organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-(Acetic acid)-di-μ-chlorido-bis­[tri­phenyl­tellurium(IV)] monohydrate

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 4 June 2013; accepted 24 June 2013; online 29 June 2013)

The asymmetric unit of the title compound, C38H34Cl2O2Te2·H2O, contains two independent TeIV cations, each coordinated by three phenyl ligands, two Cl anions and one acetic acid mol­ecule in a distorted octa­hedral C3Cl2O geometry; the longer Te⋯Cl distances ranging from 3.2007 (11) to 3.4407 (11) Å and the longer Te⋯O distances of 3.067 (3) and 3.113 (3) Å indicate the weak bridge coordination. The Cl anion and acetic acid mol­ecule bridge the two independent TeIV cations, forming the dimeric complex mol­ecule, in which the Te⋯Te separation is 3.7314 (4) Å. In the crystal, the water molecules of crystallization link the TeIV complex mol­ecules into chains running along the b-axis direction via O—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For background to organotelluronium salts: see: Collins et al. (1988[Collins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.]); Oilunkaniemi et al. (2001[Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.]); Ziolo & Extine (1980[Ziolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964-2967.]); Ziolo & Troup (1979[Ziolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271-2274.]); Zhou et al. (1994[Zhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575-1570.]). For related structures, see: Jeske et al. (1996[Jeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658.]); Oilunkaniemi et al. (2001[Oilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50-56.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C38H34Cl2O2Te2·H2O

  • Mr = 866.77

  • Monoclinic, P 21 /n

  • a = 13.9469 (6) Å

  • b = 9.3616 (4) Å

  • c = 27.7941 (12) Å

  • β = 96.584 (1)°

  • V = 3605.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.813

  • 23122 measured reflections

  • 8145 independent reflections

  • 6494 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.08

  • 8145 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Te1—C11 2.129 (3)
Te1—C21 2.124 (3)
Te1—C31 2.116 (3)
Te1—Cl1 3.2366 (9)
Te1—Cl2 3.4407 (11)
Te1—O1 3.067 (3)
Te2—C41 2.129 (4)
Te2—C51 2.126 (4)
Te2—C61 2.118 (4)
Te2—Cl1 3.2802 (9)
Te2—Cl2 3.2007 (11)
Te2—O1 3.113 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1W 0.84 2.13 2.972 (5) 174
O1W—H1W⋯Cl2i 0.88 2.38 3.205 (4) 155
O1W—H2W⋯Cl2ii 0.87 2.41 3.200 (4) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotelluronium salts, R3TeX, have attracted considerable interest because of their application in organic synthetic chemistry (Zhou et al., 1994). In the past several decades, a large number of triorganotelluronium salts have been prepared and many of their structures have been determined. Previous studies on such triorganotelluronium salts have shown that the salts have relatively complex structures due to weak bonding interactions between the tellurium atom and the anion (Ziolo & Extine, 1980). It has become evident that the interactions are sensitive to the nature of both them. Moreover, the structural features are also influenced by the organic groups and the presence or absence of solvent of crystallization (Ziolo & Troup, 1979). The X-ray structure determinations of several (Ph3Te)X (X = halide, SCN-, NCO-, [NO3]-, 1/2[SO4]2-, 1/2[Hg2Cl6]2-, 1/2[PtCl6]2-, 1/2[IrCl6]2- and [AuCl4]-) salts have established that in the solid state the structural features are governed by weak secondary tellurium-anion interactions which may result in the trigonal pyramidal geometry around tellurium into a five- or six-coordinate entity (Collins et al., 1988; Oilunkaniemi et al., 2001; Ziolo & Extine, 1980; Ziolo & Troup, 1979). In this paper, we report the structural characterization of bis(µ2-chloride)-(µ2-acetic acid-O)- bis(triphenyltelluronium) hydrate monosolvate which is expected to expand the pool of the known organotelluronium chemistry.

The structure of the title compound, (µ-Cl)2(µ-CH3COOH)(Ph3Te)2.H2O (HAc = CH3COOH), consists of two Ph3Te+ cations, two chloride anions, one acetic acid molecule and one water molecule linked by a complex network of Te···Cl and Te···O secondery bonds and hydrogen bonds into infinate chains. The geometry around the tellurium atom is pseudo-octahedral, with three phenyl groups, two chloride atoms and one oxygen atom from the acetic acid. The two Ph3Te+ cations occupy on the opposite trigonal faces of octahedra, as shown in Fig. 1. The two tellurium atoms form two secondary bonds of 3.068 (4) and 3.113 (4) Å invoving the oxygen atom of the acetic acid molecule, which are longer than those in (Ph3Te)2SO4.5H2O (av. 2.797 (9) Å) (Collins et al., 1988), but are still shorter than the sum of the van der Waals radii of the tellurium and oxygen atoms. The two bridging Te···Cl distances involving non-hydrogen-bonded Cl(1) atom are almost equal (3.236 (3) and 3.279 (3) Å), while those involving hydrogen-bonded Cl(2) atom are inequal (3.199 (3) and 3.439 (3) Å). The average Te···Cl distances of 3.288 (3) Å in the title compound is in the range of the van der Waals radii of the tellurium and chloride atoms. The Ph3Te+ cation in the title compound has its expected structure as well as normal distances and angles (Allen, 2002), for example, the six Te—C bond lengths in the two cations are normal and have a mean value 2.124 (4) Ph3Te+ (Jeske et al., 1996). The [(µ-Cl)2(µ-HAc)(Ph3Te)2] moieties are further linked by two kinds of the intermolecular hydrogen bonds of (H2O)O—H···Cl (av. O···Cl = 3.205 (4) Å) and (HAc)O—H···O(H2O) (O···O = 2.962 (2) Å), forming one-dimensional infinate chains (see Fig. 2).

Related literature top

For background to organotelluronium salts: see: Collins et al. (1988); Oilunkaniemi et al. (2001); Ziolo & Extine (1980); Ziolo & Troup (1979); Zhou et al. (1994). For related structures, see: Jeske et al. (1996); Oilunkaniemi et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Ph3TeCl (212 mg, 0.55 mmol) in water (5 mL) was added into a hot aqueous solution (5 mL) containing the acetic acid (69%, 0.025 mL, 0.22 mmol). A pale brown precipitate was obtained almost immediately. The precipitate was filtered, washed with water and Et2O, and dried. Recrystallization from acetone-water (1:1) at room temperature afforded brown block crystals suitable for X-ray diffraction. Yield: 140 mg (57%).

Structure description top

Organotelluronium salts, R3TeX, have attracted considerable interest because of their application in organic synthetic chemistry (Zhou et al., 1994). In the past several decades, a large number of triorganotelluronium salts have been prepared and many of their structures have been determined. Previous studies on such triorganotelluronium salts have shown that the salts have relatively complex structures due to weak bonding interactions between the tellurium atom and the anion (Ziolo & Extine, 1980). It has become evident that the interactions are sensitive to the nature of both them. Moreover, the structural features are also influenced by the organic groups and the presence or absence of solvent of crystallization (Ziolo & Troup, 1979). The X-ray structure determinations of several (Ph3Te)X (X = halide, SCN-, NCO-, [NO3]-, 1/2[SO4]2-, 1/2[Hg2Cl6]2-, 1/2[PtCl6]2-, 1/2[IrCl6]2- and [AuCl4]-) salts have established that in the solid state the structural features are governed by weak secondary tellurium-anion interactions which may result in the trigonal pyramidal geometry around tellurium into a five- or six-coordinate entity (Collins et al., 1988; Oilunkaniemi et al., 2001; Ziolo & Extine, 1980; Ziolo & Troup, 1979). In this paper, we report the structural characterization of bis(µ2-chloride)-(µ2-acetic acid-O)- bis(triphenyltelluronium) hydrate monosolvate which is expected to expand the pool of the known organotelluronium chemistry.

The structure of the title compound, (µ-Cl)2(µ-CH3COOH)(Ph3Te)2.H2O (HAc = CH3COOH), consists of two Ph3Te+ cations, two chloride anions, one acetic acid molecule and one water molecule linked by a complex network of Te···Cl and Te···O secondery bonds and hydrogen bonds into infinate chains. The geometry around the tellurium atom is pseudo-octahedral, with three phenyl groups, two chloride atoms and one oxygen atom from the acetic acid. The two Ph3Te+ cations occupy on the opposite trigonal faces of octahedra, as shown in Fig. 1. The two tellurium atoms form two secondary bonds of 3.068 (4) and 3.113 (4) Å invoving the oxygen atom of the acetic acid molecule, which are longer than those in (Ph3Te)2SO4.5H2O (av. 2.797 (9) Å) (Collins et al., 1988), but are still shorter than the sum of the van der Waals radii of the tellurium and oxygen atoms. The two bridging Te···Cl distances involving non-hydrogen-bonded Cl(1) atom are almost equal (3.236 (3) and 3.279 (3) Å), while those involving hydrogen-bonded Cl(2) atom are inequal (3.199 (3) and 3.439 (3) Å). The average Te···Cl distances of 3.288 (3) Å in the title compound is in the range of the van der Waals radii of the tellurium and chloride atoms. The Ph3Te+ cation in the title compound has its expected structure as well as normal distances and angles (Allen, 2002), for example, the six Te—C bond lengths in the two cations are normal and have a mean value 2.124 (4) Ph3Te+ (Jeske et al., 1996). The [(µ-Cl)2(µ-HAc)(Ph3Te)2] moieties are further linked by two kinds of the intermolecular hydrogen bonds of (H2O)O—H···Cl (av. O···Cl = 3.205 (4) Å) and (HAc)O—H···O(H2O) (O···O = 2.962 (2) Å), forming one-dimensional infinate chains (see Fig. 2).

For background to organotelluronium salts: see: Collins et al. (1988); Oilunkaniemi et al. (2001); Ziolo & Extine (1980); Ziolo & Troup (1979); Zhou et al. (1994). For related structures, see: Jeske et al. (1996); Oilunkaniemi et al. (2001). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (µ-Cl)2(µ-CH3COOH)(Ph3Te)2.H2O, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. The Te···O and Te···Cl secondary bonds were drawn in lines.
[Figure 2] Fig. 2. The intermolecular O—H···Cl and O—H···O hydrogen-bonds (dash lines) are displayed in the crystal lattice.
µ-(Acetic acid)-di-µ-chlorido-bis[triphenyltellurium(IV)] monohydrate top
Crystal data top
C38H34Cl2O2Te2·H2OF(000) = 1704
Mr = 866.77Dx = 1.597 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2274 reflections
a = 13.9469 (6) Åθ = 2.0–23.6°
b = 9.3616 (4) ŵ = 1.80 mm1
c = 27.7941 (12) ÅT = 296 K
β = 96.584 (1)°Block, brown
V = 3605.0 (3) Å30.22 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8145 independent reflections
Radiation source: fine-focus sealed tube6494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1518
Tmin = 0.692, Tmax = 0.813k = 1112
23122 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.0404P]
where P = (Fo2 + 2Fc2)/3
8145 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C38H34Cl2O2Te2·H2OV = 3605.0 (3) Å3
Mr = 866.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.9469 (6) ŵ = 1.80 mm1
b = 9.3616 (4) ÅT = 296 K
c = 27.7941 (12) Å0.22 × 0.15 × 0.12 mm
β = 96.584 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6494 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.813Rint = 0.033
23122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.08Δρmax = 0.85 e Å3
8145 reflectionsΔρmin = 0.51 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.755476 (16)0.46663 (2)0.414658 (7)0.03090 (7)
Te20.516642 (16)0.42865 (2)0.340189 (7)0.03245 (7)
Cl10.56267 (6)0.63914 (9)0.43435 (3)0.03886 (19)
Cl20.69532 (8)0.57571 (11)0.29684 (4)0.0540 (3)
O10.6465 (2)0.1871 (3)0.38938 (11)0.0633 (8)
O20.6185 (3)0.0486 (4)0.37876 (12)0.0844 (11)
H2A0.64140.05500.35210.127*
O1W0.7110 (4)0.0844 (4)0.28835 (14)0.1222 (17)
H1W0.75010.03260.27270.183*
H2W0.71110.17360.27970.183*
C110.8800 (2)0.3756 (4)0.38905 (12)0.0360 (8)
C120.8628 (3)0.2789 (4)0.35126 (13)0.0462 (9)
H120.79990.25230.34020.055*
C130.9382 (3)0.2225 (5)0.33024 (16)0.0623 (12)
H130.92660.15760.30490.075*
C141.0314 (3)0.2618 (5)0.34658 (16)0.0659 (13)
H141.08260.22260.33230.079*
C151.0495 (3)0.3588 (5)0.38395 (15)0.0577 (11)
H151.11260.38540.39470.069*
C160.9731 (3)0.4166 (4)0.40537 (13)0.0449 (9)
H160.98460.48220.43050.054*
C210.7740 (2)0.3768 (4)0.48528 (11)0.0338 (7)
C220.6948 (3)0.3806 (4)0.51135 (13)0.0456 (9)
H220.63730.42230.49800.055*
C230.7021 (3)0.3219 (5)0.55749 (14)0.0557 (11)
H230.64950.32430.57520.067*
C240.7873 (3)0.2602 (5)0.57685 (13)0.0549 (11)
H240.79200.22090.60780.066*
C250.8653 (3)0.2560 (5)0.55101 (14)0.0528 (10)
H250.92280.21460.56460.063*
C260.8587 (3)0.3134 (4)0.50456 (13)0.0439 (9)
H260.91110.30880.48670.053*
C310.8211 (2)0.6653 (4)0.43414 (12)0.0343 (7)
C320.8246 (3)0.7642 (4)0.39828 (14)0.0495 (10)
H320.80230.74120.36640.059*
C330.8616 (3)0.8995 (5)0.40968 (19)0.0657 (13)
H330.86620.96570.38510.079*
C340.8915 (3)0.9365 (5)0.45694 (19)0.0623 (12)
H340.91371.02830.46460.075*
C350.8881 (3)0.8355 (5)0.49287 (17)0.0613 (12)
H350.90990.85860.52480.074*
C360.8524 (3)0.6998 (4)0.48167 (14)0.0483 (10)
H360.84960.63230.50600.058*
C410.5044 (2)0.3287 (4)0.27097 (12)0.0343 (7)
C420.5441 (3)0.1965 (4)0.26687 (14)0.0520 (10)
H420.57110.14790.29430.062*
C430.5437 (3)0.1352 (5)0.22118 (17)0.0609 (12)
H430.56940.04450.21810.073*
C440.5058 (3)0.2077 (5)0.18109 (15)0.0591 (12)
H440.50600.16630.15070.071*
C450.4675 (3)0.3409 (5)0.18495 (14)0.0568 (11)
H450.44240.39050.15740.068*
C460.4662 (3)0.4013 (4)0.23030 (13)0.0432 (9)
H460.43950.49150.23330.052*
C510.4127 (2)0.3004 (4)0.37028 (12)0.0376 (8)
C520.4032 (3)0.3210 (4)0.41894 (13)0.0483 (9)
H520.43870.39200.43640.058*
C530.3407 (3)0.2354 (5)0.44147 (15)0.0601 (12)
H530.33400.24880.47410.072*
C540.2889 (3)0.1311 (5)0.41563 (17)0.0664 (13)
H540.24740.07280.43080.080*
C550.2980 (4)0.1127 (5)0.36745 (18)0.0728 (14)
H550.26150.04280.35000.087*
C560.3603 (3)0.1955 (5)0.34439 (14)0.0556 (11)
H560.36680.18090.31180.067*
C610.4204 (3)0.5959 (4)0.31641 (12)0.0358 (8)
C620.3217 (3)0.5755 (4)0.31313 (13)0.0457 (9)
H620.29660.49070.32390.055*
C630.2602 (3)0.6828 (5)0.29365 (14)0.0563 (11)
H630.19370.66940.29090.068*
C640.2976 (4)0.8087 (5)0.27849 (16)0.0660 (13)
H640.25640.88000.26510.079*
C650.3955 (4)0.8292 (5)0.28302 (17)0.0683 (13)
H650.42040.91540.27340.082*
C660.4581 (3)0.7214 (4)0.30191 (15)0.0541 (10)
H660.52460.73490.30460.065*
C910.6216 (3)0.0692 (4)0.40485 (15)0.0510 (10)
C920.5943 (5)0.0527 (5)0.45455 (18)0.0861 (17)
H92A0.65150.04440.47710.129*
H92B0.55560.03160.45610.129*
H92C0.55800.13470.46260.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.03216 (13)0.03165 (12)0.02833 (11)0.00023 (9)0.00104 (9)0.00042 (9)
Te20.03311 (13)0.03433 (13)0.02905 (12)0.00003 (9)0.00017 (9)0.00085 (9)
Cl10.0444 (5)0.0338 (5)0.0383 (4)0.0004 (4)0.0045 (4)0.0026 (3)
Cl20.0564 (6)0.0542 (6)0.0532 (6)0.0070 (5)0.0135 (5)0.0015 (5)
O10.085 (2)0.0377 (16)0.0680 (19)0.0048 (15)0.0124 (16)0.0084 (14)
O20.110 (3)0.061 (2)0.083 (3)0.002 (2)0.014 (2)0.0034 (18)
O1W0.224 (5)0.067 (3)0.091 (3)0.033 (3)0.084 (3)0.017 (2)
C110.039 (2)0.0372 (19)0.0330 (18)0.0044 (15)0.0080 (15)0.0036 (15)
C120.049 (2)0.042 (2)0.048 (2)0.0034 (18)0.0061 (18)0.0059 (17)
C130.074 (3)0.062 (3)0.054 (3)0.010 (2)0.019 (2)0.017 (2)
C140.067 (3)0.072 (3)0.063 (3)0.027 (3)0.027 (2)0.007 (2)
C150.041 (2)0.074 (3)0.059 (3)0.011 (2)0.012 (2)0.011 (2)
C160.043 (2)0.051 (2)0.041 (2)0.0033 (18)0.0070 (17)0.0045 (17)
C210.042 (2)0.0333 (18)0.0258 (16)0.0018 (15)0.0037 (14)0.0012 (14)
C220.046 (2)0.053 (2)0.039 (2)0.0079 (18)0.0082 (17)0.0061 (17)
C230.057 (3)0.071 (3)0.043 (2)0.010 (2)0.0200 (19)0.012 (2)
C240.074 (3)0.058 (3)0.033 (2)0.009 (2)0.006 (2)0.0118 (18)
C250.051 (2)0.063 (3)0.042 (2)0.013 (2)0.0044 (19)0.0086 (19)
C260.039 (2)0.051 (2)0.043 (2)0.0064 (17)0.0094 (16)0.0040 (17)
C310.0308 (18)0.0336 (19)0.0383 (19)0.0003 (14)0.0037 (14)0.0060 (15)
C320.055 (2)0.039 (2)0.052 (2)0.0055 (19)0.0016 (19)0.0029 (18)
C330.065 (3)0.043 (3)0.087 (4)0.011 (2)0.004 (3)0.012 (2)
C340.053 (3)0.039 (2)0.096 (4)0.012 (2)0.011 (3)0.018 (2)
C350.056 (3)0.065 (3)0.065 (3)0.017 (2)0.009 (2)0.029 (2)
C360.050 (2)0.052 (2)0.044 (2)0.0111 (19)0.0073 (18)0.0054 (18)
C410.0322 (18)0.0373 (19)0.0339 (18)0.0061 (15)0.0059 (14)0.0033 (14)
C420.062 (3)0.048 (2)0.045 (2)0.010 (2)0.0047 (19)0.0006 (18)
C430.066 (3)0.047 (3)0.072 (3)0.005 (2)0.019 (2)0.022 (2)
C440.070 (3)0.067 (3)0.043 (2)0.009 (2)0.017 (2)0.021 (2)
C450.074 (3)0.060 (3)0.035 (2)0.010 (2)0.0005 (19)0.0055 (19)
C460.050 (2)0.041 (2)0.037 (2)0.0042 (17)0.0004 (17)0.0051 (16)
C510.039 (2)0.038 (2)0.0369 (19)0.0005 (15)0.0055 (15)0.0045 (15)
C520.058 (3)0.049 (2)0.040 (2)0.0018 (19)0.0103 (18)0.0023 (17)
C530.074 (3)0.064 (3)0.046 (2)0.008 (2)0.024 (2)0.003 (2)
C540.074 (3)0.060 (3)0.072 (3)0.016 (2)0.034 (3)0.000 (2)
C550.077 (3)0.071 (3)0.075 (3)0.037 (3)0.027 (3)0.022 (3)
C560.060 (3)0.064 (3)0.044 (2)0.019 (2)0.0124 (19)0.012 (2)
C610.040 (2)0.037 (2)0.0300 (17)0.0049 (15)0.0004 (15)0.0021 (14)
C620.044 (2)0.049 (2)0.043 (2)0.0060 (18)0.0008 (17)0.0014 (17)
C630.048 (3)0.066 (3)0.053 (2)0.014 (2)0.0031 (19)0.003 (2)
C640.072 (3)0.060 (3)0.063 (3)0.027 (3)0.007 (2)0.001 (2)
C650.080 (4)0.040 (3)0.085 (3)0.007 (2)0.009 (3)0.006 (2)
C660.053 (3)0.042 (2)0.068 (3)0.0009 (19)0.007 (2)0.001 (2)
C910.060 (3)0.036 (2)0.056 (3)0.0077 (19)0.001 (2)0.0035 (18)
C920.141 (5)0.057 (3)0.065 (3)0.008 (3)0.035 (3)0.009 (2)
Geometric parameters (Å, º) top
Te1—C112.129 (3)C33—H330.9300
Te1—C212.124 (3)C34—C351.380 (6)
Te1—C312.116 (3)C34—H340.9300
Te1—Cl13.2366 (9)C35—C361.387 (6)
Te1—Cl23.4407 (11)C35—H350.9300
Te1—O13.067 (3)C36—H360.9300
Te2—C412.129 (4)C41—C421.366 (5)
Te2—C512.126 (4)C41—C461.373 (5)
Te2—C612.118 (4)C42—C431.393 (5)
Te2—Cl13.2802 (9)C42—H420.9300
Te2—Cl23.2007 (11)C43—C441.359 (6)
Te2—O13.113 (3)C43—H430.9300
O1—C911.249 (5)C44—C451.366 (6)
O2—C911.318 (5)C44—H440.9300
O2—H2A0.8430C45—C461.384 (5)
O1W—H1W0.8801C45—H450.9300
O1W—H2W0.8691C46—H460.9300
C11—C161.380 (5)C51—C561.377 (5)
C11—C121.387 (5)C51—C521.388 (5)
C12—C131.367 (5)C52—C531.385 (5)
C12—H120.9300C52—H520.9300
C13—C141.376 (6)C53—C541.369 (6)
C13—H130.9300C53—H530.9300
C14—C151.381 (6)C54—C551.371 (6)
C14—H140.9300C54—H540.9300
C15—C161.388 (5)C55—C561.376 (6)
C15—H150.9300C55—H550.9300
C16—H160.9300C56—H560.9300
C21—C261.375 (5)C61—C661.367 (5)
C21—C221.389 (5)C61—C621.383 (5)
C22—C231.388 (5)C62—C631.390 (5)
C22—H220.9300C62—H620.9300
C23—C241.374 (5)C63—C641.375 (6)
C23—H230.9300C63—H630.9300
C24—C251.372 (6)C64—C651.370 (6)
C24—H240.9300C64—H640.9300
C25—C261.392 (5)C65—C661.397 (6)
C25—H250.9300C65—H650.9300
C26—H260.9300C66—H660.9300
C31—C321.365 (5)C91—C921.483 (6)
C31—C361.381 (5)C92—H92A0.9600
C32—C331.391 (6)C92—H92B0.9600
C32—H320.9300C92—H92C0.9600
C33—C341.376 (6)
C31—Te1—C2196.21 (13)C33—C32—H32120.2
C31—Te1—C1195.27 (13)C34—C33—C32120.7 (4)
C21—Te1—C1197.65 (13)C34—C33—H33119.7
Cl1—Te1—Cl284.04 (2)C32—C33—H33119.7
Cl1—Te1—O193.72 (12)C33—C34—C35119.1 (4)
Cl2—Te1—O188.56 (12)C33—C34—H34120.4
Cl1—Te1—C11169.01 (13)C35—C34—H34120.4
Cl1—Te1—C2193.25 (13)C34—C35—C36120.4 (4)
Cl1—Te1—C3182.03 (13)C34—C35—H35119.8
Cl2—Te1—C1185.40 (13)C36—C35—H35119.8
Cl2—Te1—C21170.99 (13)C35—C36—C31119.6 (4)
Cl2—Te1—C3191.93 (13)C35—C36—H36120.2
O1—Te1—C1189.08 (13)C31—C36—H36120.2
O1—Te1—C2183.03 (13)C42—C41—C46120.2 (3)
O1—Te1—C31175.64 (13)C42—C41—Te2118.8 (3)
C61—Te2—C5195.97 (14)C46—C41—Te2120.6 (3)
C61—Te2—C4193.47 (13)C41—C42—C43119.3 (4)
C51—Te2—C4196.86 (13)C41—C42—H42120.3
Cl1—Te2—Cl287.27 (2)C43—C42—H42120.3
Cl1—Te2—O192.02 (12)C44—C43—C42120.2 (4)
Cl2—Te2—O192.23 (12)C44—C43—H43119.9
Cl1—Te2—C41166.75 (13)C42—C43—H43119.9
Cl1—Te2—C5196.04 (13)C43—C44—C45120.7 (4)
Cl1—Te2—C6182.17 (13)C43—C44—H44119.7
Cl2—Te2—C4180.47 (13)C45—C44—H44119.7
Cl2—Te2—C51170.50 (13)C44—C45—C46119.4 (4)
Cl2—Te2—C6193.29 (13)C44—C45—H45120.3
O1—Te2—C4193.44 (13)C46—C45—H45120.3
O1—Te2—C5178.78 (13)C41—C46—C45120.2 (4)
O1—Te2—C61171.78 (13)C41—C46—H46119.9
Te1—Cl1—Te269.86 (2)C45—C46—H46119.9
Te1—Cl2—Te268.26 (2)C56—C51—C52120.3 (3)
Te1—O1—Te274.28 (12)C56—C51—Te2122.9 (3)
C91—O2—H2A123.5C52—C51—Te2116.8 (3)
H1W—O1W—H2W111.9C53—C52—C51119.7 (4)
C16—C11—C12120.3 (3)C53—C52—H52120.1
C16—C11—Te1123.5 (3)C51—C52—H52120.1
C12—C11—Te1115.9 (3)C54—C53—C52119.9 (4)
C13—C12—C11120.1 (4)C54—C53—H53120.1
C13—C12—H12120.0C52—C53—H53120.1
C11—C12—H12120.0C55—C54—C53120.0 (4)
C12—C13—C14120.0 (4)C55—C54—H54120.0
C12—C13—H13120.0C53—C54—H54120.0
C14—C13—H13120.0C54—C55—C56121.2 (4)
C13—C14—C15120.5 (4)C54—C55—H55119.4
C13—C14—H14119.7C56—C55—H55119.4
C15—C14—H14119.7C51—C56—C55119.0 (4)
C14—C15—C16119.7 (4)C51—C56—H56120.5
C14—C15—H15120.2C55—C56—H56120.5
C16—C15—H15120.2C66—C61—C62120.9 (4)
C11—C16—C15119.4 (4)C66—C61—Te2118.4 (3)
C11—C16—H16120.3C62—C61—Te2120.6 (3)
C15—C16—H16120.3C61—C62—C63119.4 (4)
C26—C21—C22120.4 (3)C61—C62—H62120.3
C26—C21—Te1122.6 (2)C63—C62—H62120.3
C22—C21—Te1116.9 (3)C64—C63—C62120.0 (4)
C21—C22—C23119.6 (4)C64—C63—H63120.0
C21—C22—H22120.2C62—C63—H63120.0
C23—C22—H22120.2C63—C64—C65120.1 (4)
C24—C23—C22119.8 (4)C63—C64—H64119.9
C24—C23—H23120.1C65—C64—H64119.9
C22—C23—H23120.1C64—C65—C66120.4 (4)
C23—C24—C25120.6 (4)C64—C65—H65119.8
C23—C24—H24119.7C66—C65—H65119.8
C25—C24—H24119.7C61—C66—C65119.1 (4)
C24—C25—C26120.2 (4)C61—C66—H66120.4
C24—C25—H25119.9C65—C66—H66120.4
C26—C25—H25119.9O1—C91—O2122.9 (4)
C21—C26—C25119.4 (3)O1—C91—C92121.6 (4)
C21—C26—H26120.3O2—C91—C92115.5 (4)
C25—C26—H26120.3C91—C92—H92A109.5
C32—C31—C36120.4 (3)C91—C92—H92B109.5
C32—C31—Te1117.4 (3)H92A—C92—H92B109.5
C36—C31—Te1122.0 (3)C91—C92—H92C109.5
C31—C32—C33119.6 (4)H92A—C92—H92C109.5
C31—C32—H32120.2H92B—C92—H92C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.842.132.972 (5)174
O1W—H1W···Cl2i0.882.383.205 (4)155
O1W—H2W···Cl2ii0.872.413.200 (4)152
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC38H34Cl2O2Te2·H2O
Mr866.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.9469 (6), 9.3616 (4), 27.7941 (12)
β (°) 96.584 (1)
V3)3605.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.692, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
23122, 8145, 6494
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.08
No. of reflections8145
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Te1—C112.129 (3)Te2—C412.129 (4)
Te1—C212.124 (3)Te2—C512.126 (4)
Te1—C312.116 (3)Te2—C612.118 (4)
Te1—Cl13.2366 (9)Te2—Cl13.2802 (9)
Te1—Cl23.4407 (11)Te2—Cl23.2007 (11)
Te1—O13.067 (3)Te2—O13.113 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.842.132.972 (5)174.0
O1W—H1W···Cl2i0.882.383.205 (4)155.2
O1W—H2W···Cl2ii0.872.413.200 (4)151.5
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of China (90922008).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollins, M. J., Ripmeester, J. A. & Sawyer, J. F. (1988). J. Am. Chem. Soc. 110, 8583-8590.  CSD CrossRef CAS Web of Science Google Scholar
First citationJeske, J., du Mont, W. W. & Jones, P. G. (1996). Angew. Chem. Int. Ed. Engl. 35, 2653-2658.  CSD CrossRef CAS Web of Science Google Scholar
First citationOilunkaniemi, R., Pietikainen, J., Laitiene, R. S. & Ahlgren, M. (2001). J. Organomet. Chem. 640, 50–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z.-L., Huang, Y.-Z., Tang, Y., Chen, Z.-H., Shi, L.-P., Jin, X.-L. & Yang, Q.-C. (1994). Organometallics, 13, 1575–1570.  CSD CrossRef CAS Web of Science Google Scholar
First citationZiolo, R. F. & Extine, M. (1980). Inorg. Chem. 19, 2964–2967.  CSD CrossRef CAS Web of Science Google Scholar
First citationZiolo, R. F. & Troup, J. M. (1979). Inorg. Chem. 18, 2271–2274.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds