organic compounds
rac-1-(5-Bromo-2-hydroxyphenyl)-1-oxopropan-2-yl morpholine-4-carbodithioate
aDepartment of Chemistry, "Al. I. Cuza" University Iasi, 11 Carol I Bvd, Iasi 700506, Romania, and bChemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany
*Correspondence e-mail: lbirsa@uaic.ro
In the racemic title compound, C14H16BrNO3S2, synthesized from the corresponding ω-bromopropiophenone, the dihedral angle between the plane of the phenol group and that of the planar section [maximum deviation = 0.040 (2) Å] of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. A strong intramolecular phenol O—H⋯O hydrogen bond if present in the molecule. In the crystal, only weak C—H⋯S and C—H⋯O interactions are found.
Related literature
For the synthesis and applications of dithiocarbamates, see: Buu-Hoi & Lavit (1955); WHO (1998). For applications of 1,3-dithiolium salts, see: Narita & Pittman (1976); Birsa & Asaftei (2008). For the structure of a related morpholine-4-carbodithioate, see: Bahrin et al. (2012).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536813017509/zs2265sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813017509/zs2265Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813017509/zs2265Isup3.cml
To a solution of 0.924 g (3 mmol) 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) in 10 ml of acetone was added a solution of 0.75 g (3 mmol) morpholinium morpholine-4-carbodithioate in 10 ml acetone-water (1:1). The reaction mixture was heated at reflux for 10 min, cooled to room temperature and then poured into water. The precipitate was filtered, washed with water and dried (m.p. 412–413 K). IR (ATR): νmax 2852, 1643, 1466, 1424, 1258, 1228, 1111, 999, 624, 543 cm-1. 1H NMR (300 MHz, DMSO-d6): δ = 1.57 (d, 3H, CH3), 3.74 (m, 4H, 2CH2-O), 4.09 (m, 4H, 2CH2-N), 5.75 (q, 1H, CH), 6.88 (d, 3 J=8.0 Hz, 1H), 7.53 (dd, 3 J=8.0 Hz, 4 J=1.1 Hz, 1H), 8.04 (d, 4 J=1.1 Hz, 1H), 11.04 (s, 1H, OH). 13C{1H} NMR (75 MHz, DMSO-d6): δ = 17.2 (q), 51.2 (d), 52.3 (t), 66.7 (t), 111.3 (s), 119.8 (d), 121.1 (s), 133.0 (d), 133.3 (d), 162.4 (s), 194.4 (s), 203.5 (s).
The C-bound H-atoms were included at calculated positions and treated using a riding model, with aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å and methine C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C), or with methyl C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The phenolic H-atom (H1) was free refined.
Dithiocarbamates have important uses as chemical precursors, effluent additives, agricultural pesticides, and in experimental and clinical medicine (WHO, 1998). In particular, phenacyldithiocarbamates are important precursors of 1,3-dithiolium salts (Birsa & Asaftei, 2008), which in turn are well known precursors of tetrathiafulvalenes (Narita & Pittman, 1976). The racemic title compound C14H16BrNO3S2 has been synthesized by the reaction of 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) with a salt of morpholine-4-carbodithioate. In this compound (Fig. 1), the dihedral angle between the phenolic ring system and the plane defined by atoms S1,S2,C9,C10,C13 of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. The maximum deviation from the least-squares plane to this fragment is 0.040 (2) Å (C9). A strong intramolecular hydrogen bond between the phenolic O1—H group and a carbonyl O-atom acceptor atom of the side chain (O2) is present (Table 1). In the crystal there is a weak intermolecular C4—H···S2i association [3.712 (3)Å] and weak C3—H···O3ii and C12—H···O1iii hydrogen bonds [3.443 (4) and 3.454(4 Å, respectively] (for symmetry codes, see Table 1).
For the synthesis and applications of dithiocarbamates, see: Buu-Hoi & Lavit (1955); WHO (1998). For applications of 1,3-dithiolium salts, see: Narita & Pittman (1976); Birsa & Asaftei (2008). For the structure of a related morpholine-4-carbodithioate, see: Bahrin et al. (2012)
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with thermal ellipsoids drawn at the 50% probability level. |
C14H16BrNO3S2 | F(000) = 792 |
Mr = 390.31 | Dx = 1.640 Mg m−3 |
Monoclinic, P21/c | Melting point = 412–413 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 11.182 (2) Å | Cell parameters from 26120 reflections |
b = 19.660 (4) Å | θ = 2.2–29.7° |
c = 7.4593 (15) Å | µ = 2.87 mm−1 |
β = 105.44 (3)° | T = 153 K |
V = 1580.6 (5) Å3 | Prism, colourless |
Z = 4 | 0.54 × 0.48 × 0.30 mm |
Stoe IPDS 2T area-detector diffractometer | 4246 independent reflections |
Radiation source: fine-focus sealed tube | 3807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.2°, θmin = 2.8° |
rotation method scans | h = −15→13 |
Absorption correction: for a sphere [modification of the interpolation procedure of Dwiggins (1975)] | k = −25→26 |
Tmin = 0.114, Tmax = 0.140 | l = −10→10 |
17019 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0355P)2 + 1.2363P] where P = (Fo2 + 2Fc2)/3 |
4246 reflections | (Δ/σ)max = 0.001 |
195 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.78 e Å−3 |
C14H16BrNO3S2 | V = 1580.6 (5) Å3 |
Mr = 390.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.182 (2) Å | µ = 2.87 mm−1 |
b = 19.660 (4) Å | T = 153 K |
c = 7.4593 (15) Å | 0.54 × 0.48 × 0.30 mm |
β = 105.44 (3)° |
Stoe IPDS 2T area-detector diffractometer | 4246 independent reflections |
Absorption correction: for a sphere [modification of the interpolation procedure of Dwiggins (1975)] | 3807 reflections with I > 2σ(I) |
Tmin = 0.114, Tmax = 0.140 | Rint = 0.072 |
17019 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.71 e Å−3 |
4246 reflections | Δρmin = −0.78 e Å−3 |
195 parameters |
Experimental. Absorption correction: interpolation using International Tables Vol C, Table 6.3.3.3 for values of muR in the range 0-2.5, and International Tables Vol. II, Table 5.3.6 B for µR in the range 2.6-10.0. The interpolation procedure (Dwiggins, 1975) was used with some modification. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N | 0.7046 (2) | 0.59260 (10) | −0.3669 (3) | 0.0291 (4) | |
Br | 0.94733 (3) | 0.200387 (14) | 0.15953 (5) | 0.04007 (10) | |
S1 | 0.82823 (6) | 0.55807 (3) | −0.03082 (8) | 0.02727 (13) | |
S2 | 0.72078 (6) | 0.45824 (3) | −0.33614 (9) | 0.03161 (15) | |
O1 | 0.50712 (18) | 0.37914 (11) | 0.1313 (3) | 0.0344 (4) | |
H1 | 0.525 (4) | 0.416 (2) | 0.120 (6) | 0.059 (13)* | |
O2 | 0.63809 (17) | 0.48119 (9) | 0.0864 (3) | 0.0316 (4) | |
O3 | 0.6883 (2) | 0.70107 (9) | −0.6200 (3) | 0.0378 (5) | |
C1 | 0.7188 (2) | 0.36994 (12) | 0.1107 (3) | 0.0243 (4) | |
C2 | 0.6083 (2) | 0.34177 (13) | 0.1327 (3) | 0.0269 (5) | |
C3 | 0.5990 (3) | 0.27144 (14) | 0.1556 (4) | 0.0320 (5) | |
H3 | 0.5233 | 0.2522 | 0.1665 | 0.038* | |
C4 | 0.6994 (3) | 0.23020 (13) | 0.1624 (4) | 0.0320 (5) | |
H4 | 0.6934 | 0.1826 | 0.1794 | 0.038* | |
C5 | 0.8095 (2) | 0.25820 (12) | 0.1445 (3) | 0.0281 (5) | |
C6 | 0.8199 (2) | 0.32679 (13) | 0.1174 (3) | 0.0269 (5) | |
H6 | 0.8955 | 0.3450 | 0.1031 | 0.032* | |
C7 | 0.7261 (2) | 0.44422 (12) | 0.0859 (3) | 0.0246 (4) | |
C8 | 0.8494 (2) | 0.47533 (12) | 0.0777 (3) | 0.0255 (4) | |
H8 | 0.8923 | 0.4444 | 0.0084 | 0.031* | |
C9 | 0.7432 (2) | 0.53841 (11) | −0.2621 (3) | 0.0238 (4) | |
C10 | 0.7202 (3) | 0.66338 (12) | −0.3028 (4) | 0.0359 (6) | |
H10A | 0.7798 | 0.6655 | −0.1782 | 0.043* | |
H10B | 0.6397 | 0.6816 | −0.2927 | 0.043* | |
C11 | 0.7672 (3) | 0.70563 (12) | −0.4379 (4) | 0.0311 (5) | |
H11A | 0.7733 | 0.7537 | −0.3972 | 0.037* | |
H11B | 0.8513 | 0.6900 | −0.4379 | 0.037* | |
C12 | 0.6805 (3) | 0.63236 (14) | −0.6823 (4) | 0.0393 (7) | |
H12A | 0.7643 | 0.6159 | −0.6817 | 0.047* | |
H12B | 0.6274 | 0.6299 | −0.8116 | 0.047* | |
C13 | 0.6270 (3) | 0.58721 (13) | −0.5588 (4) | 0.0353 (6) | |
H13A | 0.5411 | 0.6015 | −0.5652 | 0.042* | |
H13B | 0.6249 | 0.5394 | −0.6016 | 0.042* | |
C14 | 0.9305 (3) | 0.48568 (15) | 0.2771 (4) | 0.0332 (5) | |
H14A | 0.8848 | 0.5126 | 0.3476 | 0.050* | |
H14B | 1.0067 | 0.5097 | 0.2740 | 0.050* | |
H14C | 0.9517 | 0.4413 | 0.3372 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.0470 (13) | 0.0183 (9) | 0.0238 (9) | −0.0032 (8) | 0.0125 (9) | −0.0015 (7) |
Br | 0.03949 (16) | 0.03294 (15) | 0.04765 (17) | 0.00946 (11) | 0.01139 (12) | 0.00128 (11) |
S1 | 0.0348 (3) | 0.0231 (3) | 0.0248 (3) | −0.0061 (2) | 0.0095 (2) | −0.0022 (2) |
S2 | 0.0381 (3) | 0.0189 (2) | 0.0340 (3) | −0.0042 (2) | 0.0029 (3) | −0.0027 (2) |
O1 | 0.0267 (9) | 0.0330 (10) | 0.0462 (11) | −0.0017 (7) | 0.0143 (8) | 0.0047 (8) |
O2 | 0.0280 (9) | 0.0295 (9) | 0.0393 (10) | 0.0013 (7) | 0.0127 (8) | 0.0029 (7) |
O3 | 0.0579 (13) | 0.0268 (9) | 0.0293 (9) | 0.0021 (8) | 0.0125 (9) | 0.0056 (7) |
C1 | 0.0268 (11) | 0.0257 (10) | 0.0202 (9) | −0.0017 (8) | 0.0058 (8) | 0.0018 (8) |
C2 | 0.0256 (11) | 0.0304 (11) | 0.0241 (10) | −0.0029 (9) | 0.0056 (9) | 0.0017 (9) |
C3 | 0.0311 (12) | 0.0326 (12) | 0.0329 (12) | −0.0058 (10) | 0.0096 (10) | 0.0015 (10) |
C4 | 0.0391 (14) | 0.0263 (11) | 0.0300 (12) | −0.0037 (10) | 0.0080 (11) | 0.0019 (9) |
C5 | 0.0326 (12) | 0.0269 (11) | 0.0242 (11) | 0.0037 (9) | 0.0063 (9) | 0.0013 (9) |
C6 | 0.0257 (11) | 0.0294 (11) | 0.0245 (10) | −0.0014 (9) | 0.0049 (9) | −0.0002 (9) |
C7 | 0.0247 (11) | 0.0260 (10) | 0.0232 (10) | −0.0024 (8) | 0.0067 (8) | 0.0014 (8) |
C8 | 0.0254 (11) | 0.0263 (10) | 0.0256 (10) | −0.0020 (9) | 0.0082 (9) | 0.0013 (8) |
C9 | 0.0271 (11) | 0.0206 (9) | 0.0263 (10) | −0.0040 (8) | 0.0117 (9) | −0.0005 (8) |
C10 | 0.0671 (19) | 0.0182 (10) | 0.0289 (12) | −0.0029 (11) | 0.0240 (13) | 0.0000 (9) |
C11 | 0.0418 (14) | 0.0247 (11) | 0.0306 (12) | −0.0031 (10) | 0.0161 (11) | −0.0006 (9) |
C12 | 0.062 (2) | 0.0291 (12) | 0.0234 (11) | 0.0014 (12) | 0.0061 (12) | −0.0007 (9) |
C13 | 0.0399 (14) | 0.0272 (12) | 0.0335 (13) | −0.0032 (10) | 0.0006 (11) | 0.0011 (10) |
C14 | 0.0287 (12) | 0.0398 (14) | 0.0292 (11) | −0.0039 (10) | 0.0044 (10) | 0.0007 (10) |
N—C9 | 1.324 (3) | C4—H4 | 0.9500 |
N—C10 | 1.467 (3) | C5—C6 | 1.373 (3) |
N—C13 | 1.467 (3) | C6—H6 | 0.9500 |
Br—C5 | 1.894 (3) | C7—C8 | 1.524 (3) |
S1—C9 | 1.776 (2) | C8—C14 | 1.536 (3) |
S1—C8 | 1.804 (2) | C8—H8 | 1.0000 |
S2—C9 | 1.667 (2) | C10—C11 | 1.504 (3) |
O1—C2 | 1.346 (3) | C10—H10A | 0.9900 |
O1—H1 | 0.77 (4) | C10—H10B | 0.9900 |
O2—C7 | 1.224 (3) | C11—H11A | 0.9900 |
O3—C11 | 1.412 (3) | C11—H11B | 0.9900 |
O3—C12 | 1.424 (3) | C12—C13 | 1.512 (4) |
C1—C6 | 1.403 (3) | C12—H12A | 0.9900 |
C1—C2 | 1.404 (3) | C12—H12B | 0.9900 |
C1—C7 | 1.477 (3) | C13—H13A | 0.9900 |
C2—C3 | 1.400 (4) | C13—H13B | 0.9900 |
C3—C4 | 1.375 (4) | C14—H14A | 0.9800 |
C3—H3 | 0.9500 | C14—H14B | 0.9800 |
C4—C5 | 1.387 (4) | C14—H14C | 0.9800 |
C9—N—C10 | 125.4 (2) | N—C9—S2 | 124.63 (19) |
C9—N—C13 | 122.2 (2) | N—C9—S1 | 113.86 (17) |
C10—N—C13 | 112.0 (2) | S2—C9—S1 | 121.47 (14) |
C9—S1—C8 | 102.22 (11) | N—C10—C11 | 109.7 (2) |
C2—O1—H1 | 106 (3) | N—C10—H10A | 109.7 |
C11—O3—C12 | 110.0 (2) | C11—C10—H10A | 109.7 |
C6—C1—C2 | 118.9 (2) | N—C10—H10B | 109.7 |
C6—C1—C7 | 122.1 (2) | C11—C10—H10B | 109.7 |
C2—C1—C7 | 118.9 (2) | H10A—C10—H10B | 108.2 |
O1—C2—C3 | 116.8 (2) | O3—C11—C10 | 111.7 (2) |
O1—C2—C1 | 123.2 (2) | O3—C11—H11A | 109.3 |
C3—C2—C1 | 120.0 (2) | C10—C11—H11A | 109.3 |
C4—C3—C2 | 120.0 (2) | O3—C11—H11B | 109.3 |
C4—C3—H3 | 120.0 | C10—C11—H11B | 109.3 |
C2—C3—H3 | 120.0 | H11A—C11—H11B | 107.9 |
C3—C4—C5 | 120.0 (2) | O3—C12—C13 | 111.0 (2) |
C3—C4—H4 | 120.0 | O3—C12—H12A | 109.4 |
C5—C4—H4 | 120.0 | C13—C12—H12A | 109.4 |
C6—C5—C4 | 121.1 (2) | O3—C12—H12B | 109.4 |
C6—C5—Br | 119.9 (2) | C13—C12—H12B | 109.4 |
C4—C5—Br | 119.03 (19) | H12A—C12—H12B | 108.0 |
C5—C6—C1 | 120.0 (2) | N—C13—C12 | 109.0 (2) |
C5—C6—H6 | 120.0 | N—C13—H13A | 109.9 |
C1—C6—H6 | 120.0 | C12—C13—H13A | 109.9 |
O2—C7—C1 | 121.1 (2) | N—C13—H13B | 109.9 |
O2—C7—C8 | 119.9 (2) | C12—C13—H13B | 109.9 |
C1—C7—C8 | 118.8 (2) | H13A—C13—H13B | 108.3 |
C7—C8—C14 | 108.8 (2) | C8—C14—H14A | 109.5 |
C7—C8—S1 | 111.58 (17) | C8—C14—H14B | 109.5 |
C14—C8—S1 | 106.75 (17) | H14A—C14—H14B | 109.5 |
C7—C8—H8 | 109.9 | C8—C14—H14C | 109.5 |
C14—C8—H8 | 109.9 | H14A—C14—H14C | 109.5 |
S1—C8—H8 | 109.9 | H14B—C14—H14C | 109.5 |
C6—C1—C2—O1 | 178.9 (2) | O2—C7—C8—S1 | −25.7 (3) |
C7—C1—C2—O1 | 0.4 (3) | C1—C7—C8—S1 | 159.95 (17) |
C6—C1—C2—C3 | −1.8 (3) | C9—S1—C8—C7 | −65.12 (19) |
C7—C1—C2—C3 | 179.7 (2) | C9—S1—C8—C14 | 176.19 (17) |
O1—C2—C3—C4 | −178.6 (2) | C10—N—C9—S2 | 178.1 (2) |
C1—C2—C3—C4 | 2.1 (4) | C13—N—C9—S2 | 5.6 (4) |
C2—C3—C4—C5 | −0.7 (4) | C10—N—C9—S1 | −4.1 (3) |
C3—C4—C5—C6 | −0.9 (4) | C13—N—C9—S1 | −176.5 (2) |
C3—C4—C5—Br | 178.7 (2) | C8—S1—C9—N | 173.43 (19) |
C4—C5—C6—C1 | 1.2 (4) | C8—S1—C9—S2 | −8.64 (18) |
Br—C5—C6—C1 | −178.47 (18) | C9—N—C10—C11 | 133.4 (3) |
C2—C1—C6—C5 | 0.2 (3) | C13—N—C10—C11 | −53.5 (3) |
C7—C1—C6—C5 | 178.6 (2) | C12—O3—C11—C10 | −60.2 (3) |
C6—C1—C7—O2 | −177.6 (2) | N—C10—C11—O3 | 56.1 (3) |
C2—C1—C7—O2 | 0.8 (3) | C11—O3—C12—C13 | 61.1 (3) |
C6—C1—C7—C8 | −3.3 (3) | C9—N—C13—C12 | −132.4 (3) |
C2—C1—C7—C8 | 175.1 (2) | C10—N—C13—C12 | 54.3 (3) |
O2—C7—C8—C14 | 91.8 (3) | O3—C12—C13—N | −57.7 (3) |
C1—C7—C8—C14 | −82.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.76 (4) | 1.86 (4) | 2.558 (3) | 151 (5) |
C4—H4···S2i | 0.95 | 2.79 | 3.712 (3) | 164 |
C3—H3···O3ii | 0.95 | 2.51 | 3.443 (4) | 168 |
C12—H12B···O1iii | 0.99 | 2.46 | 3.454 (4) | 178 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z−1/2; (iii) −x+1, −y+1, −z−1. |
Experimental details
Crystal data | |
Chemical formula | C14H16BrNO3S2 |
Mr | 390.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 153 |
a, b, c (Å) | 11.182 (2), 19.660 (4), 7.4593 (15) |
β (°) | 105.44 (3) |
V (Å3) | 1580.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.87 |
Crystal size (mm) | 0.54 × 0.48 × 0.30 |
Data collection | |
Diffractometer | Stoe IPDS 2T area-detector |
Absorption correction | For a sphere [modification of the interpolation procedure of Dwiggins (1975)] |
Tmin, Tmax | 0.114, 0.140 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17019, 4246, 3807 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.102, 1.16 |
No. of reflections | 4246 |
No. of parameters | 195 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.71, −0.78 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.76 (4) | 1.86 (4) | 2.558 (3) | 151 (5) |
C4—H4···S2i | 0.95 | 2.79 | 3.712 (3) | 164 |
C3—H3···O3ii | 0.95 | 2.51 | 3.443 (4) | 168 |
C12—H12B···O1iii | 0.99 | 2.46 | 3.454 (4) | 178 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z−1/2; (iii) −x+1, −y+1, −z−1. |
Acknowledgements
Part of this work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, project No. 51/2012.
References
Bahrin, L. G., Jones, P. G. & Hopf, H. (2012). Beilstein J. Org. Chem. 8, 1999–2003. Web of Science CSD CrossRef CAS PubMed Google Scholar
Birsa, M. L. & Asaftei, I. V. (2008). Monatsh. Chem. 139, 1433–1438. Web of Science CrossRef CAS Google Scholar
Buu-Hoi, Ng. Ph. & Lavit, D. (1955). J. Chem. Soc., pp. 18–20. Google Scholar
Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148. CrossRef IUCr Journals Web of Science Google Scholar
Narita, M. & Pittman, C. U. Jr (1976). Synthesis, pp. 489–514. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
WHO (1998). http://www.inchem.org/documents/ehc/ehc/ehc78.htm. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dithiocarbamates have important uses as chemical precursors, effluent additives, agricultural pesticides, and in experimental and clinical medicine (WHO, 1998). In particular, phenacyldithiocarbamates are important precursors of 1,3-dithiolium salts (Birsa & Asaftei, 2008), which in turn are well known precursors of tetrathiafulvalenes (Narita & Pittman, 1976). The racemic title compound C14H16BrNO3S2 has been synthesized by the reaction of 2-bromo-1-(5-bromo-2-hydroxyphenyl)-propan-1-one (Buu-Hoi & Lavit, 1955) with a salt of morpholine-4-carbodithioate. In this compound (Fig. 1), the dihedral angle between the phenolic ring system and the plane defined by atoms S1,S2,C9,C10,C13 of the morpholine-4-carbodithiolate moiety is 76.36 (10)°. The maximum deviation from the least-squares plane to this fragment is 0.040 (2) Å (C9). A strong intramolecular hydrogen bond between the phenolic O1—H group and a carbonyl O-atom acceptor atom of the side chain (O2) is present (Table 1). In the crystal there is a weak intermolecular C4—H···S2i association [3.712 (3)Å] and weak C3—H···O3ii and C12—H···O1iii hydrogen bonds [3.443 (4) and 3.454(4 Å, respectively] (for symmetry codes, see Table 1).