organic compounds
2-[4-(Carbazol-9-yl)phenyl]-1,3-diethyl-1,3-diphenylguanidine
aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de
In the title compound, C35H32N4, the C—N bond lengths in the guanidine part are 1.286 (3), 1.387 (2) and 1.414 (2) Å, indicating double- and single-bond character. The N—C—N angles are 114.48 (17), 118.78 (17) and 126.72 (17)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The carbazole ring system is almost planar (r.m.s. deviation = 0.002 Å). In the crystal, molecules are connected by weak C—H⋯N hydrogen bonds, generating a zigzag chain along the ac plane. Weak π–π interactions [centroid–centroid distance = 3.785 (1) Å] between two phenyl rings of the guanidine moiety are also present.
Related literature
For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011). For the of 9-(4-nitrophenyl)-9H-carbazole, see: Chen et al. (2005). For the of carbazole, see: Gerkin & Reppart (1986). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001). For the of N,N,N′,N′-tetramethyl-N′′-[2-(N′,N′,N′′,N′′-tetramethylguanidino)ethyl]guanidine, see: Tiritiris & Kantlehner (2012).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813014517/zl2551sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014517/zl2551Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813014517/zl2551Isup3.cml
One equivalent of N,N'-diethyl-N,N'-diphenylchloro formamidinium-chloride (synthesized from N,N'-diethyl-N,N'-diphenylthiourea and phosgene) was reacted with one equivalent of 9-(4-aminophenyl)-9H-carbazole (Alfa Aesar) in acetonitrile, in the presence of one equivalent triethylamine, at 273 K. The obtained mixture consisting of the guanidinium chloride and triethylammonium chloride was reacted in the next step with an excess of an aqueous sodium hydroxide solution at 273 K. After extraction of the guanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution.
The title compound crystallizes in the non-centrosymmetric
P212121; however, in the absence of significant effects, the is essentially meaningless. Accordingly, Friedel pairs were merged. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).Carbazole derivatives play an important role as materials for small-molecule or polymer organic light-emitting diodes (OLEDs). They are known for their intense blue luminescence (Thomas et al., 2001) and several types of carbazole-based compounds are already used in OLEDs (Agarwal et al., 2011). The disadvantage of blue emitting materials in blue OLEDs is their lower efficiency compared to green or red OLED materials, due to their limited stability, shorter lifetime and lower color purity. In search of new more stable blue emitting materials, we synthesized a new type of carbazole derivative by combination of an aryl substituted carbazole with a guanidine moiety, the
of which is presented here.According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.286 (3) Å, indicating double bond character. The bond lengths C1–N2 = 1.387 (2) Å and C1–N1 = 1.414 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 114.48 (17)° (N1–C1–N2), 118.78 (17)° (N2–C1–N3) and 126.72 (17)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)-ethyl]-guanidine (Tiritiris & Kantlehner, 2012). The carbazole ring system is planar and the bond lengths and angles are in good agreement with the data from the X-ray analysis of unsubstituted carbazole (Gerkin & Reppart, 1986). The dihedral angle between the planes C35/N4/C24 and C22/C21/C20 is 57.9 (2)°, indicating an only small deviation from the value found for 9-(4-nitrophenyl)-9H-carbazole [dihedral angle between the C/N/C and C/C/C plane = 53.08 (4)°] (Chen et al., 2005). Weak C–H···N hydrogen bonds are found between aromatic hydrogen atoms of the carbazole moiety and the free nitrogen atoms of neighboring guanidine molecules [d(H···N) = 2.79 Å] (Tab. 1), generating a zig zag chain along the ac-plane (Fig. 2). Finally, weak π–π interactions between two phenyl rings of the guanidine unit [Cg1 = C4–C9; Cg2 = C18–C23; d(Cg1···Cg2) = 3.785 Å] are also present.
For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011). For the
of 9-(4-nitrophenyl)-9H-carbazole, see: Chen et al. (2005). For the of carbazole, see: Gerkin & Reppart (1986). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001). For the of N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)ethyl]guanidine, see: Tiritiris & Kantlehner (2012).Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C35H32N4 | F(000) = 1080 |
Mr = 508.65 | Dx = 1.248 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 33481 reflections |
a = 9.4741 (2) Å | θ = 0.4–27.9° |
b = 15.9500 (6) Å | µ = 0.07 mm−1 |
c = 17.9102 (8) Å | T = 100 K |
V = 2706.45 (17) Å3 | Block, colorless |
Z = 4 | 0.19 × 0.15 × 0.12 mm |
Bruker-Nonius KappaCCD diffractometer | 3109 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 27.9°, θmin = 2.8° |
φ scans, and ω scans | h = −12→12 |
6390 measured reflections | k = −20→20 |
3588 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0341P)2 + 0.8137P] where P = (Fo2 + 2Fc2)/3 |
3588 reflections | (Δ/σ)max < 0.001 |
354 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C35H32N4 | V = 2706.45 (17) Å3 |
Mr = 508.65 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.4741 (2) Å | µ = 0.07 mm−1 |
b = 15.9500 (6) Å | T = 100 K |
c = 17.9102 (8) Å | 0.19 × 0.15 × 0.12 mm |
Bruker-Nonius KappaCCD diffractometer | 3109 reflections with I > 2σ(I) |
6390 measured reflections | Rint = 0.032 |
3588 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.18 e Å−3 |
3588 reflections | Δρmin = −0.20 e Å−3 |
354 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2398 (2) | 0.01022 (12) | 0.15167 (10) | 0.0136 (4) | |
N1 | 0.21769 (17) | 0.08232 (11) | 0.19605 (9) | 0.0142 (3) | |
C2 | 0.0991 (2) | 0.07985 (13) | 0.24863 (11) | 0.0184 (4) | |
H2A | 0.1373 | 0.0796 | 0.3001 | 0.022* | |
H2B | 0.0474 | 0.0265 | 0.2413 | 0.022* | |
C3 | −0.0054 (2) | 0.15231 (15) | 0.24149 (13) | 0.0234 (5) | |
H3A | 0.0455 | 0.2057 | 0.2445 | 0.035* | |
H3B | −0.0747 | 0.1492 | 0.2820 | 0.035* | |
H3C | −0.0542 | 0.1486 | 0.1933 | 0.035* | |
C4 | 0.3269 (2) | 0.14186 (13) | 0.20511 (11) | 0.0150 (4) | |
C5 | 0.3325 (2) | 0.19439 (14) | 0.26785 (12) | 0.0217 (5) | |
H5A | 0.2611 | 0.1910 | 0.3050 | 0.026* | |
C6 | 0.4426 (3) | 0.25155 (14) | 0.27582 (13) | 0.0253 (5) | |
H6A | 0.4451 | 0.2872 | 0.3183 | 0.030* | |
C7 | 0.5483 (2) | 0.25736 (14) | 0.22300 (13) | 0.0249 (5) | |
H7A | 0.6245 | 0.2953 | 0.2297 | 0.030* | |
C8 | 0.5414 (2) | 0.20701 (14) | 0.16015 (12) | 0.0213 (4) | |
H8A | 0.6130 | 0.2111 | 0.1232 | 0.026* | |
C9 | 0.4312 (2) | 0.15069 (13) | 0.15042 (11) | 0.0180 (4) | |
H9A | 0.4267 | 0.1178 | 0.1062 | 0.022* | |
N2 | 0.12723 (17) | −0.01060 (11) | 0.10577 (9) | 0.0155 (3) | |
C10 | 0.1179 (2) | −0.09757 (13) | 0.07804 (11) | 0.0169 (4) | |
H10A | 0.2127 | −0.1161 | 0.0616 | 0.020* | |
H10B | 0.0545 | −0.0991 | 0.0341 | 0.020* | |
C11 | 0.0633 (3) | −0.15786 (14) | 0.13647 (13) | 0.0258 (5) | |
H11A | 0.1243 | −0.1556 | 0.1806 | 0.039* | |
H11B | 0.0634 | −0.2149 | 0.1162 | 0.039* | |
H11C | −0.0331 | −0.1421 | 0.1505 | 0.039* | |
C12 | 0.0369 (2) | 0.05132 (13) | 0.07409 (11) | 0.0153 (4) | |
C13 | −0.1054 (2) | 0.03251 (14) | 0.06186 (11) | 0.0173 (4) | |
H13A | −0.1416 | −0.0209 | 0.0755 | 0.021* | |
C14 | −0.1937 (2) | 0.09201 (14) | 0.02976 (12) | 0.0204 (4) | |
H14A | −0.2902 | 0.0789 | 0.0212 | 0.024* | |
C15 | −0.1423 (2) | 0.17052 (14) | 0.01001 (12) | 0.0224 (5) | |
H15A | −0.2031 | 0.2110 | −0.0118 | 0.027* | |
C16 | −0.0017 (2) | 0.18903 (14) | 0.02245 (12) | 0.0203 (4) | |
H16A | 0.0338 | 0.2428 | 0.0094 | 0.024* | |
C17 | 0.0877 (2) | 0.13042 (13) | 0.05360 (11) | 0.0171 (4) | |
H17A | 0.1843 | 0.1438 | 0.0612 | 0.020* | |
N3 | 0.34992 (17) | −0.03696 (11) | 0.15142 (9) | 0.0156 (3) | |
C18 | 0.4536 (2) | −0.02744 (12) | 0.20755 (11) | 0.0151 (4) | |
C19 | 0.4217 (2) | −0.02753 (13) | 0.28357 (11) | 0.0167 (4) | |
H19A | 0.3265 | −0.0337 | 0.2994 | 0.020* | |
C20 | 0.5281 (2) | −0.01872 (13) | 0.33636 (11) | 0.0179 (4) | |
H20A | 0.5060 | −0.0200 | 0.3881 | 0.021* | |
C21 | 0.6666 (2) | −0.00799 (13) | 0.31334 (11) | 0.0167 (4) | |
C22 | 0.7001 (2) | −0.01022 (14) | 0.23777 (12) | 0.0182 (4) | |
H22A | 0.7953 | −0.0039 | 0.2221 | 0.022* | |
C23 | 0.5944 (2) | −0.02163 (13) | 0.18542 (11) | 0.0166 (4) | |
H23A | 0.6180 | −0.0255 | 0.1340 | 0.020* | |
N4 | 0.77493 (17) | 0.00757 (11) | 0.36707 (9) | 0.0176 (4) | |
C24 | 0.7771 (2) | 0.07533 (13) | 0.41611 (11) | 0.0157 (4) | |
C25 | 0.6772 (2) | 0.13854 (13) | 0.42557 (12) | 0.0186 (4) | |
H25A | 0.5941 | 0.1408 | 0.3959 | 0.022* | |
C26 | 0.7044 (2) | 0.19800 (14) | 0.48025 (12) | 0.0209 (4) | |
H26A | 0.6380 | 0.2417 | 0.4884 | 0.025* | |
C27 | 0.8272 (2) | 0.19524 (14) | 0.52382 (12) | 0.0214 (4) | |
H27A | 0.8420 | 0.2367 | 0.5611 | 0.026* | |
C28 | 0.9275 (2) | 0.13299 (13) | 0.51332 (11) | 0.0178 (4) | |
H28A | 1.0107 | 0.1314 | 0.5429 | 0.021* | |
C29 | 0.9032 (2) | 0.07256 (13) | 0.45807 (11) | 0.0156 (4) | |
C30 | 0.9823 (2) | 0.00075 (13) | 0.43164 (10) | 0.0160 (4) | |
C31 | 1.1140 (2) | −0.03379 (14) | 0.44977 (11) | 0.0184 (4) | |
H31A | 1.1717 | −0.0087 | 0.4870 | 0.022* | |
C32 | 1.1585 (2) | −0.10510 (14) | 0.41248 (11) | 0.0199 (4) | |
H32A | 1.2481 | −0.1286 | 0.4238 | 0.024* | |
C33 | 1.0730 (2) | −0.14313 (14) | 0.35808 (12) | 0.0207 (4) | |
H33A | 1.1058 | −0.1922 | 0.3335 | 0.025* | |
C34 | 0.9419 (2) | −0.11072 (14) | 0.33932 (12) | 0.0193 (4) | |
H34A | 0.8836 | −0.1371 | 0.3031 | 0.023* | |
C35 | 0.8993 (2) | −0.03802 (13) | 0.37572 (11) | 0.0163 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0166 (9) | 0.0133 (9) | 0.0109 (9) | −0.0038 (8) | −0.0003 (7) | 0.0004 (7) |
N1 | 0.0142 (7) | 0.0138 (8) | 0.0145 (8) | −0.0010 (7) | 0.0013 (6) | −0.0017 (7) |
C2 | 0.0200 (10) | 0.0172 (10) | 0.0181 (10) | −0.0022 (9) | 0.0046 (8) | −0.0023 (8) |
C3 | 0.0228 (10) | 0.0241 (11) | 0.0232 (11) | 0.0019 (10) | 0.0055 (9) | −0.0027 (9) |
C4 | 0.0166 (9) | 0.0119 (9) | 0.0164 (9) | −0.0013 (8) | −0.0028 (8) | 0.0014 (8) |
C5 | 0.0262 (11) | 0.0202 (11) | 0.0187 (10) | −0.0018 (9) | 0.0038 (9) | −0.0031 (9) |
C6 | 0.0351 (12) | 0.0180 (11) | 0.0228 (11) | −0.0051 (10) | −0.0002 (10) | −0.0074 (9) |
C7 | 0.0257 (11) | 0.0172 (11) | 0.0318 (12) | −0.0080 (9) | −0.0016 (10) | 0.0001 (9) |
C8 | 0.0211 (10) | 0.0191 (11) | 0.0237 (11) | −0.0038 (9) | 0.0030 (9) | 0.0031 (9) |
C9 | 0.0215 (10) | 0.0154 (10) | 0.0170 (9) | −0.0017 (8) | −0.0009 (8) | 0.0008 (8) |
N2 | 0.0152 (8) | 0.0144 (8) | 0.0169 (8) | −0.0002 (7) | −0.0041 (7) | −0.0019 (7) |
C10 | 0.0183 (10) | 0.0159 (10) | 0.0166 (9) | −0.0014 (8) | −0.0028 (8) | −0.0044 (8) |
C11 | 0.0358 (13) | 0.0187 (11) | 0.0228 (11) | −0.0047 (10) | −0.0012 (10) | −0.0020 (9) |
C12 | 0.0163 (9) | 0.0175 (10) | 0.0120 (9) | 0.0016 (8) | 0.0008 (8) | −0.0031 (8) |
C13 | 0.0168 (10) | 0.0184 (10) | 0.0167 (9) | −0.0014 (8) | −0.0008 (8) | −0.0023 (8) |
C14 | 0.0155 (10) | 0.0263 (11) | 0.0193 (10) | 0.0013 (8) | −0.0024 (8) | −0.0049 (9) |
C15 | 0.0223 (10) | 0.0233 (11) | 0.0215 (10) | 0.0077 (9) | −0.0024 (9) | 0.0026 (9) |
C16 | 0.0224 (10) | 0.0201 (11) | 0.0185 (10) | 0.0001 (9) | 0.0015 (8) | 0.0037 (9) |
C17 | 0.0146 (9) | 0.0228 (11) | 0.0138 (9) | −0.0021 (8) | 0.0013 (8) | 0.0002 (8) |
N3 | 0.0143 (8) | 0.0153 (8) | 0.0172 (8) | −0.0003 (7) | −0.0031 (7) | −0.0016 (7) |
C18 | 0.0159 (9) | 0.0112 (9) | 0.0182 (10) | 0.0008 (8) | −0.0043 (8) | −0.0005 (8) |
C19 | 0.0139 (9) | 0.0170 (10) | 0.0193 (9) | −0.0014 (8) | 0.0017 (8) | 0.0015 (8) |
C20 | 0.0193 (10) | 0.0203 (11) | 0.0141 (9) | −0.0005 (8) | −0.0004 (8) | 0.0023 (8) |
C21 | 0.0184 (10) | 0.0169 (10) | 0.0149 (9) | −0.0010 (8) | −0.0057 (8) | 0.0008 (8) |
C22 | 0.0138 (9) | 0.0203 (11) | 0.0204 (10) | −0.0011 (8) | 0.0013 (8) | 0.0004 (9) |
C23 | 0.0189 (10) | 0.0170 (10) | 0.0140 (9) | −0.0001 (8) | 0.0007 (8) | −0.0017 (8) |
N4 | 0.0163 (8) | 0.0202 (9) | 0.0163 (8) | 0.0012 (7) | −0.0035 (7) | −0.0017 (7) |
C24 | 0.0175 (9) | 0.0178 (10) | 0.0118 (9) | −0.0032 (8) | 0.0001 (8) | 0.0026 (8) |
C25 | 0.0178 (10) | 0.0194 (10) | 0.0186 (10) | −0.0001 (8) | −0.0008 (8) | 0.0037 (8) |
C26 | 0.0216 (10) | 0.0175 (10) | 0.0236 (11) | 0.0033 (9) | 0.0002 (9) | 0.0023 (9) |
C27 | 0.0284 (11) | 0.0160 (10) | 0.0197 (10) | −0.0023 (9) | −0.0013 (9) | −0.0020 (9) |
C28 | 0.0202 (10) | 0.0188 (10) | 0.0143 (9) | −0.0036 (8) | −0.0016 (8) | 0.0023 (8) |
C29 | 0.0171 (9) | 0.0156 (10) | 0.0141 (9) | −0.0033 (8) | −0.0011 (8) | 0.0053 (8) |
C30 | 0.0184 (9) | 0.0167 (10) | 0.0129 (9) | −0.0029 (8) | −0.0002 (8) | 0.0029 (8) |
C31 | 0.0192 (10) | 0.0207 (10) | 0.0154 (9) | −0.0033 (9) | −0.0020 (8) | 0.0031 (8) |
C32 | 0.0177 (10) | 0.0233 (11) | 0.0186 (10) | 0.0016 (9) | −0.0016 (8) | 0.0051 (9) |
C33 | 0.0232 (10) | 0.0208 (10) | 0.0180 (10) | 0.0014 (9) | 0.0013 (8) | 0.0022 (9) |
C34 | 0.0210 (10) | 0.0210 (10) | 0.0158 (9) | −0.0023 (9) | −0.0017 (8) | −0.0017 (8) |
C35 | 0.0160 (9) | 0.0182 (10) | 0.0148 (9) | −0.0015 (8) | 0.0003 (8) | 0.0048 (8) |
C1—N3 | 1.286 (3) | C16—C17 | 1.379 (3) |
C1—N2 | 1.387 (2) | C16—H16A | 0.9500 |
C1—N1 | 1.414 (2) | C17—H17A | 0.9500 |
N1—C4 | 1.413 (2) | N3—C18 | 1.414 (2) |
N1—C2 | 1.466 (2) | C18—C23 | 1.395 (3) |
C2—C3 | 1.527 (3) | C18—C19 | 1.395 (3) |
C2—H2A | 0.9900 | C19—C20 | 1.390 (3) |
C2—H2B | 0.9900 | C19—H19A | 0.9500 |
C3—H3A | 0.9800 | C20—C21 | 1.386 (3) |
C3—H3B | 0.9800 | C20—H20A | 0.9500 |
C3—H3C | 0.9800 | C21—C22 | 1.391 (3) |
C4—C9 | 1.399 (3) | C21—N4 | 1.429 (3) |
C4—C5 | 1.403 (3) | C22—C23 | 1.383 (3) |
C5—C6 | 1.393 (3) | C22—H22A | 0.9500 |
C5—H5A | 0.9500 | C23—H23A | 0.9500 |
C6—C7 | 1.380 (3) | N4—C24 | 1.393 (3) |
C6—H6A | 0.9500 | N4—C35 | 1.393 (3) |
C7—C8 | 1.384 (3) | C24—C25 | 1.393 (3) |
C7—H7A | 0.9500 | C24—C29 | 1.412 (3) |
C8—C9 | 1.388 (3) | C25—C26 | 1.388 (3) |
C8—H8A | 0.9500 | C25—H25A | 0.9500 |
C9—H9A | 0.9500 | C26—C27 | 1.402 (3) |
N2—C12 | 1.425 (3) | C26—H26A | 0.9500 |
N2—C10 | 1.476 (3) | C27—C28 | 1.387 (3) |
C10—C11 | 1.512 (3) | C27—H27A | 0.9500 |
C10—H10A | 0.9900 | C28—C29 | 1.400 (3) |
C10—H10B | 0.9900 | C28—H28A | 0.9500 |
C11—H11A | 0.9800 | C29—C30 | 1.448 (3) |
C11—H11B | 0.9800 | C30—C31 | 1.402 (3) |
C11—H11C | 0.9800 | C30—C35 | 1.416 (3) |
C12—C13 | 1.398 (3) | C31—C32 | 1.385 (3) |
C12—C17 | 1.399 (3) | C31—H31A | 0.9500 |
C13—C14 | 1.390 (3) | C32—C33 | 1.405 (3) |
C13—H13A | 0.9500 | C32—H32A | 0.9500 |
C14—C15 | 1.389 (3) | C33—C34 | 1.387 (3) |
C14—H14A | 0.9500 | C33—H33A | 0.9500 |
C15—C16 | 1.382 (3) | C34—C35 | 1.390 (3) |
C15—H15A | 0.9500 | C34—H34A | 0.9500 |
N3—C1—N2 | 118.78 (17) | C17—C16—H16A | 119.6 |
N3—C1—N1 | 126.72 (17) | C15—C16—H16A | 119.6 |
N2—C1—N1 | 114.48 (17) | C16—C17—C12 | 120.40 (19) |
C4—N1—C1 | 120.18 (16) | C16—C17—H17A | 119.8 |
C4—N1—C2 | 120.33 (16) | C12—C17—H17A | 119.8 |
C1—N1—C2 | 116.92 (16) | C1—N3—C18 | 119.89 (17) |
N1—C2—C3 | 115.00 (17) | C23—C18—C19 | 119.02 (18) |
N1—C2—H2A | 108.5 | C23—C18—N3 | 118.02 (17) |
C3—C2—H2A | 108.5 | C19—C18—N3 | 122.89 (18) |
N1—C2—H2B | 108.5 | C20—C19—C18 | 120.42 (18) |
C3—C2—H2B | 108.5 | C20—C19—H19A | 119.8 |
H2A—C2—H2B | 107.5 | C18—C19—H19A | 119.8 |
C2—C3—H3A | 109.5 | C21—C20—C19 | 119.81 (18) |
C2—C3—H3B | 109.5 | C21—C20—H20A | 120.1 |
H3A—C3—H3B | 109.5 | C19—C20—H20A | 120.1 |
C2—C3—H3C | 109.5 | C20—C21—C22 | 120.16 (18) |
H3A—C3—H3C | 109.5 | C20—C21—N4 | 120.08 (18) |
H3B—C3—H3C | 109.5 | C22—C21—N4 | 119.74 (18) |
C9—C4—C5 | 118.28 (19) | C23—C22—C21 | 119.88 (19) |
C9—C4—N1 | 120.29 (18) | C23—C22—H22A | 120.1 |
C5—C4—N1 | 121.42 (18) | C21—C22—H22A | 120.1 |
C6—C5—C4 | 120.1 (2) | C22—C23—C18 | 120.53 (18) |
C6—C5—H5A | 119.9 | C22—C23—H23A | 119.7 |
C4—C5—H5A | 119.9 | C18—C23—H23A | 119.7 |
C7—C6—C5 | 121.1 (2) | C24—N4—C35 | 108.82 (16) |
C7—C6—H6A | 119.4 | C24—N4—C21 | 124.74 (17) |
C5—C6—H6A | 119.4 | C35—N4—C21 | 126.29 (17) |
C6—C7—C8 | 119.0 (2) | N4—C24—C25 | 128.93 (18) |
C6—C7—H7A | 120.5 | N4—C24—C29 | 108.87 (17) |
C8—C7—H7A | 120.5 | C25—C24—C29 | 122.20 (19) |
C7—C8—C9 | 120.9 (2) | C26—C25—C24 | 117.01 (19) |
C7—C8—H8A | 119.6 | C26—C25—H25A | 121.5 |
C9—C8—H8A | 119.6 | C24—C25—H25A | 121.5 |
C8—C9—C4 | 120.58 (19) | C25—C26—C27 | 121.7 (2) |
C8—C9—H9A | 119.7 | C25—C26—H26A | 119.1 |
C4—C9—H9A | 119.7 | C27—C26—H26A | 119.1 |
C1—N2—C12 | 122.14 (17) | C28—C27—C26 | 121.1 (2) |
C1—N2—C10 | 118.07 (16) | C28—C27—H27A | 119.5 |
C12—N2—C10 | 118.78 (15) | C26—C27—H27A | 119.5 |
N2—C10—C11 | 112.65 (16) | C27—C28—C29 | 118.40 (19) |
N2—C10—H10A | 109.1 | C27—C28—H28A | 120.8 |
C11—C10—H10A | 109.1 | C29—C28—H28A | 120.8 |
N2—C10—H10B | 109.1 | C28—C29—C24 | 119.58 (19) |
C11—C10—H10B | 109.1 | C28—C29—C30 | 133.63 (19) |
H10A—C10—H10B | 107.8 | C24—C29—C30 | 106.79 (17) |
C10—C11—H11A | 109.5 | C31—C30—C35 | 119.12 (19) |
C10—C11—H11B | 109.5 | C31—C30—C29 | 134.08 (19) |
H11A—C11—H11B | 109.5 | C35—C30—C29 | 106.80 (17) |
C10—C11—H11C | 109.5 | C32—C31—C30 | 118.81 (19) |
H11A—C11—H11C | 109.5 | C32—C31—H31A | 120.6 |
H11B—C11—H11C | 109.5 | C30—C31—H31A | 120.6 |
C13—C12—C17 | 118.94 (19) | C31—C32—C33 | 120.9 (2) |
C13—C12—N2 | 119.52 (19) | C31—C32—H32A | 119.5 |
C17—C12—N2 | 121.52 (18) | C33—C32—H32A | 119.5 |
C14—C13—C12 | 119.9 (2) | C34—C33—C32 | 121.6 (2) |
C14—C13—H13A | 120.0 | C34—C33—H33A | 119.2 |
C12—C13—H13A | 120.0 | C32—C33—H33A | 119.2 |
C15—C14—C13 | 120.6 (2) | C33—C34—C35 | 117.2 (2) |
C15—C14—H14A | 119.7 | C33—C34—H34A | 121.4 |
C13—C14—H14A | 119.7 | C35—C34—H34A | 121.4 |
C16—C15—C14 | 119.3 (2) | C34—C35—N4 | 128.95 (19) |
C16—C15—H15A | 120.3 | C34—C35—C30 | 122.34 (19) |
C14—C15—H15A | 120.3 | N4—C35—C30 | 108.70 (18) |
C17—C16—C15 | 120.8 (2) | ||
N3—C1—N1—C4 | 43.7 (3) | C19—C20—C21—N4 | 175.17 (19) |
N2—C1—N1—C4 | −137.85 (19) | C20—C21—C22—C23 | 1.2 (3) |
N3—C1—N1—C2 | −118.2 (2) | N4—C21—C22—C23 | −177.19 (19) |
N2—C1—N1—C2 | 60.3 (2) | C21—C22—C23—C18 | 2.7 (3) |
C4—N1—C2—C3 | 72.3 (2) | C19—C18—C23—C22 | −4.5 (3) |
C1—N1—C2—C3 | −125.84 (19) | N3—C18—C23—C22 | 178.43 (19) |
C1—N1—C4—C9 | 26.1 (3) | C20—C21—N4—C24 | −59.2 (3) |
C2—N1—C4—C9 | −172.63 (18) | C22—C21—N4—C24 | 119.2 (2) |
C1—N1—C4—C5 | −155.02 (19) | C20—C21—N4—C35 | 125.6 (2) |
C2—N1—C4—C5 | 6.2 (3) | C22—C21—N4—C35 | −56.0 (3) |
C9—C4—C5—C6 | −2.1 (3) | C35—N4—C24—C25 | 178.3 (2) |
N1—C4—C5—C6 | 179.0 (2) | C21—N4—C24—C25 | 2.4 (3) |
C4—C5—C6—C7 | −0.5 (3) | C35—N4—C24—C29 | −1.2 (2) |
C5—C6—C7—C8 | 2.0 (3) | C21—N4—C24—C29 | −177.03 (18) |
C6—C7—C8—C9 | −0.8 (3) | N4—C24—C25—C26 | 178.5 (2) |
C7—C8—C9—C4 | −1.9 (3) | C29—C24—C25—C26 | −2.1 (3) |
C5—C4—C9—C8 | 3.3 (3) | C24—C25—C26—C27 | 0.5 (3) |
N1—C4—C9—C8 | −177.79 (18) | C25—C26—C27—C28 | 0.6 (3) |
N3—C1—N2—C12 | −148.86 (18) | C26—C27—C28—C29 | −0.1 (3) |
N1—C1—N2—C12 | 32.6 (3) | C27—C28—C29—C24 | −1.5 (3) |
N3—C1—N2—C10 | 19.5 (3) | C27—C28—C29—C30 | 179.5 (2) |
N1—C1—N2—C10 | −159.04 (16) | N4—C24—C29—C28 | −177.84 (18) |
C1—N2—C10—C11 | 77.5 (2) | C25—C24—C29—C28 | 2.7 (3) |
C12—N2—C10—C11 | −113.7 (2) | N4—C24—C29—C30 | 1.4 (2) |
C1—N2—C12—C13 | −147.79 (19) | C25—C24—C29—C30 | −178.07 (18) |
C10—N2—C12—C13 | 43.9 (3) | C28—C29—C30—C31 | −2.2 (4) |
C1—N2—C12—C17 | 33.3 (3) | C24—C29—C30—C31 | 178.7 (2) |
C10—N2—C12—C17 | −134.96 (19) | C28—C29—C30—C35 | 178.0 (2) |
C17—C12—C13—C14 | 0.1 (3) | C24—C29—C30—C35 | −1.2 (2) |
N2—C12—C13—C14 | −178.86 (18) | C35—C30—C31—C32 | −0.3 (3) |
C12—C13—C14—C15 | −0.4 (3) | C29—C30—C31—C32 | 179.9 (2) |
C13—C14—C15—C16 | 0.1 (3) | C30—C31—C32—C33 | −0.8 (3) |
C14—C15—C16—C17 | 0.5 (3) | C31—C32—C33—C34 | 0.4 (3) |
C15—C16—C17—C12 | −0.8 (3) | C32—C33—C34—C35 | 1.1 (3) |
C13—C12—C17—C16 | 0.6 (3) | C33—C34—C35—N4 | 179.31 (19) |
N2—C12—C17—C16 | 179.45 (18) | C33—C34—C35—C30 | −2.2 (3) |
N2—C1—N3—C18 | −167.41 (17) | C24—N4—C35—C34 | 179.1 (2) |
N1—C1—N3—C18 | 10.9 (3) | C21—N4—C35—C34 | −5.1 (3) |
C1—N3—C18—C23 | −131.2 (2) | C24—N4—C35—C30 | 0.4 (2) |
C1—N3—C18—C19 | 51.9 (3) | C21—N4—C35—C30 | 176.20 (18) |
C23—C18—C19—C20 | 2.5 (3) | C31—C30—C35—C34 | 1.8 (3) |
N3—C18—C19—C20 | 179.39 (19) | C29—C30—C35—C34 | −178.30 (18) |
C18—C19—C20—C21 | 1.4 (3) | C31—C30—C35—N4 | −179.41 (17) |
C19—C20—C21—C22 | −3.2 (3) | C29—C30—C35—N4 | 0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C28—H28A···N3i | 0.95 | 2.79 | 3.593 (3) | 143 |
Symmetry code: (i) −x+3/2, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C35H32N4 |
Mr | 508.65 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.4741 (2), 15.9500 (6), 17.9102 (8) |
V (Å3) | 2706.45 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.19 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker-Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6390, 3588, 3109 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.086, 1.04 |
No. of reflections | 3588 |
No. of parameters | 354 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
C28—H28A···N3i | 0.95 | 2.79 | 3.593 (3) | 142.7 |
Symmetry code: (i) −x+3/2, −y, z+1/2. |
Acknowledgements
The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring of the crystal data and Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.
References
Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466–473. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, L.-Q., Yang, C.-L., Meng, X.-G. & Qin, J.-G. (2005). Acta Cryst. E61, o3073–o3075. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480–482. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, K. R. J., Lin, J. T., Tao, Y. T. & Ko, C. (2001). J. Am. Chem. Soc. 123, 9404–9411. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbazole derivatives play an important role as materials for small-molecule or polymer organic light-emitting diodes (OLEDs). They are known for their intense blue luminescence (Thomas et al., 2001) and several types of carbazole-based compounds are already used in OLEDs (Agarwal et al., 2011). The disadvantage of blue emitting materials in blue OLEDs is their lower efficiency compared to green or red OLED materials, due to their limited stability, shorter lifetime and lower color purity. In search of new more stable blue emitting materials, we synthesized a new type of carbazole derivative by combination of an aryl substituted carbazole with a guanidine moiety, the crystal structure of which is presented here.
According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.286 (3) Å, indicating double bond character. The bond lengths C1–N2 = 1.387 (2) Å and C1–N1 = 1.414 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 114.48 (17)° (N1–C1–N2), 118.78 (17)° (N2–C1–N3) and 126.72 (17)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)-ethyl]-guanidine (Tiritiris & Kantlehner, 2012). The carbazole ring system is planar and the bond lengths and angles are in good agreement with the data from the X-ray analysis of unsubstituted carbazole (Gerkin & Reppart, 1986). The dihedral angle between the planes C35/N4/C24 and C22/C21/C20 is 57.9 (2)°, indicating an only small deviation from the value found for 9-(4-nitrophenyl)-9H-carbazole [dihedral angle between the C/N/C and C/C/C plane = 53.08 (4)°] (Chen et al., 2005). Weak C–H···N hydrogen bonds are found between aromatic hydrogen atoms of the carbazole moiety and the free nitrogen atoms of neighboring guanidine molecules [d(H···N) = 2.79 Å] (Tab. 1), generating a zig zag chain along the ac-plane (Fig. 2). Finally, weak π–π interactions between two phenyl rings of the guanidine unit [Cg1 = C4–C9; Cg2 = C18–C23; d(Cg1···Cg2) = 3.785 Å] are also present.