organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-{4-[(2-Hy­dr­oxy­benzyl­­idene)amino]­phen­yl}-5,5-di­fluoro-1,3,7,9-tetra­methyl-5H-di­pyrrolo­[1,2-c:2′,1′-f][1,3,2]di­aza­borinin-4-ium-5-uide

aKey Laboraory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun Donglu 29, 100190 Beijing, People's Republic of China
*Correspondence e-mail: lizhensheng0723@hotmail.com

(Received 22 May 2013; accepted 4 June 2013; online 12 June 2013)

The title compound, C26H24BF2N3O, comprises a boron–dipyrromethene (BODIPY) framework and a phenolic Schiff base substituent group. The BODIPY unit is close to planar [maximum deviation from the least-squares plane = 0.040 (3) Å], and forms a dihedral angle of 80.38 (13)° with the meso-substituent phenyl ring and an angle of 56.57 (13)° with the phenolic ring in the extended substituent chain. An intra­molecular O—H⋯N hydrogen bond is formed between the phenolic hydroxyl group and the Schiff base N-atom. The crystal studied was a non-merohedral twin with a BASF factor of 0.447 (3) for the two components.

Related literature

For the photophysical properties of BODIPY dyes, see: Loudet & Burgess (2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]); Boens et al. (2012[Boens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130-1172.]). For the use of related compounds for fluorescence analysis, see: Fan et al. (2012[Fan, J., Liu, X., Hu, M., Zhu, H., Song, F. & Peng, X. (2012). Anal. Chim. Acta, 735, 107-113.]); Li et al. (2012[Li, Q., Guo, Y. & Shao, S. (2012). Sens. Actuators B, 171, 872-877.]). For the preparation of the BODIPY precursor, see: Lu et al. (2009[Lu, H., Zhang, S., Liu, H., Wang, Y., Shen, Z., Liu, C. & You, X. (2009). J. Phys. Chem. A 113, 14081-14086.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24BF2N3O

  • Mr = 443.29

  • Triclinic, [P \overline 1]

  • a = 8.8920 (15) Å

  • b = 10.7480 (17) Å

  • c = 12.9230 (18) Å

  • α = 110.258 (9)°

  • β = 90.952 (6)°

  • γ = 108.408 (7)°

  • V = 1088.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn724 CCD-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.983

  • 12167 measured reflections

  • 5171 independent reflections

  • 2822 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.217

  • S = 1.09

  • 5171 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.84 1.89 2.618 (4) 145

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Among various fluorescent compounds, boron complexes, especially boron-dipyrromethene (BODIPY), show many photophysical advantages over other dyes, such as high absorption coefficients and fluorescence quantum yields, narrow emission spectra, excellent stability towards light and chemicals, enabling their applications in light harvesting, biological imaging and fluorescent probes (Boens et al., 2012). As part of our ongoing studies of fluorescent probes for metal ions, we report herein the crystal structure of the title compound, 10-(4-((2-hydroxybenzylidene)amino)phenyl)-5,5- difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2] diazaborinin-4-ium-5-uide, C26H24BF2N3O.

The title compound comprises essentially a C9BN2 (BODIPY) parent component and a phenolic Schiff base substituent group (Fig. 1). The bond lengths and angles are within normal ranges [B—F, 1.397 (4), 1.402 (4) Å and B—N, 1.528 (4), 1.541 (4) Å]. The BODIPY core is close to planar, with a maximum deviation from the least-squares plane of 0.040 (3) Å. The meso-substituted benzene ring defined by atoms C14–C19 is essentially perpendicular to this plane, forming a dihedral angle of 80.38 (13) ° with it. The phenolic ring in the extended substituent chain, defined by atoms C21–C26, forms a dihedral angle of 56.57 (13)° with the BODIPY plane. A moderately strong intramolecular O—H···N hydrogen bond is formed between the phenolic hydroxyl group and the Schiff base N-atom (Table 1). Weak non-classical intermolecular aromatic C—H···F hydrogen bonds extend the molecules into two-dimensional network structure lying parallel to [110] (Fig. 2).

Related literature top

For the photophysical properties of BODIPY dyes, see: Loudet & Burgess (2007); Boens et al. (2012). For the use of related compounds for fluorescence analysis, see: Fan et al. (2012); Li et al. (2012). For the preparation of the BODIPY precursor, see: Lu et al. (2009).

Experimental top

The BODIPY precursor 10-(4-Aminophenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo [1,2 - c:2,,1,-f][1,3,2]diaza-borinin-4-ium-5-uide was synthesized according to the literature procedure (Lu et al., 2009). To a mixture of this compound (100 mg, 0.30 mmol) and 2-hydroxybenzaldehyde (50 mg, 0.40 mmol) in EtOH, one drop of trifluoroacetic acid was added. The reaction solution was heated at 353 K for 4 h, and the red precipitate was filtered and washed with ethanol to obtain the title compound. Yield: 80%. Red crystals. 1H NMR (400 MHz, CDCl3) δ (ppm.): 13.06 (s, 1H), 8.72 (s, 1H), 7.43 (dd, J = 12.4, 4.5 Hz, 4H), 7.36 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.2 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.01 (s, 2H), 2.56 (d, J = 9.4 Hz, 6H), 1.46 (s, 6H). MALDI-TOF: m/z = 443.1 [M]+, 424.0 [M—F]+. Red single crystals suitable for X-ray analysis were obtained by dissolving the compound (0.10 g) in a hexane/dichloromethane (15 ml, v/v, 1/1) mixture and slowly evaporating the solvent at room temperature for a period of about one week.

Refinement top

Twinning was detected by TwinRotMat in PLATON (Spek, 2009) with a BASF factor of 0.45. A HKLF5 format reflection file was generated for the refinement, giving a final BASF factor of 0.447 (3). Hydrogen atoms were treated as riding with C—H = 0.95 Å for aryl-CH, C—H = 0.98 Å for CH3 groups and O—H = 0.84 Å for the hydroxy group. Isotropic displacement parameters for hydrogen atoms were constrained to Uiso(H)= 1.2Ueq(C) for aryl H-atoms and Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxy groups.

Structure description top

Among various fluorescent compounds, boron complexes, especially boron-dipyrromethene (BODIPY), show many photophysical advantages over other dyes, such as high absorption coefficients and fluorescence quantum yields, narrow emission spectra, excellent stability towards light and chemicals, enabling their applications in light harvesting, biological imaging and fluorescent probes (Boens et al., 2012). As part of our ongoing studies of fluorescent probes for metal ions, we report herein the crystal structure of the title compound, 10-(4-((2-hydroxybenzylidene)amino)phenyl)-5,5- difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2] diazaborinin-4-ium-5-uide, C26H24BF2N3O.

The title compound comprises essentially a C9BN2 (BODIPY) parent component and a phenolic Schiff base substituent group (Fig. 1). The bond lengths and angles are within normal ranges [B—F, 1.397 (4), 1.402 (4) Å and B—N, 1.528 (4), 1.541 (4) Å]. The BODIPY core is close to planar, with a maximum deviation from the least-squares plane of 0.040 (3) Å. The meso-substituted benzene ring defined by atoms C14–C19 is essentially perpendicular to this plane, forming a dihedral angle of 80.38 (13) ° with it. The phenolic ring in the extended substituent chain, defined by atoms C21–C26, forms a dihedral angle of 56.57 (13)° with the BODIPY plane. A moderately strong intramolecular O—H···N hydrogen bond is formed between the phenolic hydroxyl group and the Schiff base N-atom (Table 1). Weak non-classical intermolecular aromatic C—H···F hydrogen bonds extend the molecules into two-dimensional network structure lying parallel to [110] (Fig. 2).

For the photophysical properties of BODIPY dyes, see: Loudet & Burgess (2007); Boens et al. (2012). For the use of related compounds for fluorescence analysis, see: Fan et al. (2012); Li et al. (2012). For the preparation of the BODIPY precursor, see: Lu et al. (2009).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme (PLATON, Spek, 2009) of the title compound, with displacement ellipsoids drawn at 50% probability level and H atoms with arbitrary radius. The intramolecular hydrogen bond is shwn as a dashed line.
[Figure 2] Fig. 2. Tig. 2. The two-dimensional network structure extending along [110], formed by weak nonclassical intermolecular C–H···F hydrogen-bonding interactions.
10-{4-[(2-Hydroxybenzylidene)amino]phenyl}-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide top
Crystal data top
C26H24BF2N3OZ = 2
Mr = 443.29F(000) = 464
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.8920 (15) ÅCell parameters from 3734 reflections
b = 10.7480 (17) Åθ = 1.7–27.9°
c = 12.9230 (18) ŵ = 0.10 mm1
α = 110.258 (9)°T = 113 K
β = 90.952 (6)°Prism, colorless
γ = 108.408 (7)°0.24 × 0.20 × 0.18 mm
V = 1088.3 (3) Å3
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
5171 independent reflections
Radiation source: rotating anode2822 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.054
Detector resolution: 14.222 pixels mm-1θmax = 28.0°, θmin = 1.7°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.978, Tmax = 0.983l = 1616
12167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.5082P]
where P = (Fo2 + 2Fc2)/3
5171 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C26H24BF2N3Oγ = 108.408 (7)°
Mr = 443.29V = 1088.3 (3) Å3
Triclinic, P1Z = 2
a = 8.8920 (15) ÅMo Kα radiation
b = 10.7480 (17) ŵ = 0.10 mm1
c = 12.9230 (18) ÅT = 113 K
α = 110.258 (9)°0.24 × 0.20 × 0.18 mm
β = 90.952 (6)°
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
5171 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2822 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.054
12167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.09Δρmax = 0.77 e Å3
5171 reflectionsΔρmin = 0.44 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8363 (2)0.60168 (18)0.29484 (15)0.0237 (4)
F20.7383 (2)0.73948 (19)0.23512 (15)0.0258 (5)
O10.5899 (3)0.0147 (3)0.1083 (2)0.0422 (7)
H10.48990.05340.11820.063*
N10.5942 (3)0.6362 (3)0.3580 (2)0.0185 (6)
N20.5944 (3)0.4878 (3)0.1630 (2)0.0172 (5)
N30.2990 (3)0.1062 (3)0.2134 (2)0.0273 (7)
C10.6416 (4)0.7349 (3)0.4619 (3)0.0216 (7)
C20.5163 (4)0.7140 (3)0.5250 (3)0.0248 (7)
H20.51900.76950.60080.030*
C30.3881 (4)0.5993 (3)0.4586 (3)0.0214 (7)
C40.4365 (4)0.5496 (3)0.3526 (2)0.0177 (6)
C50.3579 (4)0.4373 (3)0.2536 (2)0.0176 (6)
C60.4352 (4)0.4064 (3)0.1602 (2)0.0178 (6)
C70.3803 (4)0.3018 (3)0.0502 (2)0.0191 (7)
C80.5079 (4)0.3232 (3)0.0097 (3)0.0224 (7)
H80.50780.26980.08560.027*
C90.6371 (4)0.4374 (3)0.0616 (3)0.0204 (7)
C100.8032 (4)0.8467 (3)0.4960 (3)0.0290 (8)
H10A0.88510.80340.49580.043*
H10B0.80890.91450.57100.043*
H10C0.82180.89560.44340.043*
C110.2300 (4)0.5436 (4)0.4972 (3)0.0275 (8)
H11A0.20040.44140.47710.041*
H11B0.14730.56340.46120.041*
H11C0.23990.58970.57820.041*
C120.2217 (4)0.1875 (3)0.0032 (3)0.0261 (8)
H12A0.20710.15660.07820.039*
H12B0.13640.22340.03250.039*
H12C0.21740.10750.02450.039*
C130.8007 (4)0.4954 (4)0.0331 (3)0.0260 (7)
H13A0.83500.59860.06110.039*
H13B0.79770.45870.04800.039*
H13C0.87630.46670.06740.039*
C140.1879 (4)0.3498 (3)0.2468 (2)0.0186 (7)
C150.0661 (4)0.3993 (3)0.2304 (3)0.0214 (7)
H150.09230.49090.22780.026*
C160.0932 (4)0.3161 (3)0.2177 (3)0.0230 (7)
H160.17580.34850.20250.028*
C170.1317 (4)0.1848 (3)0.2273 (3)0.0211 (7)
C180.0107 (4)0.1359 (3)0.2457 (3)0.0240 (7)
H180.03680.04670.25270.029*
C190.1484 (4)0.2175 (3)0.2539 (3)0.0218 (7)
H190.23080.18260.26450.026*
C200.3510 (4)0.0379 (3)0.2744 (3)0.0273 (8)
H200.27800.03840.32920.033*
C210.5211 (4)0.0427 (3)0.2635 (3)0.0269 (8)
C220.6322 (4)0.0491 (3)0.1813 (3)0.0294 (8)
C230.7950 (4)0.1246 (4)0.1738 (3)0.0355 (9)
H230.87070.13020.11810.043*
C240.8441 (4)0.1901 (4)0.2471 (3)0.0360 (9)
H240.95460.24050.24260.043*
C250.7343 (5)0.1839 (4)0.3286 (3)0.0375 (9)
H250.77020.23020.37890.045*
C260.5743 (5)0.1111 (4)0.3362 (3)0.0329 (9)
H260.49980.10760.39160.039*
B10.6956 (4)0.6192 (4)0.2632 (3)0.0195 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0179 (9)0.0254 (10)0.0253 (10)0.0075 (8)0.0021 (8)0.0066 (8)
F20.0269 (10)0.0216 (9)0.0261 (10)0.0038 (8)0.0033 (8)0.0098 (8)
O10.0268 (14)0.0541 (18)0.0488 (17)0.0098 (14)0.0003 (13)0.0267 (15)
N10.0176 (13)0.0181 (12)0.0159 (13)0.0047 (10)0.0004 (10)0.0029 (10)
N20.0160 (13)0.0191 (12)0.0155 (13)0.0063 (10)0.0038 (10)0.0052 (10)
N30.0239 (15)0.0224 (14)0.0331 (16)0.0067 (12)0.0118 (13)0.0079 (13)
C10.0250 (17)0.0182 (15)0.0190 (16)0.0086 (13)0.0000 (13)0.0027 (13)
C20.0324 (19)0.0231 (16)0.0151 (15)0.0110 (14)0.0040 (14)0.0011 (13)
C30.0245 (17)0.0229 (16)0.0186 (16)0.0117 (13)0.0048 (13)0.0066 (13)
C40.0178 (15)0.0177 (14)0.0171 (15)0.0053 (12)0.0039 (12)0.0063 (12)
C50.0181 (15)0.0160 (14)0.0193 (15)0.0073 (12)0.0025 (12)0.0059 (12)
C60.0167 (15)0.0169 (14)0.0176 (15)0.0051 (12)0.0001 (12)0.0046 (12)
C70.0217 (16)0.0206 (15)0.0156 (15)0.0104 (13)0.0007 (12)0.0047 (13)
C80.0261 (17)0.0235 (16)0.0164 (15)0.0099 (14)0.0053 (13)0.0047 (13)
C90.0213 (16)0.0251 (16)0.0192 (16)0.0128 (13)0.0071 (13)0.0087 (13)
C100.0288 (19)0.0207 (16)0.0249 (18)0.0017 (14)0.0013 (14)0.0001 (14)
C110.0307 (19)0.0297 (18)0.0207 (17)0.0111 (15)0.0114 (14)0.0066 (14)
C120.0249 (18)0.0234 (16)0.0213 (17)0.0043 (14)0.0049 (14)0.0018 (14)
C130.0235 (17)0.0340 (18)0.0242 (18)0.0122 (15)0.0100 (14)0.0126 (15)
C140.0178 (15)0.0194 (15)0.0158 (15)0.0051 (12)0.0037 (12)0.0042 (12)
C150.0202 (16)0.0188 (15)0.0243 (17)0.0074 (13)0.0072 (13)0.0061 (13)
C160.0210 (16)0.0226 (16)0.0283 (18)0.0093 (13)0.0059 (14)0.0111 (14)
C170.0174 (15)0.0189 (15)0.0221 (16)0.0037 (12)0.0047 (13)0.0041 (13)
C180.0243 (17)0.0184 (15)0.0251 (17)0.0046 (13)0.0035 (14)0.0056 (13)
C190.0203 (16)0.0223 (15)0.0219 (16)0.0075 (13)0.0020 (13)0.0072 (13)
C200.0262 (18)0.0245 (17)0.0284 (19)0.0117 (15)0.0027 (15)0.0037 (15)
C210.0240 (17)0.0195 (16)0.0313 (19)0.0086 (14)0.0047 (15)0.0016 (14)
C220.032 (2)0.0220 (17)0.037 (2)0.0103 (15)0.0113 (16)0.0136 (16)
C230.0208 (18)0.0281 (18)0.053 (2)0.0094 (15)0.0026 (17)0.0091 (18)
C240.0215 (18)0.0222 (17)0.055 (2)0.0030 (15)0.0114 (18)0.0067 (17)
C250.036 (2)0.0267 (18)0.045 (2)0.0083 (17)0.0147 (19)0.0104 (17)
C260.038 (2)0.0262 (18)0.038 (2)0.0154 (16)0.0110 (17)0.0119 (16)
B10.0170 (17)0.0195 (16)0.0197 (18)0.0061 (14)0.0024 (14)0.0047 (14)
Geometric parameters (Å, º) top
F1—B11.397 (4)C11—H11B0.9800
F2—B11.402 (4)C11—H11C0.9800
O1—C221.341 (4)C12—H12A0.9800
O1—H10.8400C12—H12B0.9800
N1—C11.348 (4)C12—H12C0.9800
N1—C41.402 (4)C13—H13A0.9800
N1—B11.528 (4)C13—H13B0.9800
N2—C91.345 (4)C13—H13C0.9800
N2—C61.401 (4)C14—C191.389 (4)
N2—B11.541 (4)C14—C151.392 (4)
N3—C201.254 (4)C15—C161.387 (4)
N3—C171.432 (4)C15—H150.9500
C1—C21.398 (4)C16—C171.393 (4)
C1—C101.492 (4)C16—H160.9500
C2—C31.379 (4)C17—C181.388 (5)
C2—H20.9500C18—C191.389 (4)
C3—C41.416 (4)C18—H180.9500
C3—C111.510 (4)C19—H190.9500
C4—C51.397 (4)C20—C211.462 (5)
C5—C61.390 (4)C20—H200.9500
C5—C141.489 (4)C21—C261.386 (5)
C6—C71.431 (4)C21—C221.407 (5)
C7—C81.388 (4)C22—C231.401 (5)
C7—C121.493 (4)C23—C241.366 (5)
C8—C91.402 (4)C23—H230.9500
C8—H80.9500C24—C251.394 (6)
C9—C131.498 (4)C24—H240.9500
C10—H10A0.9800C25—C261.373 (5)
C10—H10B0.9800C25—H250.9500
C10—H10C0.9800C26—H260.9500
C11—H11A0.9800
C22—O1—H1109.5H12B—C12—H12C109.5
C1—N1—C4108.1 (2)C9—C13—H13A109.5
C1—N1—B1126.1 (3)C9—C13—H13B109.5
C4—N1—B1125.7 (3)H13A—C13—H13B109.5
C9—N2—C6108.2 (2)C9—C13—H13C109.5
C9—N2—B1126.7 (3)H13A—C13—H13C109.5
C6—N2—B1124.9 (2)H13B—C13—H13C109.5
C20—N3—C17120.2 (3)C19—C14—C15119.2 (3)
N1—C1—C2109.0 (3)C19—C14—C5121.0 (3)
N1—C1—C10122.3 (3)C15—C14—C5119.7 (3)
C2—C1—C10128.7 (3)C16—C15—C14120.6 (3)
C3—C2—C1108.6 (3)C16—C15—H15119.7
C3—C2—H2125.7C14—C15—H15119.7
C1—C2—H2125.7C15—C16—C17119.7 (3)
C2—C3—C4106.5 (3)C15—C16—H16120.1
C2—C3—C11124.4 (3)C17—C16—H16120.1
C4—C3—C11129.2 (3)C18—C17—C16119.9 (3)
C5—C4—N1120.1 (3)C18—C17—N3124.0 (3)
C5—C4—C3132.1 (3)C16—C17—N3116.1 (3)
N1—C4—C3107.8 (3)C17—C18—C19120.0 (3)
C6—C5—C4121.0 (3)C17—C18—H18120.0
C6—C5—C14119.2 (3)C19—C18—H18120.0
C4—C5—C14119.8 (3)C14—C19—C18120.5 (3)
C5—C6—N2120.8 (3)C14—C19—H19119.8
C5—C6—C7131.5 (3)C18—C19—H19119.8
N2—C6—C7107.7 (2)N3—C20—C21121.8 (3)
C8—C7—C6106.3 (3)N3—C20—H20119.1
C8—C7—C12124.0 (3)C21—C20—H20119.1
C6—C7—C12129.7 (3)C26—C21—C22119.5 (3)
C7—C8—C9108.0 (3)C26—C21—C20119.8 (3)
C7—C8—H8126.0C22—C21—C20120.7 (3)
C9—C8—H8126.0O1—C22—C23117.4 (3)
N2—C9—C8109.7 (3)O1—C22—C21122.9 (3)
N2—C9—C13123.8 (3)C23—C22—C21119.7 (3)
C8—C9—C13126.5 (3)C24—C23—C22119.5 (4)
C1—C10—H10A109.5C24—C23—H23120.3
C1—C10—H10B109.5C22—C23—H23120.3
H10A—C10—H10B109.5C23—C24—C25120.9 (3)
C1—C10—H10C109.5C23—C24—H24119.5
H10A—C10—H10C109.5C25—C24—H24119.5
H10B—C10—H10C109.5C26—C25—C24120.1 (4)
C3—C11—H11A109.5C26—C25—H25120.0
C3—C11—H11B109.5C24—C25—H25120.0
H11A—C11—H11B109.5C25—C26—C21120.3 (4)
C3—C11—H11C109.5C25—C26—H26119.9
H11A—C11—H11C109.5C21—C26—H26119.9
H11B—C11—H11C109.5F1—B1—F2108.0 (3)
C7—C12—H12A109.5F1—B1—N1110.6 (3)
C7—C12—H12B109.5F2—B1—N1110.3 (3)
H12A—C12—H12B109.5F1—B1—N2110.0 (3)
C7—C12—H12C109.5F2—B1—N2110.5 (3)
H12A—C12—H12C109.5N1—B1—N2107.4 (2)
C4—N1—C1—C20.1 (4)C4—C5—C14—C19102.0 (4)
B1—N1—C1—C2178.8 (3)C6—C5—C14—C1599.7 (4)
C4—N1—C1—C10178.7 (3)C4—C5—C14—C1579.6 (4)
B1—N1—C1—C102.6 (5)C19—C14—C15—C162.0 (5)
N1—C1—C2—C30.2 (4)C5—C14—C15—C16176.4 (3)
C10—C1—C2—C3178.7 (3)C14—C15—C16—C173.4 (5)
C1—C2—C3—C40.2 (4)C15—C16—C17—C182.1 (5)
C1—C2—C3—C11180.0 (3)C15—C16—C17—N3179.7 (3)
C1—N1—C4—C5179.7 (3)C20—N3—C17—C1841.8 (4)
B1—N1—C4—C51.0 (5)C20—N3—C17—C16140.2 (3)
C1—N1—C4—C30.1 (3)C16—C17—C18—C190.4 (5)
B1—N1—C4—C3178.6 (3)N3—C17—C18—C19177.6 (3)
C2—C3—C4—C5179.7 (3)C15—C14—C19—C180.6 (5)
C11—C3—C4—C50.4 (6)C5—C14—C19—C18179.0 (3)
C2—C3—C4—N10.2 (3)C17—C18—C19—C141.8 (5)
C11—C3—C4—N1180.0 (3)C17—N3—C20—C21179.5 (3)
N1—C4—C5—C62.1 (5)N3—C20—C21—C26176.9 (3)
C3—C4—C5—C6177.4 (3)N3—C20—C21—C221.7 (5)
N1—C4—C5—C14177.2 (3)C26—C21—C22—O1179.8 (3)
C3—C4—C5—C143.3 (5)C20—C21—C22—O11.1 (5)
C4—C5—C6—N20.2 (5)C26—C21—C22—C230.1 (5)
C14—C5—C6—N2179.0 (3)C20—C21—C22—C23178.7 (3)
C4—C5—C6—C7177.9 (3)O1—C22—C23—C24179.3 (3)
C14—C5—C6—C71.4 (5)C21—C22—C23—C240.6 (5)
C9—N2—C6—C5178.4 (3)C22—C23—C24—C250.6 (5)
B1—N2—C6—C52.9 (4)C23—C24—C25—C260.2 (5)
C9—N2—C6—C70.3 (3)C24—C25—C26—C210.4 (5)
B1—N2—C6—C7175.3 (3)C22—C21—C26—C250.4 (5)
C5—C6—C7—C8178.0 (3)C20—C21—C26—C25178.3 (3)
N2—C6—C7—C80.1 (3)C1—N1—B1—F156.8 (4)
C5—C6—C7—C123.2 (6)C4—N1—B1—F1121.7 (3)
N2—C6—C7—C12179.0 (3)C1—N1—B1—F262.7 (4)
C6—C7—C8—C90.1 (4)C4—N1—B1—F2118.8 (3)
C12—C7—C8—C9178.9 (3)C1—N1—B1—N2176.9 (3)
C6—N2—C9—C80.3 (3)C4—N1—B1—N21.6 (4)
B1—N2—C9—C8175.1 (3)C9—N2—B1—F161.3 (4)
C6—N2—C9—C13178.5 (3)C6—N2—B1—F1124.0 (3)
B1—N2—C9—C136.1 (5)C9—N2—B1—F257.9 (4)
C7—C8—C9—N20.2 (4)C6—N2—B1—F2116.8 (3)
C7—C8—C9—C13178.5 (3)C9—N2—B1—N1178.2 (3)
C6—C5—C14—C1978.7 (4)C6—N2—B1—N13.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.892.618 (4)145
C16—H16···F1i0.952.533.150 (5)123
C24—H24···F1ii0.952.373.235 (5)151
Symmetry codes: (i) x1, y, z; (ii) x2, y1, z.

Experimental details

Crystal data
Chemical formulaC26H24BF2N3O
Mr443.29
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.8920 (15), 10.7480 (17), 12.9230 (18)
α, β, γ (°)110.258 (9), 90.952 (6), 108.408 (7)
V3)1088.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn724 CCD-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12167, 5171, 2822
Rint0.054
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.217, 1.09
No. of reflections5171
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.44

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.841.892.618 (4)145
 

Acknowledgements

We gratefully acknowledge the Analysis Center of Nankai University.

References

First citationBoens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130–1172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFan, J., Liu, X., Hu, M., Zhu, H., Song, F. & Peng, X. (2012). Anal. Chim. Acta, 735, 107–113.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Q., Guo, Y. & Shao, S. (2012). Sens. Actuators B, 171, 872–877.  Web of Science CrossRef Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, H., Zhang, S., Liu, H., Wang, Y., Shen, Z., Liu, C. & You, X. (2009). J. Phys. Chem. A 113, 14081–14086.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds