organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,15-Bis(4-pentyl­oxyphen­yl)porphyrin

aSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

(Received 26 May 2013; accepted 4 June 2013; online 8 June 2013)

In the title compound, C42H42N4O2, the complete molecule is generated by a crystallographic inversion centre. The porphyrin system exhibits a near planar macrocycle conformation with an average deviation from the least-squares plane of the 24 macrocycle atoms of 0.037 (5) Å. The phenyl ipso C atoms are positioned above and below the porphyrin plane by 0.35 (1) Å and the macrocycle shows evidence of in-plane rectangular elongation with N⋯N separations of 3.032 (5) and 2.803 (5) Å. Two intramolecular N—H⋯N hydrogen bonds occur.

Related literature

For the conformation of porphyrins, see: Scheidt & Lee (1987[Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1-70.]); Senge et al. (1997[Senge, M. O., Medforth, C. J., Forsyth, T. P., Lee, D. A., Olmstead, M. M., Jentzen, W., Pandey, R. K., Shelnutt, J. A. & Smith, K. M. (1997). Inorg. Chem. 36, 1149-1163.]); Senge (2006[Senge, M. O. (2006). Chem. Commun. pp. 243-256.]). For the synthesis of such compounds, see: Wiehe et al. (2005[Wiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535-5564.]).

[Scheme 1]

Experimental

Crystal data
  • C42H42N4O2

  • Mr = 634.80

  • Triclinic, [P \overline 1]

  • a = 9.5222 (6) Å

  • b = 9.5799 (6) Å

  • c = 10.2195 (6) Å

  • α = 67.777 (1)°

  • β = 88.063 (1)°

  • γ = 72.464 (1)°

  • V = 819.49 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.97, Tmax = 0.99

  • 9093 measured reflections

  • 3606 independent reflections

  • 2489 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.04

  • 3606 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N24 0.88 2.50 3.033 (2) 119
N21—H21⋯N24i 0.88 2.22 2.804 (2) 123
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Many porphyrin structures with four meso substituents have been reported (Scheidt & Lee, 1987). The available number of structures for systems with only two meso residues is much smaller. In the context of an ongoing program on the conformational flexibilty of porphyrins (Senge, 2006) we are interested in a comparative analysis of 5,10-A2– and 5,15-A2-disubstituted porphyrins. The title compound is an example for the latter and exhibits a planar macrocycle with an average deviation from the least-squares-plane of the 24 macrocycle atoms of Δ24 = 0.037 (5) Å. The phenyl ipso carbon atoms are positioned above and below the porphyrin plane by 0.35 Å and the macrocycle shows evidence for in-plane distortion with N···N separations of 3.032 (5) and 2.803 (5) Å. This is similar to the situation found in 2,3,5,7,8,12,13,15, 17,18- decasubstituted porphyrins (Senge et al., 1997) where peri interaction between the meso and beta substituents occur. The molecules pack in parallel layers with the alkyl chains separating the macrocycles and only minimal π-aggregation.

Related literature top

For the conformation of porphyrins, see: Scheidt & Lee (1987); Senge et al. (1997); Senge (2006). For the synthesis of such compounds, see: Wiehe et al. (2005).

Experimental top

The compound was prepared as described by Wiehe et al. (2005) and crystallized from CH2Cl2/CH3OH.

Refinement top

All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined with a standard riding model (C—H distance 0.96 - 0.99 Å, Uiso = 1.2–1.5 times of parent atom). Pyrrole hydrogen atoms were located in difference maps and refined with isotropic thermal parameters.

Structure description top

Many porphyrin structures with four meso substituents have been reported (Scheidt & Lee, 1987). The available number of structures for systems with only two meso residues is much smaller. In the context of an ongoing program on the conformational flexibilty of porphyrins (Senge, 2006) we are interested in a comparative analysis of 5,10-A2– and 5,15-A2-disubstituted porphyrins. The title compound is an example for the latter and exhibits a planar macrocycle with an average deviation from the least-squares-plane of the 24 macrocycle atoms of Δ24 = 0.037 (5) Å. The phenyl ipso carbon atoms are positioned above and below the porphyrin plane by 0.35 Å and the macrocycle shows evidence for in-plane distortion with N···N separations of 3.032 (5) and 2.803 (5) Å. This is similar to the situation found in 2,3,5,7,8,12,13,15, 17,18- decasubstituted porphyrins (Senge et al., 1997) where peri interaction between the meso and beta substituents occur. The molecules pack in parallel layers with the alkyl chains separating the macrocycles and only minimal π-aggregation.

For the conformation of porphyrins, see: Scheidt & Lee (1987); Senge et al. (1997); Senge (2006). For the synthesis of such compounds, see: Wiehe et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level; hydrogen atoms have been omitted for clarity.
5,15-Bis(4-pentyloxyphenyl)porphyrin top
Crystal data top
C42H42N4O2Z = 1
Mr = 634.80F(000) = 338
Triclinic, P1Dx = 1.286 Mg m3
Dm = n/d Mg m3
Dm measured by not measured
Hall symbol: -P 1Melting point: n/d K
a = 9.5222 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5799 (6) ÅCell parameters from 1771 reflections
c = 10.2195 (6) Åθ = 4.5–60.7°
α = 67.777 (1)°µ = 0.08 mm1
β = 88.063 (1)°T = 90 K
γ = 72.464 (1)°Parallelpiped, red
V = 819.49 (9) Å30.30 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEXII
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3 pixels mm-1θmax = 27.1°, θmin = 2.2°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.97, Tmax = 0.99l = 1313
9093 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1316P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C42H42N4O2γ = 72.464 (1)°
Mr = 634.80V = 819.49 (9) Å3
Triclinic, P1Z = 1
a = 9.5222 (6) ÅMo Kα radiation
b = 9.5799 (6) ŵ = 0.08 mm1
c = 10.2195 (6) ÅT = 90 K
α = 67.777 (1)°0.30 × 0.10 × 0.08 mm
β = 88.063 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2489 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.039
9093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
3606 reflectionsΔρmin = 0.23 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N210.64309 (14)0.19503 (16)0.46008 (14)0.0171 (3)
H210.58150.10690.46270.047 (6)*
N240.36841 (13)0.12143 (15)0.61217 (14)0.0160 (3)
C10.62390 (16)0.34160 (19)0.52069 (17)0.0179 (4)
C20.74472 (17)0.4492 (2)0.48647 (18)0.0190 (4)
H2A0.76000.55920.51230.023*
C30.83431 (17)0.36651 (19)0.41037 (17)0.0185 (4)
H3A0.92290.40900.37400.022*
C40.77200 (16)0.20511 (19)0.39479 (17)0.0169 (4)
C50.83034 (16)0.07952 (19)0.33369 (17)0.0169 (4)
C160.24129 (16)0.07563 (19)0.67302 (16)0.0164 (3)
C170.18961 (17)0.2107 (2)0.74985 (18)0.0195 (4)
H17A0.10410.20970.80060.023*
C180.28721 (17)0.3376 (2)0.73457 (18)0.0198 (4)
H18A0.28430.44370.77320.024*
C190.39727 (16)0.28065 (19)0.64781 (17)0.0172 (4)
C200.51314 (16)0.37959 (19)0.60556 (17)0.0185 (4)
H20A0.51670.48770.63960.022*
C510.98127 (17)0.11283 (19)0.28262 (17)0.0177 (4)
C521.01657 (17)0.1671 (2)0.17315 (18)0.0206 (4)
H52A0.94210.18590.12860.025*
C531.15769 (17)0.1945 (2)0.12745 (18)0.0207 (4)
H53A1.17920.23160.05270.025*
C541.26742 (16)0.16720 (19)0.19238 (18)0.0188 (4)
C551.23542 (17)0.11454 (19)0.30202 (17)0.0192 (4)
H55A1.31030.09650.34670.023*
C561.09475 (17)0.08822 (19)0.34664 (18)0.0192 (4)
H56A1.07440.05260.42240.023*
O11.41004 (11)0.18754 (14)0.15628 (12)0.0226 (3)
C571.45008 (17)0.2298 (2)0.03660 (18)0.0227 (4)
H57A1.38320.15240.04880.027*
H57B1.44300.33660.05540.027*
C581.60744 (17)0.2284 (2)0.01421 (18)0.0211 (4)
H58A1.67020.29430.10480.025*
H58B1.61060.11850.01470.025*
C591.66924 (17)0.2919 (2)0.09922 (19)0.0249 (4)
H59A1.64920.39340.07880.030*
H59B1.61670.21570.19270.030*
C5101.83383 (17)0.3191 (2)0.10777 (18)0.0217 (4)
H51A1.88680.39950.01590.026*
H51B1.85460.21900.12360.026*
C5111.89275 (18)0.3744 (2)0.22522 (19)0.0277 (4)
H51C2.00090.40290.21820.042*
H51D1.85180.28890.31750.042*
H51E1.86370.46730.21590.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N210.0139 (7)0.0134 (7)0.0229 (8)0.0023 (5)0.0014 (5)0.0075 (6)
N240.0136 (6)0.0145 (7)0.0195 (7)0.0030 (5)0.0003 (5)0.0071 (6)
C10.0159 (8)0.0165 (8)0.0220 (9)0.0040 (6)0.0007 (6)0.0088 (7)
C20.0184 (8)0.0141 (8)0.0241 (9)0.0023 (6)0.0006 (7)0.0090 (7)
C30.0148 (8)0.0197 (9)0.0206 (9)0.0017 (6)0.0021 (6)0.0103 (7)
C40.0119 (7)0.0192 (9)0.0184 (9)0.0012 (6)0.0004 (6)0.0087 (7)
C50.0151 (8)0.0190 (9)0.0171 (8)0.0047 (6)0.0008 (6)0.0078 (7)
C160.0156 (8)0.0186 (9)0.0146 (8)0.0046 (6)0.0001 (6)0.0065 (7)
C170.0179 (8)0.0206 (9)0.0199 (9)0.0071 (7)0.0040 (6)0.0071 (7)
C180.0193 (8)0.0156 (9)0.0237 (9)0.0066 (7)0.0022 (7)0.0059 (7)
C190.0153 (8)0.0159 (8)0.0201 (9)0.0046 (6)0.0004 (6)0.0066 (7)
C200.0180 (8)0.0136 (8)0.0236 (9)0.0054 (6)0.0001 (6)0.0063 (7)
C510.0171 (8)0.0144 (8)0.0191 (9)0.0031 (6)0.0028 (6)0.0052 (7)
C520.0183 (8)0.0214 (9)0.0221 (9)0.0066 (7)0.0012 (7)0.0080 (8)
C530.0232 (9)0.0212 (9)0.0189 (9)0.0060 (7)0.0045 (7)0.0100 (7)
C540.0146 (8)0.0146 (8)0.0222 (9)0.0026 (6)0.0047 (6)0.0036 (7)
C550.0193 (8)0.0165 (9)0.0204 (9)0.0057 (7)0.0015 (7)0.0053 (7)
C560.0197 (8)0.0182 (9)0.0184 (9)0.0034 (7)0.0021 (6)0.0078 (7)
O10.0168 (6)0.0286 (7)0.0251 (7)0.0071 (5)0.0065 (5)0.0135 (6)
C570.0202 (8)0.0268 (10)0.0229 (9)0.0062 (7)0.0069 (7)0.0127 (8)
C580.0180 (8)0.0183 (9)0.0233 (9)0.0047 (7)0.0060 (7)0.0050 (7)
C590.0204 (9)0.0312 (11)0.0260 (10)0.0096 (8)0.0071 (7)0.0135 (8)
C5100.0185 (8)0.0216 (9)0.0237 (9)0.0046 (7)0.0049 (7)0.0088 (8)
C5110.0209 (9)0.0360 (11)0.0324 (11)0.0105 (8)0.0071 (8)0.0190 (9)
Geometric parameters (Å, º) top
N21—C11.370 (2)C52—H52A0.9500
N21—C41.3722 (19)C53—C541.394 (2)
N21—H210.8800C53—H53A0.9500
N24—C191.367 (2)C54—O11.3710 (18)
N24—C161.3711 (19)C54—C551.384 (2)
C1—C201.388 (2)C55—C561.381 (2)
C1—C21.428 (2)C55—H55A0.9500
C2—C31.362 (2)C56—H56A0.9500
C2—H2A0.9500O1—C571.4335 (19)
C3—C41.427 (2)C57—C581.511 (2)
C3—H3A0.9500C57—H57A0.9900
C4—C51.399 (2)C57—H57B0.9900
C5—C16i1.412 (2)C58—C591.527 (2)
C5—C511.496 (2)C58—H58A0.9900
C16—C5i1.412 (2)C58—H58B0.9900
C16—C171.457 (2)C59—C5101.515 (2)
C17—C181.348 (2)C59—H59A0.9900
C17—H17A0.9500C59—H59B0.9900
C18—C191.448 (2)C510—C5111.514 (2)
C18—H18A0.9500C510—H51A0.9900
C19—C201.396 (2)C510—H51B0.9900
C20—H20A0.9500C511—H51C0.9800
C51—C521.394 (2)C511—H51D0.9800
C51—C561.403 (2)C511—H51E0.9800
C52—C531.389 (2)
C1—N21—C4110.37 (13)C54—C53—H53A120.3
C1—N21—H21124.8O1—C54—C55114.91 (14)
C4—N21—H21124.8O1—C54—C53125.17 (15)
C19—N24—C16105.16 (13)C55—C54—C53119.92 (14)
N21—C1—C20126.59 (15)C56—C55—C54120.09 (15)
N21—C1—C2106.65 (13)C56—C55—H55A120.0
C20—C1—C2126.68 (15)C54—C55—H55A120.0
C3—C2—C1108.13 (15)C55—C56—C51121.49 (16)
C3—C2—H2A125.9C55—C56—H56A119.3
C1—C2—H2A125.9C51—C56—H56A119.3
C2—C3—C4108.17 (14)C54—O1—C57118.76 (12)
C2—C3—H3A125.9O1—C57—C58106.88 (13)
C4—C3—H3A125.9O1—C57—H57A110.3
N21—C4—C5124.67 (14)C58—C57—H57A110.3
N21—C4—C3106.62 (14)O1—C57—H57B110.3
C5—C4—C3128.61 (14)C58—C57—H57B110.3
C4—C5—C16i123.29 (14)H57A—C57—H57B108.6
C4—C5—C51118.72 (14)C57—C58—C59111.63 (14)
C16i—C5—C51117.82 (14)C57—C58—H58A109.3
N24—C16—C5i125.69 (15)C59—C58—H58A109.3
N24—C16—C17110.71 (14)C57—C58—H58B109.3
C5i—C16—C17123.59 (14)C59—C58—H58B109.3
C18—C17—C16106.36 (14)H58A—C58—H58B108.0
C18—C17—H17A126.8C510—C59—C58113.42 (14)
C16—C17—H17A126.8C510—C59—H59A108.9
C17—C18—C19106.69 (15)C58—C59—H59A108.9
C17—C18—H18A126.7C510—C59—H59B108.9
C19—C18—H18A126.7C58—C59—H59B108.9
N24—C19—C20126.46 (14)H59A—C59—H59B107.7
N24—C19—C18111.07 (13)C59—C510—C511113.04 (14)
C20—C19—C18122.44 (15)C59—C510—H51A109.0
C1—C20—C19128.88 (15)C511—C510—H51A109.0
C1—C20—H20A115.6C59—C510—H51B109.0
C19—C20—H20A115.6C511—C510—H51B109.0
C52—C51—C56117.34 (14)H51A—C510—H51B107.8
C52—C51—C5123.54 (14)C510—C511—H51C109.5
C56—C51—C5119.12 (15)C510—C511—H51D109.5
C53—C52—C51121.78 (15)H51C—C511—H51D109.5
C53—C52—H52A119.1C510—C511—H51E109.5
C51—C52—H52A119.1H51C—C511—H51E109.5
C52—C53—C54119.38 (16)H51D—C511—H51E109.5
C52—C53—H53A120.3
C4—N21—C1—C20174.18 (15)C2—C1—C20—C19176.51 (16)
C4—N21—C1—C22.51 (18)N24—C19—C20—C10.4 (3)
N21—C1—C2—C31.54 (18)C18—C19—C20—C1178.43 (16)
C20—C1—C2—C3175.14 (16)C4—C5—C51—C5263.4 (2)
C1—C2—C3—C40.05 (19)C16i—C5—C51—C52121.15 (18)
C1—N21—C4—C5174.17 (15)C4—C5—C51—C56116.84 (18)
C1—N21—C4—C32.48 (18)C16i—C5—C51—C5658.6 (2)
C2—C3—C4—N211.45 (18)C56—C51—C52—C530.7 (2)
C2—C3—C4—C5175.01 (16)C5—C51—C52—C53179.07 (15)
N21—C4—C5—C16i2.8 (3)C51—C52—C53—C540.0 (2)
C3—C4—C5—C16i178.73 (16)C52—C53—C54—O1179.13 (15)
N21—C4—C5—C51172.32 (14)C52—C53—C54—C550.5 (2)
C3—C4—C5—C513.6 (3)O1—C54—C55—C56179.34 (14)
C19—N24—C16—C5i179.15 (15)C53—C54—C55—C560.4 (2)
C19—N24—C16—C170.37 (17)C54—C55—C56—C510.4 (2)
N24—C16—C17—C180.14 (18)C52—C51—C56—C550.9 (2)
C5i—C16—C17—C18178.68 (15)C5—C51—C56—C55178.90 (15)
C16—C17—C18—C190.56 (18)C55—C54—O1—C57175.16 (14)
C16—N24—C19—C20177.47 (16)C53—C54—O1—C574.5 (2)
C16—N24—C19—C180.72 (17)C54—O1—C57—C58174.70 (13)
C17—C18—C19—N240.84 (19)O1—C57—C58—C59172.84 (13)
C17—C18—C19—C20177.45 (15)C57—C58—C59—C510170.19 (15)
N21—C1—C20—C190.5 (3)C58—C59—C510—C511177.21 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N240.882.503.033 (2)119
N21—H21···N24i0.882.222.804 (2)123
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC42H42N4O2
Mr634.80
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.5222 (6), 9.5799 (6), 10.2195 (6)
α, β, γ (°)67.777 (1), 88.063 (1), 72.464 (1)
V3)819.49 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
9093, 3606, 2489
Rint0.039
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.04
No. of reflections3606
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···N240.882.503.033 (2)119
N21—H21···N24i0.882.222.804 (2)123
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationScheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1–70.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2006). Chem. Commun. pp. 243–256.  Web of Science CrossRef Google Scholar
First citationSenge, M. O., Medforth, C. J., Forsyth, T. P., Lee, D. A., Olmstead, M. M., Jentzen, W., Pandey, R. K., Shelnutt, J. A. & Smith, K. M. (1997). Inorg. Chem. 36, 1149–1163.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535–5564.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds