organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Diiso­propyl­phen­yl)-1H-benzimidazole

aPharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, People's Republic of China
*Correspondence e-mail: puma_0003@163.com

(Received 19 June 2013; accepted 23 July 2013; online 27 July 2013)

In the title compound, C19H22N2, both the benzimidazole unit and the 2,6-diiso­propyl­phenyl group are essentially planar [maximum deviations from the least-squares planes of 0.005 (1) and 0.009 (1) Å, respectively]. The dihedral angle between the two planes is 79.6 (7)°. In the crystal, mol­ecules are linked into chains along the a-axis direction by weak C—H⋯N inter­actions. The crystal structure also features C—H⋯π inter­actions, which link the chains into a three-dimensional network.

Related literature

For the properties of related compounds, see: Shi et al. (2013[Shi, H., Wu, T., Jiang, P., Jin, X. & Zhu, H. (2013). Asian J. Chem. 25, 4481-4486.]); Cross et al. (1995[Cross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526-2532.]); Akpinar et al. (2010[Akpinar, H., Balan, A., Baran, D., Unver, E. K. & Toppare, L. (2010). Polymer, 51, 6123-6131.]); Wang et al. (2007[Wang, H., Li, M., Shao, M. & He, X. (2007). Polyhedron, 26, 5171-5176.]); Mason et al. (1999[Mason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hume, C. & Labaudiniere, R. F. (1999). J. Med. Chem. 42, 3251-3264.]). For bond lengths and angles in related structures, see: Jayamoorthy et al. (2013[Jayamoorthy, K., Mohandas, T., Sakthivel, P. & Jayabharathi, J. (2013). Acta Cryst. E69, o244.]); Fathima et al. (2013[Fathima, N., Krishnamurthy, M. S. & Begum, N. S. (2013). Acta Cryst. E69, o264.]); Geiger & Nellist (2013[Geiger, D. K. & Nellist, M. R. (2013). Acta Cryst. E69, o807.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2

  • Mr = 278.39

  • Orthorhombic, P 21 21 21

  • a = 6.6471 (8) Å

  • b = 14.1216 (18) Å

  • c = 17.285 (2) Å

  • V = 1622.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.44 × 0.42 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.982

  • 9716 measured reflections

  • 3551 independent reflections

  • 3133 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.08

  • 3551 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8/C9/C13–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.95 2.47 3.4040 (18) 168
C14—H14⋯Cg3ii 0.95 2.68 3.5908 (16) 150
C18—H18BCg2iii 0.98 2.79 3.5314 (17) 125
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole is one of the most important organic intermediates in drug design, in light of the affinity it displays towards some enzymes and protein receptors (Mason et al., 1999). Our interest is focused on the design and synthesis of benzimidazole derivatives with various ancillary ligands, and their application in antioxidant activities. Herein, we report the synthesis and structure of the title compound (I). Its molecular structure is shown in Fig.1. Bond lengths and angles of the benzimidazole group are in good agreement with those observed in other benzimidazole derivatives (Jayamoorthy et al., 2013; Fathima et al., 2013; Geiger et al., 2013). Both the benzimidazole unit and the 2, 6-diisopropylphenyl groups are essentially planar (max. deviations from the L.S. plane: 0.005 (1) and 0.009 (1)Å, for atoms C7 and C9, respectively). The dihedral angle between both planes is 100.4° (7). In the crystal structure, the molecules are linked into chains along the a axis by intermolecular C—H···N hydrogen bonds (Table 1). The structure is further stabilized by weak intermolecular C—H···Cg interactions linking chains into a 3D network (Table 1 and Fig 2).

Related literature top

For the properties of related compounds, see: Shi et al. (2013); Cross et al. (1995); Akpinar et al. (2010); Wang et al. (2007), Mason et al. (1999). For bond lengths and angles in related structures, see: Jayamoorthy et al. (2013); Fathima et al. (2013); Geiger & Nellist (2013).

Experimental top

N-(2-bromophenyl)-N'-(2, 6-diisopropylphenyl)-Methanimidamide, (1.65 g, 4.58 mmol, 1 eq.) was dissolved in 18.5 ml DMSO. CuI (174 mg, 0.92 mmol, 20 mol%) and DBU (1.37 ml, 1.39 g, 9.16 mmol, 2 eq.) were added and the reaction was stirred for 3 h at 110 °C. H2O(160 ml) and acetoacetate (160 ml) were added and the layers were separated. The aqueous layer was extracted with acetoacetate (2 τimes 20 ml), the combined organic layers were dried over Na2SO4. The crude mixture was purified by column chromatography to afford the benzimidazole (1.22 g, 96%). Single crystals were grown in ethanol as a solvent at room temperature.

Refinement top

C-bound H-atoms were geometrically positioned (C–H 0.93 or 0.98 Å for aromatic or methyl C atoms respectively) and refined using a riding model, with Uiso = 1.2/1.5Ueq (C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of (I). Dashed lines indicate intermolecular hydrogen bonding interactions.
1-(2,6-Diisopropylphenyl)-1H-benzimidazole top
Crystal data top
C19H22N2F(000) = 600
Mr = 278.39Dx = 1.140 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5376 reflections
a = 6.6471 (8) Åθ = 2.4–27.1°
b = 14.1216 (18) ŵ = 0.07 mm1
c = 17.285 (2) ÅT = 173 K
V = 1622.5 (4) Å3Block, colorless
Z = 40.44 × 0.42 × 0.28 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3551 independent reflections
Radiation source: fine-focus sealed tube3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0 pixels mm-1θmax = 27.1°, θmin = 1.9°
phi and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1816
Tmin = 0.971, Tmax = 0.982l = 1822
9716 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.2264P]
where P = (Fo2 + 2Fc2)/3
3551 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C19H22N2V = 1622.5 (4) Å3
Mr = 278.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6471 (8) ŵ = 0.07 mm1
b = 14.1216 (18) ÅT = 173 K
c = 17.285 (2) Å0.44 × 0.42 × 0.28 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3133 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.020
9716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
3551 reflectionsΔρmin = 0.16 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2274 (2)0.79599 (10)0.29080 (8)0.0303 (3)
H11.29200.78850.33940.036*
N11.32623 (17)0.80167 (9)0.22581 (7)0.0335 (3)
C21.17791 (19)0.81252 (9)0.17010 (8)0.0262 (3)
N21.02227 (16)0.80177 (8)0.28307 (6)0.0243 (2)
C31.1940 (2)0.82181 (10)0.08970 (8)0.0327 (3)
H31.32170.82180.06500.039*
C41.0203 (2)0.83093 (11)0.04764 (8)0.0366 (3)
H41.02850.83750.00700.044*
C50.8308 (2)0.83080 (11)0.08327 (8)0.0347 (3)
H50.71380.83730.05220.042*
C60.8096 (2)0.82147 (10)0.16281 (8)0.0284 (3)
H60.68140.82110.18720.034*
C70.9866 (2)0.81270 (8)0.20455 (7)0.0234 (3)
C80.87636 (19)0.80084 (9)0.34461 (7)0.0227 (3)
C90.8510 (2)0.88320 (9)0.38878 (7)0.0254 (3)
C100.9634 (2)0.97431 (10)0.37135 (8)0.0324 (3)
H101.03800.96520.32170.039*
C110.8185 (3)1.05673 (13)0.36039 (13)0.0604 (6)
H11A0.72431.04190.31850.091*
H11B0.89461.11400.34720.091*
H11C0.74361.06740.40840.091*
C121.1172 (4)0.99708 (15)0.43400 (12)0.0645 (6)
H12A1.04801.00630.48350.097*
H12B1.18981.05500.42020.097*
H12C1.21270.94450.43860.097*
C130.7136 (2)0.87915 (10)0.44978 (8)0.0303 (3)
H130.69410.93340.48150.036*
C140.6056 (2)0.79775 (11)0.46485 (8)0.0315 (3)
H140.51360.79630.50690.038*
C150.6306 (2)0.71811 (10)0.41892 (8)0.0292 (3)
H150.55320.66300.42920.035*
C160.76747 (19)0.71788 (10)0.35795 (7)0.0249 (3)
C170.8059 (2)0.62843 (10)0.31125 (8)0.0303 (3)
H170.85670.64790.25920.036*
C180.9704 (3)0.56985 (11)0.35044 (10)0.0421 (4)
H18A1.09240.60830.35570.063*
H18B0.99990.51380.31890.063*
H18C0.92440.54990.40180.063*
C190.6166 (3)0.56884 (13)0.29914 (12)0.0534 (5)
H19A0.57190.54320.34890.080*
H19B0.64650.51660.26360.080*
H19C0.51010.60850.27710.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0239 (6)0.0333 (8)0.0338 (7)0.0025 (6)0.0026 (6)0.0005 (6)
N10.0241 (6)0.0388 (7)0.0375 (7)0.0032 (5)0.0041 (5)0.0009 (5)
C20.0238 (6)0.0226 (6)0.0324 (7)0.0001 (5)0.0043 (5)0.0012 (5)
N20.0211 (5)0.0284 (6)0.0234 (5)0.0027 (5)0.0009 (4)0.0005 (4)
C30.0331 (7)0.0323 (8)0.0325 (7)0.0025 (6)0.0124 (6)0.0023 (6)
C40.0451 (9)0.0407 (8)0.0239 (7)0.0053 (7)0.0070 (7)0.0005 (6)
C50.0328 (8)0.0425 (8)0.0286 (7)0.0065 (7)0.0041 (6)0.0019 (6)
C60.0232 (6)0.0348 (8)0.0271 (7)0.0021 (6)0.0015 (5)0.0005 (6)
C70.0265 (6)0.0193 (6)0.0244 (6)0.0011 (5)0.0041 (5)0.0013 (5)
C80.0197 (6)0.0294 (7)0.0189 (6)0.0034 (5)0.0001 (5)0.0015 (5)
C90.0260 (6)0.0271 (7)0.0232 (6)0.0022 (5)0.0026 (5)0.0014 (5)
C100.0404 (8)0.0262 (7)0.0305 (7)0.0017 (6)0.0044 (6)0.0009 (5)
C110.0707 (13)0.0352 (9)0.0754 (13)0.0121 (9)0.0173 (11)0.0173 (9)
C120.0756 (14)0.0544 (12)0.0634 (13)0.0329 (11)0.0177 (11)0.0042 (9)
C130.0354 (7)0.0303 (7)0.0254 (7)0.0052 (6)0.0029 (6)0.0026 (6)
C140.0283 (7)0.0431 (8)0.0232 (7)0.0030 (6)0.0054 (5)0.0025 (6)
C150.0271 (7)0.0322 (7)0.0283 (7)0.0034 (6)0.0003 (6)0.0056 (6)
C160.0249 (6)0.0274 (7)0.0226 (6)0.0028 (5)0.0039 (5)0.0014 (5)
C170.0374 (8)0.0274 (7)0.0262 (7)0.0015 (6)0.0019 (6)0.0018 (5)
C180.0470 (10)0.0309 (8)0.0485 (9)0.0066 (7)0.0081 (8)0.0062 (7)
C190.0466 (10)0.0429 (10)0.0706 (13)0.0067 (8)0.0106 (10)0.0192 (9)
Geometric parameters (Å, º) top
C1—N11.3038 (18)C11—H11A0.9800
C1—N21.3725 (16)C11—H11B0.9800
C1—H10.9500C11—H11C0.9800
N1—C21.3868 (18)C12—H12A0.9800
C2—C31.400 (2)C12—H12B0.9800
C2—C71.4044 (18)C12—H12C0.9800
N2—C71.3865 (16)C13—C141.380 (2)
N2—C81.4396 (15)C13—H130.9500
C3—C41.370 (2)C14—C151.387 (2)
C3—H30.9500C14—H140.9500
C4—C51.402 (2)C15—C161.3924 (19)
C4—H40.9500C15—H150.9500
C5—C61.388 (2)C16—C171.5207 (19)
C5—H50.9500C17—C191.528 (2)
C6—C71.3857 (18)C17—C181.529 (2)
C6—H60.9500C17—H171.0000
C8—C161.3963 (19)C18—H18A0.9800
C8—C91.4013 (18)C18—H18B0.9800
C9—C131.3961 (19)C18—H18C0.9800
C9—C101.5181 (19)C19—H19A0.9800
C10—C111.522 (2)C19—H19B0.9800
C10—C121.524 (2)C19—H19C0.9800
C10—H101.0000
N1—C1—N2114.39 (12)C10—C11—H11C109.5
N1—C1—H1122.8H11A—C11—H11C109.5
N2—C1—H1122.8H11B—C11—H11C109.5
C1—N1—C2104.30 (11)C10—C12—H12A109.5
N1—C2—C3130.20 (12)C10—C12—H12B109.5
N1—C2—C7110.46 (11)H12A—C12—H12B109.5
C3—C2—C7119.33 (12)C10—C12—H12C109.5
C1—N2—C7105.78 (11)H12A—C12—H12C109.5
C1—N2—C8126.64 (11)H12B—C12—H12C109.5
C7—N2—C8127.52 (11)C14—C13—C9121.13 (13)
C4—C3—C2118.11 (13)C14—C13—H13119.4
C4—C3—H3120.9C9—C13—H13119.4
C2—C3—H3120.9C13—C14—C15120.34 (12)
C3—C4—C5121.57 (13)C13—C14—H14119.8
C3—C4—H4119.2C15—C14—H14119.8
C5—C4—H4119.2C14—C15—C16120.90 (13)
C6—C5—C4121.77 (14)C14—C15—H15119.5
C6—C5—H5119.1C16—C15—H15119.5
C4—C5—H5119.1C15—C16—C8117.50 (12)
C7—C6—C5115.96 (12)C15—C16—C17120.90 (12)
C7—C6—H6122.0C8—C16—C17121.48 (11)
C5—C6—H6122.0C16—C17—C19113.06 (12)
C6—C7—N2131.68 (12)C16—C17—C18109.53 (11)
C6—C7—C2123.26 (11)C19—C17—C18110.57 (13)
N2—C7—C2105.06 (11)C16—C17—H17107.8
C16—C8—C9122.96 (11)C19—C17—H17107.8
C16—C8—N2118.61 (11)C18—C17—H17107.8
C9—C8—N2118.43 (11)C17—C18—H18A109.5
C13—C9—C8117.14 (12)C17—C18—H18B109.5
C13—C9—C10120.43 (12)H18A—C18—H18B109.5
C8—C9—C10122.42 (12)C17—C18—H18C109.5
C9—C10—C11111.19 (13)H18A—C18—H18C109.5
C9—C10—C12111.60 (13)H18B—C18—H18C109.5
C11—C10—C12110.58 (15)C17—C19—H19A109.5
C9—C10—H10107.8C17—C19—H19B109.5
C11—C10—H10107.8H19A—C19—H19B109.5
C12—C10—H10107.8C17—C19—H19C109.5
C10—C11—H11A109.5H19A—C19—H19C109.5
C10—C11—H11B109.5H19B—C19—H19C109.5
H11A—C11—H11B109.5
N2—C1—N1—C20.30 (16)C7—N2—C8—C9100.77 (14)
C1—N1—C2—C3179.65 (15)C16—C8—C9—C131.78 (19)
C1—N1—C2—C70.23 (15)N2—C8—C9—C13177.79 (12)
N1—C1—N2—C70.25 (16)C16—C8—C9—C10177.13 (12)
N1—C1—N2—C8177.75 (12)N2—C8—C9—C103.30 (18)
N1—C2—C3—C4179.48 (14)C13—C9—C10—C1154.09 (19)
C7—C2—C3—C40.1 (2)C8—C9—C10—C11124.78 (15)
C2—C3—C4—C50.2 (2)C13—C9—C10—C1269.89 (19)
C3—C4—C5—C60.0 (2)C8—C9—C10—C12111.24 (16)
C4—C5—C6—C70.2 (2)C8—C9—C13—C141.0 (2)
C5—C6—C7—N2179.57 (13)C10—C9—C13—C14177.94 (13)
C5—C6—C7—C20.32 (19)C9—C13—C14—C150.5 (2)
C1—N2—C7—C6179.44 (14)C13—C14—C15—C161.4 (2)
C8—N2—C7—C63.1 (2)C14—C15—C16—C80.60 (19)
C1—N2—C7—C20.09 (14)C14—C15—C16—C17175.54 (13)
C8—N2—C7—C2177.56 (12)C9—C8—C16—C151.00 (18)
N1—C2—C7—C6179.34 (13)N2—C8—C16—C15178.57 (11)
C3—C2—C7—C60.16 (19)C9—C8—C16—C17177.12 (12)
N1—C2—C7—N20.09 (14)N2—C8—C16—C172.45 (18)
C3—C2—C7—N2179.58 (12)C15—C16—C17—C1936.52 (19)
C1—N2—C8—C16103.40 (15)C8—C16—C17—C19147.49 (14)
C7—N2—C8—C1679.63 (16)C15—C16—C17—C1887.28 (16)
C1—N2—C8—C976.19 (17)C8—C16—C17—C1888.71 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8/C9/C13–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.952.473.4040 (18)168
C14—H14···Cg3ii0.952.683.5908 (16)150
C18—H18B···Cg2iii0.982.793.5314 (17)125
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8/C9/C13–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.952.473.4040 (18)168
C14—H14···Cg3ii0.95002.683.5908 (16)150
C18—H18B···Cg2iii0.98002.793.5314 (17)125
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the Foundation for Distinguished Young Talents in Higher Education of Guangdong (No. LYM10091) for financial support.

References

First citationAkpinar, H., Balan, A., Baran, D., Unver, E. K. & Toppare, L. (2010). Polymer, 51, 6123–6131.  CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526–2532.  CrossRef CAS Web of Science Google Scholar
First citationFathima, N., Krishnamurthy, M. S. & Begum, N. S. (2013). Acta Cryst. E69, o264.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013). Acta Cryst. E69, o807.  CSD CrossRef IUCr Journals Google Scholar
First citationJayamoorthy, K., Mohandas, T., Sakthivel, P. & Jayabharathi, J. (2013). Acta Cryst. E69, o244.  CSD CrossRef IUCr Journals Google Scholar
First citationMason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hume, C. & Labaudiniere, R. F. (1999). J. Med. Chem. 42, 3251–3264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, H., Wu, T., Jiang, P., Jin, X. & Zhu, H. (2013). Asian J. Chem. 25, 4481–4486.  CAS Google Scholar
First citationWang, H., Li, M., Shao, M. & He, X. (2007). Polyhedron, 26, 5171–5176.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds