organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Chloro­methyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetra­hydro-1H-naphtho­[1,2-c]furan-1,3-dione

aLaboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, People's Republic of China, and bBeijing BOE Display Technology Co., Ltd, No. 118 Jinghaiyilu, BDA, Beijing 100176, People's Republic of China
*Correspondence e-mail: liujg@iccas.ac.cn

(Received 12 April 2013; accepted 30 May 2013; online 8 June 2013)

The title compound, C17H13ClO6, is an asymmetric alicyclic dianhydride containing a chloro­methyl-substituted tetra­hydro­naphthalene moiety. The cyclo­hexene ring in the tetra­hydro­naphthalene moiety exhibits an envelope conformation with the tertiary C atom as the flap The dihedral angle between the two anhydride rings is 79.96 (6)°, while those between the benzene ring and the non-fused and fused anhydride rings are 71.03 (5) and 42.57 (7)°, respectively. In the crystal, mol­ecules are connected by weak C—H⋯O inter­actions, forming a three-dimensional supramolecular structure.

Related literature

For background to polyimides, see: Li et al. (2005[Li, X. D., Zhong, Z. X., Han, S. H., Lee, S. H. & Lee, M. H. (2005). Polym. Int. 54, 406-411.]); Liaw et al. (2012[Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907-974.]); Zhang et al. (2003[Zhang, A. Q., Li, X. D., Nah, C. W., Hwang, K. J. & Lee, M. H. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 22-29.]); Zhong et al. (2004[Zhong, Z. X., Li, X. D., Lee, S. H. & Lee, M. H. (2004). Mol. Cryst. Liq. Cryst. 425, 145-152.]). For background to and applications of tetra­hydro­naphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013[Guo, Y. Z., Shen, D. X., Ni, H. J., Liu, J. G. & Yang, S. Y. (2013). Prog. Org. Coat. 76, 768-777.]). For the structure of a related compound, see: Guo, Liu & Yang (2013[Guo, Y. Z., Liu, J. G. & Yang, S. Y. (2013). Acta Cryst. E69, o226.]) and for its synthesis, see: Hall et al. (1982[Hall, H. K., Nogues, P., Rhoades, J. W., Sentman, R. C. & Detar, M. (1982). J. Org. Chem. 47, 1451-1455.]); Guo et al. (2012[Guo, Y. Z., Song, H. W., Zhai, L., Liu, J. G. & Yang, S. Y. (2012). Polym. J. 44, 718-723.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClO6

  • Mr = 348.72

  • Triclinic, [P \overline 1]

  • a = 6.8988 (15) Å

  • b = 9.140 (2) Å

  • c = 11.950 (3) Å

  • α = 80.937 (9)°

  • β = 75.365 (8)°

  • γ = 79.614 (8)°

  • V = 712.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.41 × 0.21 × 0.15 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.702, Tmax = 1.000

  • 9192 measured reflections

  • 3238 independent reflections

  • 3034 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.10

  • 3238 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O4i 0.99 2.51 3.420 (2) 153
C5—H5⋯O1ii 1.00 2.59 3.386 (2) 136
C7—H7⋯O4i 1.00 2.51 3.468 (2) 160
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2008)[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw et al., 2012). Chloromethyl is an important active species for functionalization of PI materials (Li et al., 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed via the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang et al., 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of liquid crystal molecules in advanced liquid crystal display devices (Zhong et al., 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q = 0.4805 (17) Å, θ=57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ=300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H···Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H···O intermolecular interactions, as shown in Table 1.

Related literature top

For background to polyimides, see: Li et al. (2005); Liaw et al. (2012); Zhang et al. (2003); Zhong et al. (2004). For background to and applications of tetrahydronaphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall et al. (19826); Guo et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Into a 500 ml three-necked flask equipped with a mechanical stirrer, a nitric oxide inlet, and a condenser, 43.75 g(0.446 mol) of maleic anhydride, 104.09 g(0.682 mol) of 4-chloromethylstyrene, 0.1138 g(0.5 mmol) of 2,5-di-tert-butyl hydroquinone were added. The reaction mixture was heated to 120°C and maintained for 6 h under nitric oxide. The produced red-brown nitrogen oxide gas was trapped by passing through an aqueous solution of 20 wt% sodium hydroxide. White needle crystals were formed. After the reaction was completed, 60 ml of acetonitrile was added and the solution was refluxed for about 0.5 h. Then 60 ml of toluene was added and the reactino mixture was cooled to room temperature. The produced white needle crystals was collected by filtration and the solid was washed with toluene and petroleum ether in succession. After being dried in vacuum, the pure MCTDA was obtained as white crystals. Yield: 59.49 g(76.5%). Elemental analysis: calculated for C17H13ClO6:C,58.55; H:3.76%. Found: C:58.71; H:3.85%. EI—MS, m/z:142(M+-176, 100%). Colourless single crystals were grown by slow evaporation of an acetonitrile solution over a period of several days.

Refinement top

All H atoms were positioned geometrically (C-H=0.95-1.00 Å) and refined using a riding model with the Uiso(H)=1.2 UeqC for both of the aromatic ring and aliphatic chain.

Structure description top

Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw et al., 2012). Chloromethyl is an important active species for functionalization of PI materials (Li et al., 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed via the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang et al., 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of liquid crystal molecules in advanced liquid crystal display devices (Zhong et al., 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q = 0.4805 (17) Å, θ=57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ=300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H···Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H···O intermolecular interactions, as shown in Table 1.

For background to polyimides, see: Li et al. (2005); Liaw et al. (2012); Zhang et al. (2003); Zhong et al. (2004). For background to and applications of tetrahydronaphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall et al. (19826); Guo et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing diaplacement ellipsoids at the 30% probability level.
8-Chloromethyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetrahydro-1H-naphtho[1,2-c]furan-1,3-dione top
Crystal data top
C17H13ClO6Z = 2
Mr = 348.72F(000) = 360
Triclinic, P1Dx = 1.626 Mg m3
Hall symbol: -p 1Melting point: 502 K
a = 6.8988 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.140 (2) ÅCell parameters from 2542 reflections
c = 11.950 (3) Åθ = 2.3–27.5°
α = 80.937 (9)°µ = 0.30 mm1
β = 75.365 (8)°T = 173 K
γ = 79.614 (8)°Block, colourless
V = 712.1 (3) Å30.41 × 0.21 × 0.15 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3238 independent reflections
Radiation source: sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 88
Tmin = 0.702, Tmax = 1.000k = 1111
9192 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3488P]
where P = (Fo2 + 2Fc2)/3
3238 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H13ClO6γ = 79.614 (8)°
Mr = 348.72V = 712.1 (3) Å3
Triclinic, P1Z = 2
a = 6.8988 (15) ÅMo Kα radiation
b = 9.140 (2) ŵ = 0.30 mm1
c = 11.950 (3) ÅT = 173 K
α = 80.937 (9)°0.41 × 0.21 × 0.15 mm
β = 75.365 (8)°
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3238 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3034 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 1.000Rint = 0.035
9192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
3238 reflectionsΔρmin = 0.44 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05131 (7)0.07996 (5)0.86631 (4)0.03800 (15)
O10.26974 (19)0.57365 (14)0.98000 (10)0.0314 (3)
O20.50528 (18)0.64807 (13)0.82479 (10)0.0277 (3)
O30.70203 (18)0.68985 (14)0.64654 (11)0.0303 (3)
O40.16049 (18)0.33284 (13)0.54844 (11)0.0301 (3)
O50.05290 (17)0.11884 (12)0.56476 (10)0.0258 (3)
O60.31175 (19)0.05753 (13)0.59407 (11)0.0307 (3)
C10.3305 (2)0.58452 (17)0.87724 (14)0.0236 (3)
C20.2441 (2)0.53951 (17)0.78490 (14)0.0217 (3)
H20.12060.61310.77720.026*
C30.4071 (2)0.56388 (18)0.67298 (14)0.0241 (3)
H3A0.47420.46700.64480.029*
H3B0.34750.62680.61120.029*
C40.5553 (2)0.64167 (17)0.70584 (14)0.0229 (3)
C50.1782 (2)0.38204 (17)0.82204 (13)0.0198 (3)
H50.10480.37890.90580.024*
C60.0298 (2)0.35351 (18)0.75498 (14)0.0228 (3)
H6A0.07920.44030.75550.027*
H6B0.03310.26430.79460.027*
C70.1347 (2)0.32835 (17)0.62825 (14)0.0209 (3)
H70.17550.42370.58230.025*
C80.0087 (2)0.26947 (18)0.57545 (14)0.0235 (3)
C90.2381 (2)0.07047 (18)0.59505 (13)0.0226 (3)
C100.3176 (2)0.20368 (16)0.61997 (13)0.0194 (3)
H100.42190.23370.54910.023*
C110.4192 (2)0.17137 (16)0.72211 (13)0.0183 (3)
C120.3571 (2)0.25765 (16)0.81480 (13)0.0190 (3)
C130.4641 (2)0.22721 (17)0.90297 (13)0.0222 (3)
H130.42500.28650.96580.027*
C140.6257 (2)0.11244 (17)0.90047 (14)0.0237 (3)
H140.69600.09340.96140.028*
C150.6854 (2)0.02504 (17)0.80893 (14)0.0213 (3)
C160.5840 (2)0.05678 (17)0.71949 (13)0.0206 (3)
H160.62740.00030.65540.025*
C170.8514 (2)0.10779 (18)0.80455 (15)0.0259 (3)
H17A0.90820.12670.72250.031*
H17B0.79300.19750.84740.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0321 (2)0.0391 (3)0.0504 (3)0.00849 (18)0.0251 (2)0.0182 (2)
O10.0324 (6)0.0352 (7)0.0283 (6)0.0042 (5)0.0050 (5)0.0130 (5)
O20.0287 (6)0.0309 (6)0.0285 (6)0.0087 (5)0.0100 (5)0.0079 (5)
O30.0303 (6)0.0306 (6)0.0324 (7)0.0097 (5)0.0082 (5)0.0032 (5)
O40.0269 (6)0.0288 (6)0.0394 (7)0.0020 (5)0.0181 (5)0.0038 (5)
O50.0256 (6)0.0227 (6)0.0339 (6)0.0028 (4)0.0137 (5)0.0070 (5)
O60.0334 (6)0.0226 (6)0.0396 (7)0.0017 (5)0.0136 (5)0.0118 (5)
C10.0232 (7)0.0202 (7)0.0292 (8)0.0000 (6)0.0082 (6)0.0084 (6)
C20.0205 (7)0.0191 (7)0.0277 (8)0.0003 (6)0.0092 (6)0.0072 (6)
C30.0286 (8)0.0213 (7)0.0256 (8)0.0070 (6)0.0101 (6)0.0025 (6)
C40.0249 (8)0.0184 (7)0.0271 (8)0.0007 (6)0.0105 (6)0.0031 (6)
C50.0172 (7)0.0202 (7)0.0224 (7)0.0011 (5)0.0041 (6)0.0062 (6)
C60.0180 (7)0.0226 (7)0.0293 (8)0.0020 (6)0.0062 (6)0.0074 (6)
C70.0199 (7)0.0183 (7)0.0269 (8)0.0023 (5)0.0096 (6)0.0032 (6)
C80.0241 (8)0.0225 (7)0.0257 (8)0.0041 (6)0.0088 (6)0.0028 (6)
C90.0237 (7)0.0238 (8)0.0220 (7)0.0023 (6)0.0075 (6)0.0055 (6)
C100.0190 (7)0.0198 (7)0.0204 (7)0.0026 (5)0.0059 (5)0.0035 (6)
C110.0182 (7)0.0174 (7)0.0202 (7)0.0046 (5)0.0057 (5)0.0009 (5)
C120.0184 (7)0.0177 (7)0.0214 (7)0.0036 (5)0.0049 (5)0.0018 (5)
C130.0266 (8)0.0203 (7)0.0207 (7)0.0045 (6)0.0059 (6)0.0040 (6)
C140.0261 (8)0.0223 (7)0.0253 (8)0.0038 (6)0.0116 (6)0.0010 (6)
C150.0202 (7)0.0183 (7)0.0263 (8)0.0027 (5)0.0076 (6)0.0015 (6)
C160.0209 (7)0.0191 (7)0.0229 (7)0.0028 (6)0.0054 (6)0.0054 (6)
C170.0254 (8)0.0209 (7)0.0345 (9)0.0002 (6)0.0137 (7)0.0050 (6)
Geometric parameters (Å, º) top
Cl1—C171.7920 (16)C6—H6A0.9900
O1—C11.187 (2)C6—H6B0.9900
O2—C41.384 (2)C7—C81.510 (2)
O2—C11.393 (2)C7—C101.535 (2)
O3—C41.192 (2)C7—H71.0000
O4—C81.1957 (19)C9—C101.520 (2)
O5—C81.3818 (19)C10—C111.520 (2)
O5—C91.3923 (19)C10—H101.0000
O6—C91.189 (2)C11—C121.395 (2)
C1—C21.518 (2)C11—C161.398 (2)
C2—C31.529 (2)C12—C131.399 (2)
C2—C51.552 (2)C13—C141.384 (2)
C2—H21.0000C13—H130.9500
C3—C41.503 (2)C14—C151.390 (2)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.386 (2)
C5—C121.515 (2)C15—C171.509 (2)
C5—C61.528 (2)C16—H160.9500
C5—H51.0000C17—H17A0.9900
C6—C71.538 (2)C17—H17B0.9900
C4—O2—C1110.80 (12)C6—C7—H7110.6
C8—O5—C9110.77 (12)O4—C8—O5120.53 (14)
O1—C1—O2120.33 (14)O4—C8—C7129.30 (15)
O1—C1—C2129.76 (15)O5—C8—C7110.11 (13)
O2—C1—C2109.90 (13)O6—C9—O5120.05 (15)
C1—C2—C3103.52 (12)O6—C9—C10130.51 (15)
C1—C2—C5110.96 (13)O5—C9—C10109.38 (13)
C3—C2—C5118.62 (12)C9—C10—C11114.41 (12)
C1—C2—H2107.8C9—C10—C7103.68 (12)
C3—C2—H2107.8C11—C10—C7116.64 (12)
C5—C2—H2107.8C9—C10—H10107.2
C4—C3—C2105.08 (13)C11—C10—H10107.2
C4—C3—H3A110.7C7—C10—H10107.2
C2—C3—H3A110.7C12—C11—C16119.82 (13)
C4—C3—H3B110.7C12—C11—C10121.42 (13)
C2—C3—H3B110.7C16—C11—C10118.70 (13)
H3A—C3—H3B108.8C11—C12—C13118.55 (14)
O3—C4—O2120.22 (14)C11—C12—C5121.75 (13)
O3—C4—C3129.78 (15)C13—C12—C5119.70 (13)
O2—C4—C3109.95 (13)C14—C13—C12121.30 (14)
C12—C5—C6110.91 (12)C14—C13—H13119.3
C12—C5—C2112.48 (12)C12—C13—H13119.3
C6—C5—C2112.64 (13)C13—C14—C15120.07 (14)
C12—C5—H5106.8C13—C14—H14120.0
C6—C5—H5106.8C15—C14—H14120.0
C2—C5—H5106.8C16—C15—C14119.13 (14)
C5—C6—C7111.94 (12)C16—C15—C17117.99 (14)
C5—C6—H6A109.2C14—C15—C17122.83 (14)
C7—C6—H6A109.2C15—C16—C11121.09 (14)
C5—C6—H6B109.2C15—C16—H16119.5
C7—C6—H6B109.2C11—C16—H16119.5
H6A—C6—H6B107.9C15—C17—Cl1112.50 (11)
C8—C7—C10103.64 (12)C15—C17—H17A109.1
C8—C7—C6108.82 (13)Cl1—C17—H17A109.1
C10—C7—C6112.36 (12)C15—C17—H17B109.1
C8—C7—H7110.6Cl1—C17—H17B109.1
C10—C7—H7110.6H17A—C17—H17B107.8
C4—O2—C1—O1176.48 (15)O6—C9—C10—C7170.26 (17)
C4—O2—C1—C24.14 (16)O5—C9—C10—C712.71 (16)
O1—C1—C2—C3172.78 (17)C8—C7—C10—C915.08 (15)
O2—C1—C2—C37.90 (16)C6—C7—C10—C9102.23 (14)
O1—C1—C2—C544.5 (2)C8—C7—C10—C11141.81 (13)
O2—C1—C2—C5136.19 (13)C6—C7—C10—C1124.50 (18)
C1—C2—C3—C48.38 (15)C9—C10—C11—C12125.35 (15)
C5—C2—C3—C4131.77 (13)C7—C10—C11—C124.1 (2)
C1—O2—C4—O3179.38 (14)C9—C10—C11—C1657.57 (18)
C1—O2—C4—C31.65 (17)C7—C10—C11—C16178.79 (13)
C2—C3—C4—O3175.99 (16)C16—C11—C12—C130.5 (2)
C2—C3—C4—O26.56 (17)C10—C11—C12—C13176.56 (13)
C1—C2—C5—C1272.89 (16)C16—C11—C12—C5179.44 (13)
C3—C2—C5—C1246.72 (18)C10—C11—C12—C53.5 (2)
C1—C2—C5—C6160.87 (12)C6—C5—C12—C1125.70 (19)
C3—C2—C5—C679.51 (16)C2—C5—C12—C11101.46 (16)
C12—C5—C6—C754.14 (17)C6—C5—C12—C13154.22 (14)
C2—C5—C6—C772.94 (16)C2—C5—C12—C1378.62 (17)
C5—C6—C7—C8168.26 (12)C11—C12—C13—C141.2 (2)
C5—C6—C7—C1054.08 (17)C5—C12—C13—C14178.68 (14)
C9—O5—C8—O4176.79 (15)C12—C13—C14—C150.3 (2)
C9—O5—C8—C75.78 (17)C13—C14—C15—C161.5 (2)
C10—C7—C8—O4169.45 (17)C13—C14—C15—C17176.01 (14)
C6—C7—C8—O470.8 (2)C14—C15—C16—C112.3 (2)
C10—C7—C8—O513.41 (16)C17—C15—C16—C11175.37 (14)
C6—C7—C8—O5106.35 (14)C12—C11—C16—C151.3 (2)
C8—O5—C9—O6177.93 (15)C10—C11—C16—C15178.39 (14)
C8—O5—C9—C104.67 (17)C16—C15—C17—Cl1147.27 (13)
O6—C9—C10—C1142.1 (2)C14—C15—C17—Cl135.2 (2)
O5—C9—C10—C11140.82 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O4i0.992.513.420 (2)153
C5—H5···O1ii1.002.593.386 (2)136
C7—H7···O4i1.002.513.468 (2)160
C14—H14···Cl10.952.753.1045 (17)103
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H13ClO6
Mr348.72
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.8988 (15), 9.140 (2), 11.950 (3)
α, β, γ (°)80.937 (9), 75.365 (8), 79.614 (8)
V3)712.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.41 × 0.21 × 0.15
Data collection
DiffractometerRigaku Saturn724+ CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.702, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9192, 3238, 3034
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.10
No. of reflections3238
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.44

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O4i0.992.513.420 (2)153.1
C5—H5···O1ii1.002.593.386 (2)136.1
C7—H7···O4i1.002.513.468 (2)160.1
C14—H14···Cl10.952.753.1045 (17)102.9
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 51173188).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, Y. Z., Liu, J. G. & Yang, S. Y. (2013). Acta Cryst. E69, o226.  CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Y. Z., Shen, D. X., Ni, H. J., Liu, J. G. & Yang, S. Y. (2013). Prog. Org. Coat. 76, 768–777.  Web of Science CrossRef CAS Google Scholar
First citationGuo, Y. Z., Song, H. W., Zhai, L., Liu, J. G. & Yang, S. Y. (2012). Polym. J. 44, 718–723.  Web of Science CrossRef CAS Google Scholar
First citationHall, H. K., Nogues, P., Rhoades, J. W., Sentman, R. C. & Detar, M. (1982). J. Org. Chem. 47, 1451–1455.  CrossRef CAS Web of Science Google Scholar
First citationLi, X. D., Zhong, Z. X., Han, S. H., Lee, S. H. & Lee, M. H. (2005). Polym. Int. 54, 406–411.  Web of Science CrossRef CAS Google Scholar
First citationLiaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907–974.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, A. Q., Li, X. D., Nah, C. W., Hwang, K. J. & Lee, M. H. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 22–29.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Z. X., Li, X. D., Lee, S. H. & Lee, M. H. (2004). Mol. Cryst. Liq. Cryst. 425, 145–152.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds