organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Meth­­oxy­benzo­yl)-4-methyl­benzene­sulfonamide

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cUniversity College of Science, Tumkur University, Tumkur, India, dSoild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India, and eDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

(Received 30 June 2013; accepted 10 July 2013; online 17 July 2013)

In the title compound, C15H15NO4S, the dihedral angle between the benzene rings is 88.87 (1)°. In the crystal, adjacent mol­ecules form inversion dimers through pairs of strong N—H⋯O hydrogen bonds, generating R22(8) loops. Two C—H⋯π inter­actions and an aromatic ππ inter­action [centroid–centroid separation = 3.8191 (1) Å] are also observed.

Related literature

For a similar structure, see: Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Triclinic, [P \overline 1]

  • a = 9.2474 (7) Å

  • b = 9.6660 (6) Å

  • c = 9.8764 (8) Å

  • α = 70.268 (6)°

  • β = 64.052 (8)°

  • γ = 86.231 (5)°

  • V = 743.69 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.35 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.950

  • 11424 measured reflections

  • 2610 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.06

  • 2610 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the sulfonyl-bound and carbonyl-bound benzene rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.79 (2) 2.14 (2) 2.920 (2) 170 (2)
C15—H15BCg1ii 0.96 2.77 3.576 (3) 141
C7—H7ACg2iii 0.96 2.94 3.753 (3) 143
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aroyl)-arylsulfonamides (Suchetan et al., 2010), we report here the crystal structure of the title compound (I) (Fig 1).

The conformation of the N—H bond in I is anti to the C=O bond in the side chain, similar to that observed in. N-(benzoyl)-4-methylbenzenesulfonamide (II, Suchetan et al., 2010). Further, the conformation between the N—H bond and the meta-methoxy group in the benzoyl ring is anti.

The dihedral angle between the methyl-substituted benzene ring (maximum deviation from mean plane: 0.007 Å for C5) and the methoxy-substituted benzene ring (maximum deviation from mean plane: 0.005 Å for C13) is 88.87 (1)°. Adjacent molecules form inversion related dimers through strong N—H···O hydrogen bonds, generating R22(8) loops (Fig 2). Two C—H···π interactions and an aromatic π-π interaction (centroid-centroid separation = 3.8191 (1) Å) are also observed in the structure (Fig 3).

Related literature top

For a similar structure, see: Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of 3-methoxybenzoic acid, 4-methylbenzenesulfonamide and phosphorous oxychloride (POCl3) for 2 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The compound obtained was filtered and later dried (Melting point: 405 K.) Colorless prisms of (I) were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines. Carbon bounded hydrogen atoms are ommitted for clarity.
[Figure 3] Fig. 3. Display of C—H···π interactions and stacking of molecules through π-π interactions. Cg1 and Cg2 are the centroids of the sulfonyl bound and carbonyl bound benzene ring respectively. For clarity purpose, the hydrogen atoms not involved in hydrogen bonding are ommitted.
N-(3-Methoxybenzoyl)-4-methylbenzenesulfonamide top
Crystal data top
C15H15NO4SF(000) = 320
Mr = 305.34Prism
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Melting point: 405 K
a = 9.2474 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6660 (6) ÅCell parameters from 1123 reflections
c = 9.8764 (8) Åθ = 2.4–25.0°
α = 70.268 (6)°µ = 0.23 mm1
β = 64.052 (8)°T = 293 K
γ = 86.231 (5)°Prism, colourless
V = 743.69 (11) Å30.35 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
2212 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.925, Tmax = 0.950l = 1111
11424 measured reflections3 standard reflections every 1 reflections
2610 independent reflections intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.194P]
where P = (Fo2 + 2Fc2)/3
2610 reflections(Δ/σ)max = 0.046
196 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H15NO4Sγ = 86.231 (5)°
Mr = 305.34V = 743.69 (11) Å3
Triclinic, P1Z = 2
a = 9.2474 (7) ÅMo Kα radiation
b = 9.6660 (6) ŵ = 0.23 mm1
c = 9.8764 (8) ÅT = 293 K
α = 70.268 (6)°0.35 × 0.28 × 0.22 mm
β = 64.052 (8)°
Data collection top
Bruker APEXII
diffractometer
2212 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
Rint = 0.037
Tmin = 0.925, Tmax = 0.9503 standard reflections every 1 reflections
11424 measured reflections intensity decay: 10%
2610 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2610 reflectionsΔρmin = 0.25 e Å3
196 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HN10.159 (2)0.588 (2)0.975 (3)0.051 (6)*
C10.1161 (2)0.8457 (2)0.6955 (2)0.0476 (5)
C20.0258 (2)0.8795 (3)0.8029 (2)0.0613 (6)
H20.09090.80730.89970.074*
C30.0693 (3)1.0213 (3)0.7648 (3)0.0662 (6)
H30.16461.04420.83710.079*
C40.0256 (2)1.1310 (2)0.6209 (3)0.0564 (5)
C50.1653 (2)1.0931 (2)0.5154 (2)0.0553 (5)
H50.22921.16460.41740.066*
C60.2129 (2)0.9520 (2)0.5511 (2)0.0518 (5)
H60.30840.92910.47910.062*
C70.0228 (3)1.2854 (3)0.5835 (3)0.0798 (7)
H7A0.13801.28220.62200.120*
H7B0.02861.33600.46960.120*
H7C0.00981.33680.63500.120*
C80.3499 (2)0.7247 (2)0.8738 (2)0.0482 (5)
C90.3856 (2)0.6830 (2)1.0147 (2)0.0446 (4)
C100.3358 (2)0.5448 (2)1.1356 (2)0.0513 (5)
H100.27090.47551.13530.062*
C110.3844 (2)0.5127 (2)1.2554 (2)0.0554 (5)
H110.35250.42031.33570.066*
C120.4792 (2)0.6145 (2)1.2591 (2)0.0519 (5)
H120.51050.59101.34110.062*
C130.5272 (2)0.7517 (2)1.1398 (2)0.0508 (5)
C140.4814 (2)0.7857 (2)1.0170 (2)0.0512 (5)
H140.51500.87770.93610.061*
C150.6780 (3)0.8309 (3)1.2494 (3)0.0782 (7)
H15A0.58790.80741.35360.117*
H15B0.74280.91621.22840.117*
H15C0.74210.74881.24620.117*
N10.2204 (2)0.6435 (2)0.8917 (2)0.0519 (4)
O10.03105 (19)0.56323 (17)0.81816 (17)0.0674 (4)
O20.30852 (18)0.65075 (17)0.60995 (16)0.0643 (4)
O30.42784 (17)0.82263 (17)0.74840 (17)0.0633 (4)
O40.6206 (2)0.86118 (18)1.13085 (19)0.0731 (5)
S10.17181 (6)0.66553 (6)0.74433 (6)0.05142 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0453 (10)0.0573 (12)0.0412 (10)0.0008 (8)0.0216 (8)0.0141 (9)
C20.0511 (12)0.0712 (15)0.0451 (11)0.0006 (10)0.0140 (9)0.0093 (10)
C30.0524 (12)0.0811 (17)0.0590 (13)0.0133 (11)0.0192 (11)0.0256 (12)
C40.0553 (12)0.0622 (13)0.0619 (13)0.0095 (10)0.0341 (11)0.0227 (11)
C50.0562 (12)0.0537 (12)0.0494 (11)0.0019 (9)0.0231 (10)0.0091 (9)
C60.0478 (11)0.0584 (12)0.0427 (10)0.0014 (9)0.0168 (9)0.0134 (9)
C70.0820 (17)0.0748 (17)0.0900 (18)0.0235 (14)0.0445 (15)0.0313 (14)
C80.0462 (10)0.0508 (11)0.0453 (11)0.0046 (9)0.0213 (9)0.0124 (9)
C90.0416 (10)0.0490 (11)0.0425 (10)0.0064 (8)0.0192 (8)0.0144 (8)
C100.0537 (11)0.0480 (11)0.0516 (11)0.0014 (9)0.0252 (9)0.0133 (9)
C110.0625 (13)0.0487 (12)0.0494 (11)0.0032 (9)0.0274 (10)0.0064 (9)
C120.0522 (11)0.0606 (13)0.0453 (11)0.0097 (9)0.0257 (9)0.0163 (9)
C130.0486 (11)0.0543 (12)0.0526 (11)0.0042 (9)0.0259 (9)0.0171 (9)
C140.0518 (11)0.0492 (11)0.0501 (11)0.0008 (9)0.0254 (9)0.0094 (9)
C150.0851 (17)0.0866 (18)0.0832 (17)0.0041 (14)0.0573 (15)0.0237 (14)
N10.0531 (10)0.0574 (11)0.0395 (9)0.0067 (8)0.0228 (8)0.0048 (8)
O10.0801 (10)0.0657 (10)0.0571 (9)0.0210 (8)0.0398 (8)0.0038 (7)
O20.0778 (10)0.0666 (10)0.0472 (8)0.0167 (8)0.0259 (7)0.0220 (7)
O30.0605 (9)0.0685 (10)0.0493 (8)0.0100 (7)0.0258 (7)0.0015 (7)
O40.0847 (11)0.0708 (11)0.0749 (10)0.0137 (8)0.0520 (9)0.0113 (8)
S10.0595 (3)0.0537 (3)0.0418 (3)0.0022 (2)0.0265 (2)0.0105 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C9—C101.394 (3)
C1—C21.383 (3)C10—C111.378 (3)
C1—S11.750 (2)C10—H100.9300
C2—C31.377 (3)C11—C121.380 (3)
C2—H20.9300C11—H110.9300
C3—C41.389 (3)C12—C131.381 (3)
C3—H30.9300C12—H120.9300
C4—C51.380 (3)C13—O41.366 (2)
C4—C71.500 (3)C13—C141.385 (3)
C5—C61.383 (3)C14—H140.9300
C5—H50.9300C15—O41.426 (3)
C6—H60.9300C15—H15A0.9600
C7—H7A0.9600C15—H15B0.9600
C7—H7B0.9600C15—H15C0.9600
C7—H7C0.9600N1—S11.6477 (16)
C8—O31.211 (2)N1—HN10.79 (2)
C8—N11.388 (2)O1—S11.4338 (15)
C8—C91.488 (3)O2—S11.4199 (15)
C9—C141.386 (3)
C6—C1—C2120.7 (2)C11—C10—H10120.5
C6—C1—S1120.07 (15)C9—C10—H10120.5
C2—C1—S1119.19 (15)C10—C11—C12121.46 (19)
C3—C2—C1119.2 (2)C10—C11—H11119.3
C3—C2—H2120.4C12—C11—H11119.3
C1—C2—H2120.4C11—C12—C13119.41 (18)
C2—C3—C4121.5 (2)C11—C12—H12120.3
C2—C3—H3119.3C13—C12—H12120.3
C4—C3—H3119.3O4—C13—C12124.67 (18)
C5—C4—C3117.8 (2)O4—C13—C14115.23 (18)
C5—C4—C7121.7 (2)C12—C13—C14120.10 (18)
C3—C4—C7120.5 (2)C13—C14—C9120.09 (18)
C4—C5—C6121.92 (19)C13—C14—H14120.0
C4—C5—H5119.0C9—C14—H14120.0
C6—C5—H5119.0O4—C15—H15A109.5
C1—C6—C5118.76 (19)O4—C15—H15B109.5
C1—C6—H6120.6H15A—C15—H15B109.5
C5—C6—H6120.6O4—C15—H15C109.5
C4—C7—H7A109.5H15A—C15—H15C109.5
C4—C7—H7B109.5H15B—C15—H15C109.5
H7A—C7—H7B109.5C8—N1—S1123.04 (14)
C4—C7—H7C109.5C8—N1—HN1122.9 (15)
H7A—C7—H7C109.5S1—N1—HN1113.9 (15)
H7B—C7—H7C109.5C13—O4—C15118.08 (17)
O3—C8—N1120.27 (18)O2—S1—O1118.61 (10)
O3—C8—C9123.41 (17)O2—S1—N1109.61 (9)
N1—C8—C9116.31 (16)O1—S1—N1103.41 (9)
C14—C9—C10120.02 (17)O2—S1—C1109.64 (9)
C14—C9—C8116.76 (17)O1—S1—C1109.03 (9)
C10—C9—C8123.10 (17)N1—S1—C1105.68 (9)
C11—C10—C9118.92 (18)
C6—C1—C2—C30.4 (3)C11—C12—C13—C140.6 (3)
S1—C1—C2—C3179.73 (17)O4—C13—C14—C9179.59 (17)
C1—C2—C3—C40.2 (3)C12—C13—C14—C90.8 (3)
C2—C3—C4—C50.7 (3)C10—C9—C14—C130.3 (3)
C2—C3—C4—C7178.8 (2)C8—C9—C14—C13176.47 (17)
C3—C4—C5—C61.4 (3)O3—C8—N1—S14.2 (3)
C7—C4—C5—C6178.2 (2)C9—C8—N1—S1175.21 (13)
C2—C1—C6—C50.2 (3)C12—C13—O4—C152.4 (3)
S1—C1—C6—C5179.63 (14)C14—C13—O4—C15177.17 (19)
C4—C5—C6—C11.1 (3)C8—N1—S1—O254.03 (19)
O3—C8—C9—C1418.3 (3)C8—N1—S1—O1178.56 (16)
N1—C8—C9—C14162.34 (17)C8—N1—S1—C164.03 (18)
O3—C8—C9—C10157.8 (2)C6—C1—S1—O27.39 (19)
N1—C8—C9—C1021.6 (3)C2—C1—S1—O2172.45 (15)
C14—C9—C10—C110.5 (3)C6—C1—S1—O1138.75 (16)
C8—C9—C10—C11175.44 (17)C2—C1—S1—O141.08 (18)
C9—C10—C11—C120.7 (3)C6—C1—S1—N1110.66 (17)
C10—C11—C12—C130.2 (3)C2—C1—S1—N169.50 (17)
C11—C12—C13—O4179.91 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the sulfonyl-bound and carbonyl-bound benzene rings respectively.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.79 (2)2.14 (2)2.920 (2)170 (2)
C15—H15B···Cg1ii0.962.773.576 (3)141
C7—H7A···Cg2iii0.962.943.753 (3)143
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the sulfonyl-bound and carbonyl-bound benzene rings respectively.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.79 (2)2.14 (2)2.920 (2)170 (2)
C15—H15B···Cg1ii0.962.773.576 (3)141
C7—H7A···Cg2iii0.962.943.753 (3)143
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2.
 

Acknowledgements

PAS acknowledges the University Grants Commission (UGC), India, for financial support under its Minor Research Project scheme.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds