118 (17) | 0.0609 (12) | |
H43 | 0.5694 | 0.0445 | 0.2181 | 0.073* | |
C44 | 0.5058 (3) | 0.2077 (5) | 0.18109 (15) | 0.0591 (12) | |
H44 | 0.5060 | 0.1663 | 0.1507 | 0.071* | |
C45 | 0.4675 (3) | 0.3409 (5) | 0.18495 (14) | 0.0568 (11) | |
H45 | 0.4424 | 0.3905 | 0.1574 | 0.068* | |
C46 | 0.4662 (3) | 0.4013 (4) | 0.23030 (13) | 0.0432 (9) | |
H46 | 0.4395 | 0.4915 | 0.2333 | 0.052* | |
C51 | 0.4127 (2) | 0.3004 (4) | 0.37028 (12) | 0.0376 (8) | |
C52 | 0.4032 (3) | 0.3210 (4) | 0.41894 (13) | 0.0483 (9) | |
H52 | 0.4387 | 0.3920 | 0.4364 | 0.058* | |
C53 | 0.3407 (3) | 0.2354 (5) | 0.44147 (15) | 0.0601 (12) | |
H53 | 0.3340 | 0.2488 | 0.4741 | 0.072* | |
C54 | 0.2889 (3) | 0.1311 (5) | 0.41563 (17) | 0.0664 (13) | |
H54 | 0.2474 | 0.0728 | 0.4308 | 0.080* | |
C55 | 0.2980 (4) | 0.1127 (5) | 0.36745 (18) | 0.0728 (14) | |
H55 | 0.2615 | 0.0428 | 0.3500 | 0.087* | |
C56 | 0.3603 (3) | 0.1955 (5) | 0.34439 (14) | 0.0556 (11) | |
H56 | 0.3668 | 0.1809 | 0.3118 | 0.067* | |
C61 | 0.4204 (3) | 0.5959 (4) | 0.31641 (12) | 0.0358 (8) | |
C62 | 0.3217 (3) | 0.5755 (4) | 0.31313 (13) | 0.0457 (9) | |
H62 | 0.2966 | 0.4907 | 0.3239 | 0.055* | |
C63 | 0.2602 (3) | 0.6828 (5) | 0.29365 (14) | 0.0563 (11) | |
H63 | 0.1937 | 0.6694 | 0.2909 | 0.068* | |
C64 | 0.2976 (4) | 0.8087 (5) | 0.27849 (16) | 0.0660 (13) | |
H64 | 0.2564 | 0.8800 | 0.2651 | 0.079* | |
C65 | 0.3955 (4) | 0.8292 (5) | 0.28302 (17) | 0.0683 (13) | |
H65 | 0.4204 | 0.9154 | 0.2734 | 0.082* | |
C66 | 0.4581 (3) | 0.7214 (4) | 0.30191 (15) | 0.0541 (10) | |
H66 | 0.5246 | 0.7349 | 0.3046 | 0.065* | |
C91 | 0.6216 (3) | 0.0692 (4) | 0.40485 (15) | 0.0510 (10) | |
C92 | 0.5943 (5) | 0.0527 (5) | 0.45455 (18) | 0.0861 (17) | |
H92A | 0.6515 | 0.0444 | 0.4771 | 0.129* | |
H92B | 0.5556 | −0.0316 | 0.4561 | 0.129* | |
H92C | 0.5580 | 0.1347 | 0.4626 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.03216 (13) | 0.03165 (12) | 0.02833 (11) | −0.00023 (9) | 0.00104 (9) | −0.00042 (9) |
Te2 | 0.03311 (13) | 0.03433 (13) | 0.02905 (12) | 0.00003 (9) | −0.00017 (9) | −0.00085 (9) |
Cl1 | 0.0444 (5) | 0.0338 (5) | 0.0383 (4) | 0.0004 (4) | 0.0045 (4) | −0.0026 (3) |
Cl2 | 0.0564 (6) | 0.0542 (6) | 0.0532 (6) | −0.0070 (5) | 0.0135 (5) | 0.0015 (5) |
O1 | 0.085 (2) | 0.0377 (16) | 0.0680 (19) | −0.0048 (15) | 0.0124 (16) | 0.0084 (14) |
O2 | 0.110 (3) | 0.061 (2) | 0.083 (3) | 0.002 (2) | 0.014 (2) | −0.0034 (18) |
O1W | 0.224 (5) | 0.067 (3) | 0.091 (3) | 0.033 (3) | 0.084 (3) | 0.017 (2) |
C11 | 0.039 (2) | 0.0372 (19) | 0.0330 (18) | 0.0044 (15) | 0.0080 (15) | 0.0036 (15) |
C12 | 0.049 (2) | 0.042 (2) | 0.048 (2) | 0.0034 (18) | 0.0061 (18) | −0.0059 (17) |
C13 | 0.074 (3) | 0.062 (3) | 0.054 (3) | 0.010 (2) | 0.019 (2) | −0.017 (2) |
C14 | 0.067 (3) | 0.072 (3) | 0.063 (3) | 0.027 (3) | 0.027 (2) | 0.007 (2) |
C15 | 0.041 (2) | 0.074 (3) | 0.059 (3) | 0.011 (2) | 0.012 (2) | 0.011 (2) |
C16 | 0.043 (2) | 0.051 (2) | 0.041 (2) | 0.0033 (18) | 0.0070 (17) | 0.0045 (17) |
C21 | 0.042 (2) | 0.0333 (18) | 0.0258 (16) | −0.0018 (15) | 0.0037 (14) | −0.0012 (14) |
C22 | 0.046 (2) | 0.053 (2) | 0.039 (2) | 0.0079 (18) | 0.0082 (17) | 0.0061 (17) |
C23 | 0.057 (3) | 0.071 (3) | 0.043 (2) | 0.010 (2) | 0.0200 (19) | 0.012 (2) |
C24 | 0.074 (3) | 0.058 (3) | 0.033 (2) | 0.009 (2) | 0.006 (2) | 0.0118 (18) |
C25 | 0.051 (2) | 0.063 (3) | 0.042 (2) | 0.013 (2) | −0.0044 (19) | 0.0086 (19) |
C26 | 0.039 (2) | 0.051 (2) | 0.043 (2) | 0.0064 (17) | 0.0094 (16) | 0.0040 (17) |
C31 | 0.0308 (18) | 0.0336 (19) | 0.0383 (19) | 0.0003 (14) | 0.0037 (14) | −0.0060 (15) |
C32 | 0.055 (2) | 0.039 (2) | 0.052 (2) | −0.0055 (19) | −0.0016 (19) | 0.0029 (18) |
C33 | 0.065 (3) | 0.043 (3) | 0.087 (4) | −0.011 (2) | 0.004 (3) | 0.012 (2) |
C34 | 0.053 (3) | 0.039 (2) | 0.096 (4) | −0.012 (2) | 0.011 (3) | −0.018 (2) |
C35 | 0.056 (3) | 0.065 (3) | 0.065 (3) | −0.017 (2) | 0.009 (2) | −0.029 (2) |
C36 | 0.050 (2) | 0.052 (2) | 0.044 (2) | −0.0111 (19) | 0.0073 (18) | −0.0054 (18) |
C41 | 0.0322 (18) | 0.0373 (19) | 0.0339 (18) | −0.0061 (15) | 0.0059 (14) | −0.0033 (14) |
C42 | 0.062 (3) | 0.048 (2) | 0.045 (2) | 0.010 (2) | 0.0047 (19) | −0.0006 (18) |
C43 | 0.066 (3) | 0.047 (3) | 0.072 (3) | 0.005 (2) | 0.019 (2) | −0.022 (2) |
C44 | 0.070 (3) | 0.067 (3) | 0.043 (2) | −0.009 (2) | 0.017 (2) | −0.021 (2) |
C45 | 0.074 (3) | 0.060 (3) | 0.035 (2) | −0.010 (2) | −0.0005 (19) | −0.0055 (19) |
C46 | 0.050 (2) | 0.041 (2) | 0.037 (2) | −0.0042 (17) | −0.0004 (17) | −0.0051 (16) |
C51 | 0.039 (2) | 0.038 (2) | 0.0369 (19) | 0.0005 (15) | 0.0055 (15) | 0.0045 (15) |
C52 | 0.058 (3) | 0.049 (2) | 0.040 (2) | −0.0018 (19) | 0.0103 (18) | −0.0023 (17) |
C53 | 0.074 (3) | 0.064 (3) | 0.046 (2) | −0.008 (2) | 0.024 (2) | 0.003 (2) |
C54 | 0.074 (3) | 0.060 (3) | 0.072 (3) | −0.016 (2) | 0.034 (3) | 0.000 (2) |
C55 | 0.077 (3) | 0.071 (3) | 0.075 (3) | −0.037 (3) | 0.027 (3) | −0.022 (3) |
C56 | 0.060 (3) | 0.064 (3) | 0.044 (2) | −0.019 (2) | 0.0124 (19) | −0.012 (2) |
C61 | 0.040 (2) | 0.037 (2) | 0.0300 (17) | 0.0049 (15) | 0.0004 (15) | −0.0021 (14) |
C62 | 0.044 (2) | 0.049 (2) | 0.043 (2) | 0.0060 (18) | 0.0008 (17) | 0.0014 (17) |
C63 | 0.048 (3) | 0.066 (3) | 0.053 (2) | 0.014 (2) | −0.0031 (19) | −0.003 (2) |
C64 | 0.072 (3) | 0.060 (3) | 0.063 (3) | 0.027 (3) | −0.007 (2) | −0.001 (2) |
C65 | 0.080 (4) | 0.040 (3) | 0.085 (3) | 0.007 (2) | 0.009 (3) | 0.006 (2) |
C66 | 0.053 (3) | 0.042 (2) | 0.068 (3) | 0.0009 (19) | 0.007 (2) | 0.001 (2) |
C91 | 0.060 (3) | 0.036 (2) | 0.056 (3) | 0.0077 (19) | 0.001 (2) | 0.0035 (18) |
C92 | 0.141 (5) | 0.057 (3) | 0.065 (3) | 0.008 (3) | 0.035 (3) | 0.009 (2) |
Te1—C11 | 2.129 (3) | C33—H33 | 0.9300 |
Te1—C21 | 2.124 (3) | C34—C35 | 1.380 (6) |
Te1—C31 | 2.116 (3) | C34—H34 | 0.9300 |
Te1—Cl1 | 3.2366 (9) | C35—C36 | 1.387 (6) |
Te1—Cl2 | 3.4407 (11) | C35—H35 | 0.9300 |
Te1—O1 | 3.067 (3) | C36—H36 | 0.9300 |
Te2—C41 | 2.129 (4) | C41—C42 | 1.366 (5) |
Te2—C51 | 2.126 (4) | C41—C46 | 1.373 (5) |
Te2—C61 | 2.118 (4) | C42—C43 | 1.393 (5) |
Te2—Cl1 | 3.2802 (9) | C42—H42 | 0.9300 |
Te2—Cl2 | 3.2007 (11) | C43—C44 | 1.359 (6) |
Te2—O1 | 3.113 (3) | C43—H43 | 0.9300 |
O1—C91 | 1.249 (5) | C44—C45 | 1.366 (6) |
O2—C91 | 1.318 (5) | C44—H44 | 0.9300 |
O2—H2A | 0.8430 | C45—C46 | 1.384 (5) |
O1W—H1W | 0.8801 | C45—H45 | 0.9300 |
O1W—H2W | 0.8691 | C46—H46 | 0.9300 |
C11—C16 | 1.380 (5) | C51—C56 | 1.377 (5) |
C11—C12 | 1.387 (5) | C51—C52 | 1.388 (5) |
C12—C13 | 1.367 (5) | C52—C53 | 1.385 (5) |
C12—H12 | 0.9300 | C52—H52 | 0.9300 |
C13—C14 | 1.376 (6) | C53—C54 | 1.369 (6) |
C13—H13 | 0.9300 | C53—H53 | 0.9300 |
C14—C15 | 1.381 (6) | C54—C55 | 1.371 (6) |
C14—H14 | 0.9300 | C54—H54 | 0.9300 |
C15—C16 | 1.388 (5) | C55—C56 | 1.376 (6) |
C15—H15 | 0.9300 | C55—H55 | 0.9300 |
C16—H16 | 0.9300 | C56—H56 | 0.9300 |
C21—C26 | 1.375 (5) | C61—C66 | 1.367 (5) |
C21—C22 | 1.389 (5) | C61—C62 | 1.383 (5) |
C22—C23 | 1.388 (5) | C62—C63 | 1.390 (5) |
C22—H22 | 0.9300 | C62—H62 | 0.9300 |
C23—C24 | 1.374 (5) | C63—C64 | 1.375 (6) |
C23—H23 | 0.9300 | C63—H63 | 0.9300 |
C24—C25 | 1.372 (6) | C64—C65 | 1.370 (6) |
C24—H24 | 0.9300 | C64—H64 | 0.9300 |
C25—C26 | 1.392 (5) | C65—C66 | 1.397 (6) |
C25—H25 | 0.9300 | C65—H65 | 0.9300 |
C26—H26 | 0.9300 | C66—H66 | 0.9300 |
C31—C32 | 1.365 (5) | C91—C92 | 1.483 (6) |
C31—C36 | 1.381 (5) | C92—H92A | 0.9600 |
C32—C33 | 1.391 (6) | C92—H92B | 0.9600 |
C32—H32 | 0.9300 | C92—H92C | 0.9600 |
C33—C34 | 1.376 (6) | ||
C31—Te1—C21 | 96.21 (13) | C33—C32—H32 | 120.2 |
C31—Te1—C11 | 95.27 (13) | C34—C33—C32 | 120.7 (4) |
C21—Te1—C11 | 97.65 (13) | C34—C33—H33 | 119.7 |
Cl1—Te1—Cl2 | 84.04 (2) | C32—C33—H33 | 119.7 |
Cl1—Te1—O1 | 93.72 (12) | C33—C34—C35 | 119.1 (4) |
Cl2—Te1—O1 | 88.56 (12) | C33—C34—H34 | 120.4 |
Cl1—Te1—C11 | 169.01 (13) | C35—C34—H34 | 120.4 |
Cl1—Te1—C21 | 93.25 (13) | C34—C35—C36 | 120.4 (4) |
Cl1—Te1—C31 | 82.03 (13) | C34—C35—H35 | 119.8 |
Cl2—Te1—C11 | 85.40 (13) | C36—C35—H35 | 119.8 |
Cl2—Te1—C21 | 170.99 (13) | C35—C36—C31 | 119.6 (4) |
Cl2—Te1—C31 | 91.93 (13) | C35—C36—H36 | 120.2 |
O1—Te1—C11 | 89.08 (13) | C31—C36—H36 | 120.2 |
O1—Te1—C21 | 83.03 (13) | C42—C41—C46 | 120.2 (3) |
O1—Te1—C31 | 175.64 (13) | C42—C41—Te2 | 118.8 (3) |
C61—Te2—C51 | 95.97 (14) | C46—C41—Te2 | 120.6 (3) |
C61—Te2—C41 | 93.47 (13) | C41—C42—C43 | 119.3 (4) |
C51—Te2—C41 | 96.86 (13) | C41—C42—H42 | 120.3 |
Cl1—Te2—Cl2 | 87.27 (2) | C43—C42—H42 | 120.3 |
Cl1—Te2—O1 | 92.02 (12) | C44—C43—C42 | 120.2 (4) |
Cl2—Te2—O1 | 92.23 (12) | C44—C43—H43 | 119.9 |
Cl1—Te2—C41 | 166.75 (13) | C42—C43—H43 | 119.9 |
Cl1—Te2—C51 | 96.04 (13) | C43—C44—C45 | 120.7 (4) |
Cl1—Te2—C61 | 82.17 (13) | C43—C44—H44 | 119.7 |
Cl2—Te2—C41 | 80.47 (13) | C45—C44—H44 | 119.7 |
Cl2—Te2—C51 | 170.50 (13) | C44—C45—C46 | 119.4 (4) |
Cl2—Te2—C61 | 93.29 (13) | C44—C45—H45 | 120.3 |
O1—Te2—C41 | 93.44 (13) | C46—C45—H45 | 120.3 |
O1—Te2—C51 | 78.78 (13) | C41—C46—C45 | 120.2 (4) |
O1—Te2—C61 | 171.78 (13) | C41—C46—H46 | 119.9 |
Te1—Cl1—Te2 | 69.86 (2) | C45—C46—H46 | 119.9 |
Te1—Cl2—Te2 | 68.26 (2) | C56—C51—C52 | 120.3 (3) |
Te1—O1—Te2 | 74.28 (12) | C56—C51—Te2 | 122.9 (3) |
C91—O2—H2A | 123.5 | C52—C51—Te2 | 116.8 (3) |
H1W—O1W—H2W | 111.9 | C53—C52—C51 | 119.7 (4) |
C16—C11—C12 | 120.3 (3) | C53—C52—H52 | 120.1 |
C16—C11—Te1 | 123.5 (3) | C51—C52—H52 | 120.1 |
C12—C11—Te1 | 115.9 (3) | C54—C53—C52 | 119.9 (4) |
C13—C12—C11 | 120.1 (4) | C54—C53—H53 | 120.1 |
C13—C12—H12 | 120.0 | C52—C53—H53 | 120.1 |
C11—C12—H12 | 120.0 | C55—C54—C53 | 120.0 (4) |
C12—C13—C14 | 120.0 (4) | C55—C54—H54 | 120.0 |
C12—C13—H13 | 120.0 | C53—C54—H54 | 120.0 |
C14—C13—H13 | 120.0 | C54—C55—C56 | 121.2 (4) |
C13—C14—C15 | 120.5 (4) | C54—C55—H55 | 119.4 |
C13—C14—H14 | 119.7 | C56—C55—H55 | 119.4 |
C15—C14—H14 | 119.7 | C51—C56—C55 | 119.0 (4) |
C14—C15—C16 | 119.7 (4) | C51—C56—H56 | 120.5 |
C14—C15—H15 | 120.2 | C55—C56—H56 | 120.5 |
C16—C15—H15 | 120.2 | C66—C61—C62 | 120.9 (4) |
C11—C16—C15 | 119.4 (4) | C66—C61—Te2 | 118.4 (3) |
C11—C16—H16 | 120.3 | C62—C61—Te2 | 120.6 (3) |
C15—C16—H16 | 120.3 | C61—C62—C63 | 119.4 (4) |
C26—C21—C22 | 120.4 (3) | C61—C62—H62 | 120.3 |
C26—C21—Te1 | 122.6 (2) | C63—C62—H62 | 120.3 |
C22—C21—Te1 | 116.9 (3) | C64—C63—C62 | 120.0 (4) |
C21—C22—C23 | 119.6 (4) | C64—C63—H63 | 120.0 |
C21—C22—H22 | 120.2 | C62—C63—H63 | 120.0 |
C23—C22—H22 | 120.2 | C63—C64—C65 | 120.1 (4) |
C24—C23—C22 | 119.8 (4) | C63—C64—H64 | 119.9 |
C24—C23—H23 | 120.1 | C65—C64—H64 | 119.9 |
C22—C23—H23 | 120.1 | C64—C65—C66 | 120.4 (4) |
C23—C24—C25 | 120.6 (4) | C64—C65—H65 | 119.8 |
C23—C24—H24 | 119.7 | C66—C65—H65 | 119.8 |
C25—C24—H24 | 119.7 | C61—C66—C65 | 119.1 (4) |
C24—C25—C26 | 120.2 (4) | C61—C66—H66 | 120.4 |
C24—C25—H25 | 119.9 | C65—C66—H66 | 120.4 |
C26—C25—H25 | 119.9 | O1—C91—O2 | 122.9 (4) |
C21—C26—C25 | 119.4 (3) | O1—C91—C92 | 121.6 (4) |
C21—C26—H26 | 120.3 | O2—C91—C92 | 115.5 (4) |
C25—C26—H26 | 120.3 | C91—C92—H92A | 109.5 |
C32—C31—C36 | 120.4 (3) | C91—C92—H92B | 109.5 |
C32—C31—Te1 | 117.4 (3) | H92A—C92—H92B | 109.5 |
C36—C31—Te1 | 122.0 (3) | C91—C92—H92C | 109.5 |
C31—C32—C33 | 119.6 (4) | H92A—C92—H92C | 109.5 |
C31—C32—H32 | 120.2 | H92B—C92—H92C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1W | 0.84 | 2.13 | 2.972 (5) | 174 |
O1W—H1W···Cl2i | 0.88 | 2.38 | 3.205 (4) | 155 |
O1W—H2W···Cl2ii | 0.87 | 2.41 | 3.200 (4) | 152 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C38H34Cl2O2Te2·H2O |
Mr | 866.77 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 13.9469 (6), 9.3616 (4), 27.7941 (12) |
β (°) | 96.584 (1) |
V (Å3) | 3605.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.80 |
Crystal size (mm) | 0.22 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.692, 0.813 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23122, 8145, 6494 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.078, 1.08 |
No. of reflections | 8145 |
No. of parameters | 407 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −0.51 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
Te1—C11 | 2.129 (3) | Te2—C41 | 2.129 (4) |
Te1—C21 | 2.124 (3) | Te2—C51 | 2.126 (4) |
Te1—C31 | 2.116 (3) | Te2—C61 | 2.118 (4) |
Te1—Cl1 | 3.2366 (9) | Te2—Cl1 | 3.2802 (9) |
Te1—Cl2 | 3.4407 (11) | Te2—Cl2 | 3.2007 (11) |
Te1—O1 | 3.067 (3) | Te2—O1 | 3.113 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1W | 0.84 | 2.13 | 2.972 (5) | 174.0 |
O1W—H1W···Cl2i | 0.88 | 2.38 | 3.205 (4) | 155.2 |
O1W—H2W···Cl2ii | 0.87 | 2.41 | 3.200 (4) | 151.5 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x, y−1, z. |
Acknowledgements
This project was supported by the Natural Science Foundation of China (90922008).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590. CSD CrossRef CAS Web of Science Google Scholar
Jeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658. CSD CrossRef CAS Web of Science Google Scholar
Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50–56. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575–1570. CSD CrossRef CAS Web of Science Google Scholar
Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964–2967. CSD CrossRef CAS Web of Science Google Scholar
Ziolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271–2274. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organotelluronium salts, R3TeX, have attracted considerable interest because of their application in organic synthetic chemistry (Zhou et al., 1994). In the past several decades, a large number of triorganotelluronium salts have been prepared and many of their structures have been determined. Previous studies on such triorganotelluronium salts have shown that the salts have relatively complex structures due to weak bonding interactions between the tellurium atom and the anion (Ziolo & Extine, 1980). It has become evident that the interactions are sensitive to the nature of both them. Moreover, the structural features are also influenced by the organic groups and the presence or absence of solvent of crystallization (Ziolo & Troup, 1979). The X-ray structure determinations of several (Ph3Te)X (X = halide, SCN-, NCO-, [NO3]-, 1/2[SO4]2-, 1/2[Hg2Cl6]2-, 1/2[PtCl6]2-, 1/2[IrCl6]2- and [AuCl4]-) salts have established that in the solid state the structural features are governed by weak secondary tellurium-anion interactions which may result in the trigonal pyramidal geometry around tellurium into a five- or six-coordinate entity (Collins et al., 1988; Oilunkaniemi et al., 2001; Ziolo & Extine, 1980; Ziolo & Troup, 1979). In this paper, we report the structural characterization of bis(µ2-chloride)-(µ2-acetic acid-O)- bis(triphenyltelluronium) hydrate monosolvate which is expected to expand the pool of the known organotelluronium chemistry.
The structure of the title compound, (µ-Cl)2(µ-CH3COOH)(Ph3Te)2.H2O (HAc = CH3COOH), consists of two Ph3Te+ cations, two chloride anions, one acetic acid molecule and one water molecule linked by a complex network of Te···Cl and Te···O secondery bonds and hydrogen bonds into infinate chains. The geometry around the tellurium atom is pseudo-octahedral, with three phenyl groups, two chloride atoms and one oxygen atom from the acetic acid. The two Ph3Te+ cations occupy on the opposite trigonal faces of octahedra, as shown in Fig. 1. The two tellurium atoms form two secondary bonds of 3.068 (4) and 3.113 (4) Å invoving the oxygen atom of the acetic acid molecule, which are longer than those in (Ph3Te)2SO4.5H2O (av. 2.797 (9) Å) (Collins et al., 1988), but are still shorter than the sum of the van der Waals radii of the tellurium and oxygen atoms. The two bridging Te···Cl distances involving non-hydrogen-bonded Cl(1) atom are almost equal (3.236 (3) and 3.279 (3) Å), while those involving hydrogen-bonded Cl(2) atom are inequal (3.199 (3) and 3.439 (3) Å). The average Te···Cl distances of 3.288 (3) Å in the title compound is in the range of the van der Waals radii of the tellurium and chloride atoms. The Ph3Te+ cation in the title compound has its expected structure as well as normal distances and angles (Allen, 2002), for example, the six Te—C bond lengths in the two cations are normal and have a mean value 2.124 (4) Ph3Te+ (Jeske et al., 1996). The [(µ-Cl)2(µ-HAc)(Ph3Te)2] moieties are further linked by two kinds of the intermolecular hydrogen bonds of (H2O)O—H···Cl (av. O···Cl = 3.205 (4) Å) and (HAc)O—H···O(H2O) (O···O = 2.962 (2) Å), forming one-dimensional infinate chains (see Fig. 2).