organic compounds
8-Chloromethyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetrahydro-1H-naphtho[1,2-c]furan-1,3-dione
aLaboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, People's Republic of China, and bBeijing BOE Display Technology Co., Ltd, No. 118 Jinghaiyilu, BDA, Beijing 100176, People's Republic of China
*Correspondence e-mail: liujg@iccas.ac.cn
The title compound, C17H13ClO6, is an asymmetric alicyclic dianhydride containing a chloromethyl-substituted tetrahydronaphthalene moiety. The cyclohexene ring in the tetrahydronaphthalene moiety exhibits an with the tertiary C atom as the flap The dihedral angle between the two anhydride rings is 79.96 (6)°, while those between the benzene ring and the non-fused and fused anhydride rings are 71.03 (5) and 42.57 (7)°, respectively. In the crystal, molecules are connected by weak C—H⋯O interactions, forming a three-dimensional supramolecular structure.
Related literature
For background to polyimides, see: Li et al. (2005); Liaw et al. (2012); Zhang et al. (2003); Zhong et al. (2004). For background to and applications of tetrahydronaphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall et al. (1982); Guo et al. (2012). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
https://doi.org/10.1107/S1600536813014943/zp2004sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813014943/zp2004Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813014943/zp2004Isup3.cml
Into a 500 ml three-necked flask equipped with a mechanical stirrer, a nitric oxide inlet, and a condenser, 43.75 g(0.446 mol) of maleic anhydride, 104.09 g(0.682 mol) of 4-chloromethylstyrene, 0.1138 g(0.5 mmol) of 2,5-di-tert-butyl hydroquinone were added. The reaction mixture was heated to 120°C and maintained for 6 h under nitric oxide. The produced red-brown nitrogen oxide gas was trapped by passing through an aqueous solution of 20 wt% sodium hydroxide. White needle crystals were formed. After the reaction was completed, 60 ml of acetonitrile was added and the solution was refluxed for about 0.5 h. Then 60 ml of toluene was added and the reactino mixture was cooled to room temperature. The produced white needle crystals was collected by filtration and the solid was washed with toluene and petroleum ether in succession. After being dried in vacuum, the pure MCTDA was obtained as white crystals. Yield: 59.49 g(76.5%). Elemental analysis: calculated for C17H13ClO6:C,58.55; H:3.76%. Found: C:58.71; H:3.85%. EI—MS, m/z:142(M+-176, 100%). Colourless single crystals were grown by slow evaporation of an acetonitrile solution over a period of several days.
All H atoms were positioned geometrically (C-H=0.95-1.00 Å) and refined using a riding model with the Uiso(H)=1.2 UeqC for both of the aromatic ring and aliphatic chain.
Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw et al., 2012). Chloromethyl is an important active species for functionalization of PI materials (Li et al., 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed via the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang et al., 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of θ=57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ=300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H···Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H···O intermolecular interactions, as shown in Table 1.
molecules in advanced display devices (Zhong et al., 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an with puckering parameters of Q = 0.4805 (17) Å,For background to polyimides, see: Li et al. (2005); Liaw et al. (2012); Zhang et al. (2003); Zhong et al. (2004). For background to and applications of tetrahydronaphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall et al. (19826); Guo et al. (2012). For puckering parameters, see: Cremer & Pople (1975).
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of the title compound, showing diaplacement ellipsoids at the 30% probability level. |
C17H13ClO6 | Z = 2 |
Mr = 348.72 | F(000) = 360 |
Triclinic, P1 | Dx = 1.626 Mg m−3 |
Hall symbol: -p 1 | Melting point: 502 K |
a = 6.8988 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.140 (2) Å | Cell parameters from 2542 reflections |
c = 11.950 (3) Å | θ = 2.3–27.5° |
α = 80.937 (9)° | µ = 0.30 mm−1 |
β = 75.365 (8)° | T = 173 K |
γ = 79.614 (8)° | Block, colourless |
V = 712.1 (3) Å3 | 0.41 × 0.21 × 0.15 mm |
Rigaku Saturn724+ CCD diffractometer | 3238 independent reflections |
Radiation source: sealed tube | 3034 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans at fixed χ = 45° | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | h = −8→8 |
Tmin = 0.702, Tmax = 1.000 | k = −11→11 |
9192 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3488P] where P = (Fo2 + 2Fc2)/3 |
3238 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C17H13ClO6 | γ = 79.614 (8)° |
Mr = 348.72 | V = 712.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8988 (15) Å | Mo Kα radiation |
b = 9.140 (2) Å | µ = 0.30 mm−1 |
c = 11.950 (3) Å | T = 173 K |
α = 80.937 (9)° | 0.41 × 0.21 × 0.15 mm |
β = 75.365 (8)° |
Rigaku Saturn724+ CCD diffractometer | 3238 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | 3034 reflections with I > 2σ(I) |
Tmin = 0.702, Tmax = 1.000 | Rint = 0.035 |
9192 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.38 e Å−3 |
3238 reflections | Δρmin = −0.44 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.05131 (7) | −0.07996 (5) | 0.86631 (4) | 0.03800 (15) | |
O1 | 0.26974 (19) | 0.57365 (14) | 0.98000 (10) | 0.0314 (3) | |
O2 | 0.50528 (18) | 0.64807 (13) | 0.82479 (10) | 0.0277 (3) | |
O3 | 0.70203 (18) | 0.68985 (14) | 0.64654 (11) | 0.0303 (3) | |
O4 | −0.16049 (18) | 0.33284 (13) | 0.54844 (11) | 0.0301 (3) | |
O5 | 0.05290 (17) | 0.11884 (12) | 0.56476 (10) | 0.0258 (3) | |
O6 | 0.31175 (19) | −0.05753 (13) | 0.59407 (11) | 0.0307 (3) | |
C1 | 0.3305 (2) | 0.58452 (17) | 0.87724 (14) | 0.0236 (3) | |
C2 | 0.2441 (2) | 0.53951 (17) | 0.78490 (14) | 0.0217 (3) | |
H2 | 0.1206 | 0.6131 | 0.7772 | 0.026* | |
C3 | 0.4071 (2) | 0.56388 (18) | 0.67298 (14) | 0.0241 (3) | |
H3A | 0.4742 | 0.4670 | 0.6448 | 0.029* | |
H3B | 0.3475 | 0.6268 | 0.6112 | 0.029* | |
C4 | 0.5553 (2) | 0.64167 (17) | 0.70584 (14) | 0.0229 (3) | |
C5 | 0.1782 (2) | 0.38204 (17) | 0.82204 (13) | 0.0198 (3) | |
H5 | 0.1048 | 0.3789 | 0.9058 | 0.024* | |
C6 | 0.0298 (2) | 0.35351 (18) | 0.75498 (14) | 0.0228 (3) | |
H6A | −0.0792 | 0.4403 | 0.7555 | 0.027* | |
H6B | −0.0331 | 0.2643 | 0.7946 | 0.027* | |
C7 | 0.1347 (2) | 0.32835 (17) | 0.62825 (14) | 0.0209 (3) | |
H7 | 0.1755 | 0.4237 | 0.5823 | 0.025* | |
C8 | −0.0087 (2) | 0.26947 (18) | 0.57545 (14) | 0.0235 (3) | |
C9 | 0.2381 (2) | 0.07047 (18) | 0.59505 (13) | 0.0226 (3) | |
C10 | 0.3176 (2) | 0.20368 (16) | 0.61997 (13) | 0.0194 (3) | |
H10 | 0.4219 | 0.2337 | 0.5491 | 0.023* | |
C11 | 0.4192 (2) | 0.17137 (16) | 0.72211 (13) | 0.0183 (3) | |
C12 | 0.3571 (2) | 0.25765 (16) | 0.81480 (13) | 0.0190 (3) | |
C13 | 0.4641 (2) | 0.22721 (17) | 0.90297 (13) | 0.0222 (3) | |
H13 | 0.4250 | 0.2865 | 0.9658 | 0.027* | |
C14 | 0.6257 (2) | 0.11244 (17) | 0.90047 (14) | 0.0237 (3) | |
H14 | 0.6960 | 0.0934 | 0.9614 | 0.028* | |
C15 | 0.6854 (2) | 0.02504 (17) | 0.80893 (14) | 0.0213 (3) | |
C16 | 0.5840 (2) | 0.05678 (17) | 0.71949 (13) | 0.0206 (3) | |
H16 | 0.6274 | −0.0003 | 0.6554 | 0.025* | |
C17 | 0.8514 (2) | −0.10779 (18) | 0.80455 (15) | 0.0259 (3) | |
H17A | 0.9082 | −0.1267 | 0.7225 | 0.031* | |
H17B | 0.7930 | −0.1975 | 0.8474 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0321 (2) | 0.0391 (3) | 0.0504 (3) | 0.00849 (18) | −0.0251 (2) | −0.0182 (2) |
O1 | 0.0324 (6) | 0.0352 (7) | 0.0283 (6) | −0.0042 (5) | −0.0050 (5) | −0.0130 (5) |
O2 | 0.0287 (6) | 0.0309 (6) | 0.0285 (6) | −0.0087 (5) | −0.0100 (5) | −0.0079 (5) |
O3 | 0.0303 (6) | 0.0306 (6) | 0.0324 (7) | −0.0097 (5) | −0.0082 (5) | −0.0032 (5) |
O4 | 0.0269 (6) | 0.0288 (6) | 0.0394 (7) | −0.0020 (5) | −0.0181 (5) | −0.0038 (5) |
O5 | 0.0256 (6) | 0.0227 (6) | 0.0339 (6) | −0.0028 (4) | −0.0137 (5) | −0.0070 (5) |
O6 | 0.0334 (6) | 0.0226 (6) | 0.0396 (7) | 0.0017 (5) | −0.0136 (5) | −0.0118 (5) |
C1 | 0.0232 (7) | 0.0202 (7) | 0.0292 (8) | 0.0000 (6) | −0.0082 (6) | −0.0084 (6) |
C2 | 0.0205 (7) | 0.0191 (7) | 0.0277 (8) | 0.0003 (6) | −0.0092 (6) | −0.0072 (6) |
C3 | 0.0286 (8) | 0.0213 (7) | 0.0256 (8) | −0.0070 (6) | −0.0101 (6) | −0.0025 (6) |
C4 | 0.0249 (8) | 0.0184 (7) | 0.0271 (8) | −0.0007 (6) | −0.0105 (6) | −0.0031 (6) |
C5 | 0.0172 (7) | 0.0202 (7) | 0.0224 (7) | −0.0011 (5) | −0.0041 (6) | −0.0062 (6) |
C6 | 0.0180 (7) | 0.0226 (7) | 0.0293 (8) | −0.0020 (6) | −0.0062 (6) | −0.0074 (6) |
C7 | 0.0199 (7) | 0.0183 (7) | 0.0269 (8) | −0.0023 (5) | −0.0096 (6) | −0.0032 (6) |
C8 | 0.0241 (8) | 0.0225 (7) | 0.0257 (8) | −0.0041 (6) | −0.0088 (6) | −0.0028 (6) |
C9 | 0.0237 (7) | 0.0238 (8) | 0.0220 (7) | −0.0023 (6) | −0.0075 (6) | −0.0055 (6) |
C10 | 0.0190 (7) | 0.0198 (7) | 0.0204 (7) | −0.0026 (5) | −0.0059 (5) | −0.0035 (6) |
C11 | 0.0182 (7) | 0.0174 (7) | 0.0202 (7) | −0.0046 (5) | −0.0057 (5) | −0.0009 (5) |
C12 | 0.0184 (7) | 0.0177 (7) | 0.0214 (7) | −0.0036 (5) | −0.0049 (5) | −0.0018 (5) |
C13 | 0.0266 (8) | 0.0203 (7) | 0.0207 (7) | −0.0045 (6) | −0.0059 (6) | −0.0040 (6) |
C14 | 0.0261 (8) | 0.0223 (7) | 0.0253 (8) | −0.0038 (6) | −0.0116 (6) | −0.0010 (6) |
C15 | 0.0202 (7) | 0.0183 (7) | 0.0263 (8) | −0.0027 (5) | −0.0076 (6) | −0.0015 (6) |
C16 | 0.0209 (7) | 0.0191 (7) | 0.0229 (7) | −0.0028 (6) | −0.0054 (6) | −0.0054 (6) |
C17 | 0.0254 (8) | 0.0209 (7) | 0.0345 (9) | −0.0002 (6) | −0.0137 (7) | −0.0050 (6) |
Cl1—C17 | 1.7920 (16) | C6—H6A | 0.9900 |
O1—C1 | 1.187 (2) | C6—H6B | 0.9900 |
O2—C4 | 1.384 (2) | C7—C8 | 1.510 (2) |
O2—C1 | 1.393 (2) | C7—C10 | 1.535 (2) |
O3—C4 | 1.192 (2) | C7—H7 | 1.0000 |
O4—C8 | 1.1957 (19) | C9—C10 | 1.520 (2) |
O5—C8 | 1.3818 (19) | C10—C11 | 1.520 (2) |
O5—C9 | 1.3923 (19) | C10—H10 | 1.0000 |
O6—C9 | 1.189 (2) | C11—C12 | 1.395 (2) |
C1—C2 | 1.518 (2) | C11—C16 | 1.398 (2) |
C2—C3 | 1.529 (2) | C12—C13 | 1.399 (2) |
C2—C5 | 1.552 (2) | C13—C14 | 1.384 (2) |
C2—H2 | 1.0000 | C13—H13 | 0.9500 |
C3—C4 | 1.503 (2) | C14—C15 | 1.390 (2) |
C3—H3A | 0.9900 | C14—H14 | 0.9500 |
C3—H3B | 0.9900 | C15—C16 | 1.386 (2) |
C5—C12 | 1.515 (2) | C15—C17 | 1.509 (2) |
C5—C6 | 1.528 (2) | C16—H16 | 0.9500 |
C5—H5 | 1.0000 | C17—H17A | 0.9900 |
C6—C7 | 1.538 (2) | C17—H17B | 0.9900 |
C4—O2—C1 | 110.80 (12) | C6—C7—H7 | 110.6 |
C8—O5—C9 | 110.77 (12) | O4—C8—O5 | 120.53 (14) |
O1—C1—O2 | 120.33 (14) | O4—C8—C7 | 129.30 (15) |
O1—C1—C2 | 129.76 (15) | O5—C8—C7 | 110.11 (13) |
O2—C1—C2 | 109.90 (13) | O6—C9—O5 | 120.05 (15) |
C1—C2—C3 | 103.52 (12) | O6—C9—C10 | 130.51 (15) |
C1—C2—C5 | 110.96 (13) | O5—C9—C10 | 109.38 (13) |
C3—C2—C5 | 118.62 (12) | C9—C10—C11 | 114.41 (12) |
C1—C2—H2 | 107.8 | C9—C10—C7 | 103.68 (12) |
C3—C2—H2 | 107.8 | C11—C10—C7 | 116.64 (12) |
C5—C2—H2 | 107.8 | C9—C10—H10 | 107.2 |
C4—C3—C2 | 105.08 (13) | C11—C10—H10 | 107.2 |
C4—C3—H3A | 110.7 | C7—C10—H10 | 107.2 |
C2—C3—H3A | 110.7 | C12—C11—C16 | 119.82 (13) |
C4—C3—H3B | 110.7 | C12—C11—C10 | 121.42 (13) |
C2—C3—H3B | 110.7 | C16—C11—C10 | 118.70 (13) |
H3A—C3—H3B | 108.8 | C11—C12—C13 | 118.55 (14) |
O3—C4—O2 | 120.22 (14) | C11—C12—C5 | 121.75 (13) |
O3—C4—C3 | 129.78 (15) | C13—C12—C5 | 119.70 (13) |
O2—C4—C3 | 109.95 (13) | C14—C13—C12 | 121.30 (14) |
C12—C5—C6 | 110.91 (12) | C14—C13—H13 | 119.3 |
C12—C5—C2 | 112.48 (12) | C12—C13—H13 | 119.3 |
C6—C5—C2 | 112.64 (13) | C13—C14—C15 | 120.07 (14) |
C12—C5—H5 | 106.8 | C13—C14—H14 | 120.0 |
C6—C5—H5 | 106.8 | C15—C14—H14 | 120.0 |
C2—C5—H5 | 106.8 | C16—C15—C14 | 119.13 (14) |
C5—C6—C7 | 111.94 (12) | C16—C15—C17 | 117.99 (14) |
C5—C6—H6A | 109.2 | C14—C15—C17 | 122.83 (14) |
C7—C6—H6A | 109.2 | C15—C16—C11 | 121.09 (14) |
C5—C6—H6B | 109.2 | C15—C16—H16 | 119.5 |
C7—C6—H6B | 109.2 | C11—C16—H16 | 119.5 |
H6A—C6—H6B | 107.9 | C15—C17—Cl1 | 112.50 (11) |
C8—C7—C10 | 103.64 (12) | C15—C17—H17A | 109.1 |
C8—C7—C6 | 108.82 (13) | Cl1—C17—H17A | 109.1 |
C10—C7—C6 | 112.36 (12) | C15—C17—H17B | 109.1 |
C8—C7—H7 | 110.6 | Cl1—C17—H17B | 109.1 |
C10—C7—H7 | 110.6 | H17A—C17—H17B | 107.8 |
C4—O2—C1—O1 | 176.48 (15) | O6—C9—C10—C7 | −170.26 (17) |
C4—O2—C1—C2 | −4.14 (16) | O5—C9—C10—C7 | 12.71 (16) |
O1—C1—C2—C3 | −172.78 (17) | C8—C7—C10—C9 | −15.08 (15) |
O2—C1—C2—C3 | 7.90 (16) | C6—C7—C10—C9 | 102.23 (14) |
O1—C1—C2—C5 | −44.5 (2) | C8—C7—C10—C11 | −141.81 (13) |
O2—C1—C2—C5 | 136.19 (13) | C6—C7—C10—C11 | −24.50 (18) |
C1—C2—C3—C4 | −8.38 (15) | C9—C10—C11—C12 | −125.35 (15) |
C5—C2—C3—C4 | −131.77 (13) | C7—C10—C11—C12 | −4.1 (2) |
C1—O2—C4—O3 | −179.38 (14) | C9—C10—C11—C16 | 57.57 (18) |
C1—O2—C4—C3 | −1.65 (17) | C7—C10—C11—C16 | 178.79 (13) |
C2—C3—C4—O3 | −175.99 (16) | C16—C11—C12—C13 | 0.5 (2) |
C2—C3—C4—O2 | 6.56 (17) | C10—C11—C12—C13 | −176.56 (13) |
C1—C2—C5—C12 | −72.89 (16) | C16—C11—C12—C5 | −179.44 (13) |
C3—C2—C5—C12 | 46.72 (18) | C10—C11—C12—C5 | 3.5 (2) |
C1—C2—C5—C6 | 160.87 (12) | C6—C5—C12—C11 | 25.70 (19) |
C3—C2—C5—C6 | −79.51 (16) | C2—C5—C12—C11 | −101.46 (16) |
C12—C5—C6—C7 | −54.14 (17) | C6—C5—C12—C13 | −154.22 (14) |
C2—C5—C6—C7 | 72.94 (16) | C2—C5—C12—C13 | 78.62 (17) |
C5—C6—C7—C8 | 168.26 (12) | C11—C12—C13—C14 | −1.2 (2) |
C5—C6—C7—C10 | 54.08 (17) | C5—C12—C13—C14 | 178.68 (14) |
C9—O5—C8—O4 | 176.79 (15) | C12—C13—C14—C15 | 0.3 (2) |
C9—O5—C8—C7 | −5.78 (17) | C13—C14—C15—C16 | 1.5 (2) |
C10—C7—C8—O4 | −169.45 (17) | C13—C14—C15—C17 | −176.01 (14) |
C6—C7—C8—O4 | 70.8 (2) | C14—C15—C16—C11 | −2.3 (2) |
C10—C7—C8—O5 | 13.41 (16) | C17—C15—C16—C11 | 175.37 (14) |
C6—C7—C8—O5 | −106.35 (14) | C12—C11—C16—C15 | 1.3 (2) |
C8—O5—C9—O6 | 177.93 (15) | C10—C11—C16—C15 | 178.39 (14) |
C8—O5—C9—C10 | −4.67 (17) | C16—C15—C17—Cl1 | 147.27 (13) |
O6—C9—C10—C11 | −42.1 (2) | C14—C15—C17—Cl1 | −35.2 (2) |
O5—C9—C10—C11 | 140.82 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O4i | 0.99 | 2.51 | 3.420 (2) | 153 |
C5—H5···O1ii | 1.00 | 2.59 | 3.386 (2) | 136 |
C7—H7···O4i | 1.00 | 2.51 | 3.468 (2) | 160 |
C14—H14···Cl1 | 0.95 | 2.75 | 3.1045 (17) | 103 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C17H13ClO6 |
Mr | 348.72 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 6.8988 (15), 9.140 (2), 11.950 (3) |
α, β, γ (°) | 80.937 (9), 75.365 (8), 79.614 (8) |
V (Å3) | 712.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.41 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Rigaku Saturn724+ CCD |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2008) |
Tmin, Tmax | 0.702, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9192, 3238, 3034 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.108, 1.10 |
No. of reflections | 3238 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.44 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O4i | 0.99 | 2.51 | 3.420 (2) | 153.1 |
C5—H5···O1ii | 1.00 | 2.59 | 3.386 (2) | 136.1 |
C7—H7···O4i | 1.00 | 2.51 | 3.468 (2) | 160.1 |
C14—H14···Cl1 | 0.95 | 2.75 | 3.1045 (17) | 102.9 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2. |
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 51173188).
References
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guo, Y. Z., Liu, J. G. & Yang, S. Y. (2013). Acta Cryst. E69, o226. CSD CrossRef IUCr Journals Google Scholar
Guo, Y. Z., Shen, D. X., Ni, H. J., Liu, J. G. & Yang, S. Y. (2013). Prog. Org. Coat. 76, 768–777. Web of Science CrossRef CAS Google Scholar
Guo, Y. Z., Song, H. W., Zhai, L., Liu, J. G. & Yang, S. Y. (2012). Polym. J. 44, 718–723. Web of Science CrossRef CAS Google Scholar
Hall, H. K., Nogues, P., Rhoades, J. W., Sentman, R. C. & Detar, M. (1982). J. Org. Chem. 47, 1451–1455. CrossRef CAS Web of Science Google Scholar
Li, X. D., Zhong, Z. X., Han, S. H., Lee, S. H. & Lee, M. H. (2005). Polym. Int. 54, 406–411. Web of Science CrossRef CAS Google Scholar
Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907–974. Web of Science CrossRef CAS Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, A. Q., Li, X. D., Nah, C. W., Hwang, K. J. & Lee, M. H. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 22–29. Web of Science CrossRef CAS Google Scholar
Zhong, Z. X., Li, X. D., Lee, S. H. & Lee, M. H. (2004). Mol. Cryst. Liq. Cryst. 425, 145–152. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw et al., 2012). Chloromethyl is an important active species for functionalization of PI materials (Li et al., 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed via the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang et al., 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of liquid crystal molecules in advanced liquid crystal display devices (Zhong et al., 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q = 0.4805 (17) Å, θ=57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ=300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H···Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H···O intermolecular interactions, as shown in Table 1.