organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(2-eth­­oxy-2-oxoeth­yl)-3-oxo-4,13-di­aza­penta­cyclo­[11.8.0.02,11.05,10.014,19]henicosa-1,5(10),6,8,11,14(19),15,17,20-nona­ene-12-carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: liu__yun3@sina.com

(Received 7 May 2013; accepted 6 June 2013; online 22 June 2013)

In the title compound, C26H22N2O5, the system consisting of five fused rings, being essentially planar with an r.m.s. deviation from the least-squares plane of 0.049 (3) Å, makes a dihedral angle of 58.72 (12)° with the plane of the ethyl carboxyl­ate group immediately attached to it, and a dihedral angle of 89.48 (14)° with the plane of the ethyl carboxyl­ate group attached via the –CH2– bridge. Bond lengths indicate π-delocalization over the whole penta­cyclic system. The mol­ecular conformation is stabilized by a weak intra­molecular C—H⋯O hydrogen bond. In the crystal, mol­ecules form stacks along the b-axis direction, neighboring mol­ecules within each stack being related by inversion and the shortest distance between the centroids of the pyridine rings within the stack being 3.667 (2) Å.

Related literature

For pharmaceutical properties of indolizines and related compounds, see: Olden et al. (1991[Olden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Oredipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther. 50, 285-290.]); Jaffrezou et al. (1992[Jaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res. 52, 1352-1359.]). For the preparation of annulated indolizine, see: Liu et al. (2010[Liu, Y., Hu, H.-Y., Zhang, Y., Hu, H.-W. & Xu, J.-H. (2010). Org. Biomol. Chem. 8, 4921-4926.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O5

  • Mr = 442.46

  • Triclinic, [P \overline 1]

  • a = 8.4000 (17) Å

  • b = 11.008 (2) Å

  • c = 12.304 (3) Å

  • α = 74.33 (3)°

  • β = 75.38 (3)°

  • γ = 86.18 (3)°

  • V = 1060.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.981

  • 4095 measured reflections

  • 3811 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 1.01

  • 3809 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4 0.93 2.34 3.168 (3) 148

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The natural and many synthetic indolizines show a diversity of biological activity and are playing an increasingly important role in developing of new pharmaceuticals (Olden et al., 1991; Jaffrezou et al., 1992). The synthesis of these compounds has drawn much research interest (Liu et al., 2010). Indolizino[1,2-c]quinolin-6(5H)-one is an important annulated indolizines derivative. In our ongoing research work on the direct one pot syntheses of this class of compounds, we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure further.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The two quinoline rings containing N1 [r.m.s. deviation from mean plane of 0.0131 (3) Å] and N2 [r.m.s. deviation = 0.0573 Å] are make dihedral angles with the pyrrole ring of 4.16 (12)° and 6.30 (13)°. The molecular conformation is stabilized by weak intramolecular C—H···O hydrogen bonds (Table 1). The packing of the title molecules via the π -π stacking interaction is shown in Fig.2, with a shortest intercentroid distance of 3.627 (2) Å.

Related literature top

For pharmaceutical properties of indolizines and related compounds, see: Olden et al. (1991); Jaffrezou et al. (1992). For the preparation of annulated indolizine, see: Liu et al. (2010). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The compound (I) was prepared by the reaction of 1-(2-ethoxy-2-oxoethyl)quinolinium salt (2.0 mmol), tetrakispyridinecobalt(II) di(hydrochromate) [CoPy4](HCrO4)2 (1.0 g) and potassium carbonate (3.0 mmol) mixed in 10 mL CH3CN and heated at reflux for 4 h. After the reaction was completed, the reaction mixture was purified by column chromatography on silica gel, and the product was isolated after evaporation of the solvent. Single crystals of (I) were obtained by slow evaporation from a petroleum ether–ethyl acetate (3:1) solvent system (yield 52%).

Refinement top

The H atoms were geometrically placed and were treated as riding, with C—H = 0.93 Å.

Structure description top

The natural and many synthetic indolizines show a diversity of biological activity and are playing an increasingly important role in developing of new pharmaceuticals (Olden et al., 1991; Jaffrezou et al., 1992). The synthesis of these compounds has drawn much research interest (Liu et al., 2010). Indolizino[1,2-c]quinolin-6(5H)-one is an important annulated indolizines derivative. In our ongoing research work on the direct one pot syntheses of this class of compounds, we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure further.

The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The two quinoline rings containing N1 [r.m.s. deviation from mean plane of 0.0131 (3) Å] and N2 [r.m.s. deviation = 0.0573 Å] are make dihedral angles with the pyrrole ring of 4.16 (12)° and 6.30 (13)°. The molecular conformation is stabilized by weak intramolecular C—H···O hydrogen bonds (Table 1). The packing of the title molecules via the π -π stacking interaction is shown in Fig.2, with a shortest intercentroid distance of 3.627 (2) Å.

For pharmaceutical properties of indolizines and related compounds, see: Olden et al. (1991); Jaffrezou et al. (1992). For the preparation of annulated indolizine, see: Liu et al. (2010). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compounds, viewed along the crystallographic c axis.
Ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-4,13-diazapentacyclo[11.8.0.02,11.05,10.014,19]henicosa-1,5(10),6,8,11,14(19),15,17,20-nonaene-12-carboxylate top
Crystal data top
C26H22N2O5Z = 2
Mr = 442.46F(000) = 464
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4000 (17) ÅCell parameters from 25 reflections
b = 11.008 (2) Åθ = 9–12°
c = 12.304 (3) ŵ = 0.10 mm1
α = 74.33 (3)°T = 295 K
β = 75.38 (3)°Block, colourless
γ = 86.18 (3)°0.3 × 0.2 × 0.2 mm
V = 1060.0 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2855 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.977, Tmax = 0.981l = 1414
4095 measured reflections3 standard reflections every 200 reflections
3811 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.067P)2 + 0.6558P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3809 reflectionsΔρmax = 0.22 e Å3
301 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.056 (4)
Crystal data top
C26H22N2O5γ = 86.18 (3)°
Mr = 442.46V = 1060.0 (4) Å3
Triclinic, P1Z = 2
a = 8.4000 (17) ÅMo Kα radiation
b = 11.008 (2) ŵ = 0.10 mm1
c = 12.304 (3) ÅT = 295 K
α = 74.33 (3)°0.3 × 0.2 × 0.2 mm
β = 75.38 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2855 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.977, Tmax = 0.9813 standard reflections every 200 reflections
4095 measured reflections intensity decay: none
3811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3809 reflectionsΔρmin = 0.25 e Å3
301 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Two reflections were omitted from the initial data set of 3811 reflections, thus 3809 is the correct number of reflections in the L.S. refinement procedure

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.3913 (2)0.80663 (16)0.26370 (14)0.0453 (4)
N20.5328 (2)0.73427 (18)0.46629 (17)0.0413 (5)
O30.3219 (3)0.7099 (2)0.82722 (16)0.0659 (6)
C70.3563 (3)0.8813 (2)0.5236 (2)0.0394 (5)
N10.1884 (2)0.8865 (2)0.75042 (17)0.0475 (5)
C80.3822 (3)0.7900 (2)0.6224 (2)0.0428 (6)
O40.4712 (3)1.00189 (17)0.24670 (17)0.0650 (6)
C60.2412 (3)0.9830 (2)0.5397 (2)0.0411 (6)
C10.1577 (3)0.9812 (2)0.6552 (2)0.0437 (6)
C140.4914 (3)0.7000 (2)0.5869 (2)0.0437 (6)
C240.4415 (3)0.8959 (2)0.3036 (2)0.0426 (6)
C50.2067 (3)1.0811 (2)0.4496 (2)0.0474 (6)
H50.26241.08420.37330.057*
C230.4492 (3)0.8453 (2)0.4264 (2)0.0404 (5)
C210.7233 (3)0.7114 (3)0.2844 (2)0.0494 (6)
H210.69020.78840.24270.059*
C20.0422 (3)1.0757 (3)0.6742 (2)0.0521 (7)
H20.01421.07480.74990.062*
C220.6559 (3)0.6685 (2)0.4033 (2)0.0429 (6)
C90.2995 (3)0.7893 (3)0.7406 (2)0.0479 (6)
C170.7146 (3)0.5562 (2)0.4673 (2)0.0530 (7)
O20.1099 (3)0.7778 (2)0.8434 (2)0.0799 (7)
C40.0929 (3)1.1733 (3)0.4702 (3)0.0544 (7)
H40.07161.23730.40870.065*
C150.5548 (4)0.5884 (3)0.6489 (2)0.0541 (7)
H150.52430.56460.72980.065*
C30.0109 (3)1.1694 (3)0.5831 (3)0.0552 (7)
H30.06651.23110.59770.066*
O10.1713 (3)0.8786 (3)0.9833 (2)0.0916 (8)
C250.3949 (4)0.8401 (3)0.1403 (2)0.0573 (7)
H25A0.50610.86120.09380.069*
H25B0.32470.91230.12130.069*
C100.1035 (4)0.8897 (3)0.8679 (2)0.0616 (8)
H10A0.10920.97500.87480.074*
H10B0.16140.83520.92150.074*
C110.0746 (4)0.8496 (3)0.9045 (2)0.0618 (8)
C160.6595 (4)0.5167 (3)0.5907 (3)0.0590 (7)
H160.69620.44050.63140.071*
C200.8391 (4)0.6400 (3)0.2282 (3)0.0652 (8)
H200.88450.66940.14860.078*
C190.8888 (4)0.5240 (3)0.2896 (3)0.0799 (10)
H190.96190.47360.25060.096*
C130.2873 (6)0.6002 (5)0.9349 (5)0.136 (2)
H13A0.25110.58931.00500.205*
H13B0.21820.55180.88710.205*
H13C0.39900.57170.95430.205*
C180.8299 (4)0.4852 (3)0.4063 (3)0.0709 (9)
H180.86700.40930.44720.085*
C260.3346 (5)0.7286 (4)0.1163 (3)0.0830 (11)
H26A0.22170.71280.15800.124*
H26B0.39980.65630.14100.124*
H26C0.34330.74460.03430.124*
C120.2776 (4)0.7282 (4)0.8740 (4)0.1070 (15)
H12A0.35050.77630.92160.128*
H12B0.31470.73880.80350.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0468 (10)0.0508 (10)0.0396 (9)0.0018 (8)0.0118 (7)0.0134 (8)
N20.0410 (11)0.0398 (11)0.0445 (11)0.0001 (9)0.0108 (9)0.0132 (9)
O30.0785 (14)0.0722 (13)0.0418 (11)0.0085 (11)0.0132 (10)0.0097 (10)
C70.0340 (12)0.0429 (13)0.0439 (13)0.0032 (10)0.0103 (10)0.0142 (11)
N10.0395 (11)0.0613 (14)0.0418 (12)0.0005 (10)0.0062 (9)0.0173 (10)
C80.0387 (13)0.0470 (14)0.0429 (13)0.0009 (11)0.0099 (10)0.0119 (11)
O40.0882 (15)0.0437 (11)0.0535 (11)0.0043 (10)0.0101 (10)0.0026 (9)
C60.0326 (12)0.0465 (14)0.0464 (14)0.0041 (10)0.0080 (10)0.0165 (11)
C10.0340 (12)0.0522 (15)0.0484 (14)0.0060 (11)0.0090 (11)0.0184 (12)
C140.0448 (14)0.0439 (14)0.0421 (13)0.0044 (11)0.0119 (11)0.0085 (11)
C240.0364 (13)0.0450 (14)0.0431 (13)0.0043 (11)0.0044 (10)0.0117 (11)
C50.0417 (14)0.0495 (15)0.0492 (15)0.0006 (11)0.0089 (11)0.0124 (12)
C230.0356 (12)0.0406 (13)0.0452 (13)0.0011 (10)0.0081 (10)0.0127 (10)
C210.0400 (14)0.0538 (15)0.0537 (16)0.0064 (12)0.0098 (12)0.0159 (12)
C20.0418 (14)0.0595 (17)0.0559 (16)0.0022 (12)0.0016 (12)0.0258 (14)
C220.0354 (12)0.0436 (13)0.0528 (15)0.0021 (10)0.0119 (11)0.0171 (11)
C90.0486 (15)0.0540 (15)0.0422 (14)0.0035 (12)0.0124 (12)0.0121 (12)
C170.0508 (16)0.0495 (15)0.0601 (17)0.0073 (12)0.0148 (13)0.0172 (13)
O20.0557 (13)0.0863 (16)0.0884 (16)0.0132 (11)0.0051 (11)0.0250 (13)
C40.0478 (15)0.0480 (15)0.0651 (18)0.0049 (12)0.0133 (13)0.0126 (13)
C150.0614 (17)0.0506 (15)0.0490 (15)0.0015 (13)0.0179 (13)0.0072 (12)
C30.0437 (15)0.0514 (16)0.0715 (19)0.0057 (12)0.0091 (13)0.0237 (14)
O10.0767 (16)0.1089 (19)0.0682 (15)0.0147 (14)0.0162 (12)0.0232 (14)
C250.0567 (17)0.0748 (19)0.0394 (14)0.0133 (14)0.0130 (12)0.0154 (13)
C100.0599 (18)0.083 (2)0.0438 (15)0.0119 (15)0.0113 (13)0.0247 (14)
C110.0578 (18)0.0673 (19)0.0451 (16)0.0095 (15)0.0018 (14)0.0050 (14)
C160.0662 (18)0.0453 (15)0.0630 (18)0.0106 (13)0.0211 (15)0.0076 (13)
C200.0519 (17)0.080 (2)0.0603 (18)0.0102 (15)0.0039 (14)0.0240 (16)
C190.074 (2)0.080 (2)0.080 (2)0.0343 (18)0.0092 (18)0.0302 (19)
C130.114 (4)0.101 (4)0.178 (5)0.043 (3)0.000 (4)0.031 (3)
C180.073 (2)0.0600 (18)0.075 (2)0.0256 (16)0.0161 (17)0.0185 (16)
C260.093 (3)0.113 (3)0.0584 (19)0.004 (2)0.0301 (18)0.037 (2)
C120.055 (2)0.100 (3)0.136 (4)0.023 (2)0.001 (2)0.001 (3)
Geometric parameters (Å, º) top
O5—C241.344 (3)O2—C111.320 (4)
O5—C251.456 (3)O2—C121.466 (4)
N2—C141.385 (3)C4—C31.376 (4)
N2—C231.401 (3)C4—H40.9300
N2—C221.412 (3)C15—C161.344 (4)
O3—C91.229 (3)C15—H150.9300
C7—C231.392 (3)C3—H30.9300
C7—C81.406 (3)O1—C111.199 (4)
C7—C61.452 (3)C25—C261.484 (4)
N1—C91.383 (3)C25—H25A0.9700
N1—C11.408 (3)C25—H25B0.9700
N1—C101.450 (3)C10—C111.509 (4)
C8—C141.387 (3)C10—H10A0.9700
C8—C91.443 (3)C10—H10B0.9700
O4—C241.192 (3)C16—H160.9300
C6—C51.397 (3)C20—C191.394 (5)
C6—C11.413 (3)C20—H200.9300
C1—C21.400 (4)C19—C181.352 (5)
C14—C151.409 (4)C19—H190.9300
C24—C231.479 (3)C13—C121.403 (6)
C5—C41.377 (4)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C21—C201.376 (4)C13—H13C0.9600
C21—C221.388 (4)C18—H180.9300
C21—H210.9300C26—H26A0.9600
C2—C31.371 (4)C26—H26B0.9600
C2—H20.9300C26—H26C0.9600
C22—C171.407 (4)C12—H12A0.9700
C17—C181.400 (4)C12—H12B0.9700
C17—C161.423 (4)
C24—O5—C25116.4 (2)C16—C15—H15120.1
C14—N2—C23109.1 (2)C14—C15—H15120.1
C14—N2—C22120.8 (2)C2—C3—C4120.8 (3)
C23—N2—C22129.7 (2)C2—C3—H3119.6
C23—C7—C8107.1 (2)C4—C3—H3119.6
C23—C7—C6133.9 (2)O5—C25—C26107.0 (2)
C8—C7—C6118.8 (2)O5—C25—H25A110.3
C9—N1—C1124.3 (2)C26—C25—H25A110.3
C9—N1—C10116.1 (2)O5—C25—H25B110.3
C1—N1—C10119.6 (2)C26—C25—H25B110.3
C14—C8—C7109.1 (2)H25A—C25—H25B108.6
C14—C8—C9126.6 (2)N1—C10—C11115.0 (2)
C7—C8—C9124.2 (2)N1—C10—H10A108.5
C5—C6—C1118.2 (2)C11—C10—H10A108.5
C5—C6—C7124.8 (2)N1—C10—H10B108.5
C1—C6—C7117.1 (2)C11—C10—H10B108.5
C2—C1—N1119.9 (2)H10A—C10—H10B107.5
C2—C1—C6118.8 (2)O1—C11—O2124.4 (3)
N1—C1—C6121.2 (2)O1—C11—C10122.3 (3)
N2—C14—C8107.1 (2)O2—C11—C10113.2 (2)
N2—C14—C15120.4 (2)C15—C16—C17120.5 (3)
C8—C14—C15132.5 (2)C15—C16—H16119.7
O4—C24—O5123.4 (2)C17—C16—H16119.7
O4—C24—C23125.8 (2)C21—C20—C19120.5 (3)
O5—C24—C23110.8 (2)C21—C20—H20119.8
C4—C5—C6122.1 (2)C19—C20—H20119.8
C4—C5—H5119.0C18—C19—C20119.5 (3)
C6—C5—H5119.0C18—C19—H19120.2
C7—C23—N2107.6 (2)C20—C19—H19120.2
C7—C23—C24128.1 (2)C12—C13—H13A109.5
N2—C23—C24123.4 (2)C12—C13—H13B109.5
C20—C21—C22120.0 (3)H13A—C13—H13B109.5
C20—C21—H21120.0C12—C13—H13C109.5
C22—C21—H21120.0H13A—C13—H13C109.5
C3—C2—C1121.1 (2)H13B—C13—H13C109.5
C3—C2—H2119.5C19—C18—C17121.7 (3)
C1—C2—H2119.5C19—C18—H18119.1
C21—C22—C17119.7 (2)C17—C18—H18119.1
C21—C22—N2123.3 (2)C25—C26—H26A109.5
C17—C22—N2116.9 (2)C25—C26—H26B109.5
O3—C9—N1121.2 (2)H26A—C26—H26B109.5
O3—C9—C8124.5 (3)C25—C26—H26C109.5
N1—C9—C8114.3 (2)H26A—C26—H26C109.5
C18—C17—C22118.2 (3)H26B—C26—H26C109.5
C18—C17—C16120.9 (3)C13—C12—O2112.1 (4)
C22—C17—C16120.9 (2)C13—C12—H12A109.2
C11—O2—C12118.4 (3)O2—C12—H12A109.2
C5—C4—C3119.1 (3)C13—C12—H12B109.2
C5—C4—H4120.4O2—C12—H12B109.2
C3—C4—H4120.4H12A—C12—H12B107.9
C16—C15—C14119.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.972.322.712 (5)103
C10—H10B···O30.972.212.669 (4)107
C15—H15···O30.932.563.082 (4)116
C21—H21···O50.932.462.964 (3)114
C5—H5···O40.932.343.168 (3)148

Experimental details

Crystal data
Chemical formulaC26H22N2O5
Mr442.46
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.4000 (17), 11.008 (2), 12.304 (3)
α, β, γ (°)74.33 (3), 75.38 (3), 86.18 (3)
V3)1060.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4095, 3811, 2855
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.01
No. of reflections3809
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O40.932.343.168 (3)148
 

Acknowledgements

The authors acknowledge financial support by 2012JSSPITP3193. This work was also sponsored by the research funds of Xuzhou City (XZZD1213 and XF10C015).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res. 52, 1352–1359.  PubMed CAS Web of Science Google Scholar
First citationLiu, Y., Hu, H.-Y., Zhang, Y., Hu, H.-W. & Xu, J.-H. (2010). Org. Biomol. Chem. 8, 4921–4926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOlden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Oredipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther. 50, 285–290.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds