organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­butyl 7-chloro-1-cyclo­propyl-4-(1,3-di­ethyl-4,6-dioxo-2-sulfanyl­­idene-1,3-diazinan-5-yl­­idene)-6-fluoro-1,4-di­hydro­quinoline-3-carboxyl­ate

aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and bFaculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
*Correspondence e-mail: hadsal2003@yahoo.com

(Received 22 April 2013; accepted 8 June 2013; online 3 July 2013)

The title compound, C25H26Cl2FN3O4S, contains two bio-active moieties (thio­barbituric acid and fluoro­quinolone). In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯F hydrogen bonds, forming two-dimensional slab-like networks lying parallel to the bc plane. The benzene ring substituted by F and Cl atoms and the 4-chloro­butyl group seem to be partly disordered, however attempts to model the disorder were unsuccessful.

Related literature

For the biological activity of fluoro­quinolone derivatives, see: Li et al. (2000[Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.]); Baker et al. (2004[Baker, W. R., Cai, S. P., Dimitroff, M., Fang, L. M., Huh, K. K., Ryckman, D. R., Shang, X., Shawar, R. M. & Therrien, J. H. (2004). J. Med. Chem. 47, 4693-4709.]); Mitscher (2005[Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.]). For the crystal structures of some fluoro­quinolone and 1,3-diethyl-2-thio­barbituric acid derivatives, see: Al-Qawasmeh (2012[Al-Qawasmeh, R. A. (2012). Acta Cryst. E68, o2533.]); Sweidan et al. (2012[Sweidan, K., AlDamen, M. A., Maichle-Mö\, C. & Mubarak, M. S. (2012). J. Chem. Crystallogr. 42, 427-431.]); Shishkin et al. (1997[Shishkin, O. V., Solomovich, E. V., Vakula, V. M. & Yaremenko, F. G. (1997). Russ. Chem. Bull. 46, 1838-1843.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26Cl2FN3O4S

  • Mr = 554.45

  • Monoclinic, C 2/c

  • a = 24.3035 (15) Å

  • b = 13.8310 (8) Å

  • c = 16.4507 (16) Å

  • β = 107.345 (8)°

  • V = 5278.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.606, Tmax = 1.000

  • 12511 measured reflections

  • 4664 independent reflections

  • 2477 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.230

  • S = 1.02

  • 4664 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.98 2.32 3.014 (6) 127
C20—H20A⋯O3ii 0.97 2.56 3.233 (6) 126
C25—H25A⋯F1iii 0.97 2.51 3.371 (10) 148
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A vast number of fluoroquinolones (Baker et al., 2004) such as ciprofloxacin and moxifloxacin have therapeutic efficacy as anti-infective agents (Li et al., 2000; Mitscher, 2005). The prepared molecule contains two bio-active moieties (thiobarbituric acid and fluoroquinolone), which may have a high impact biological effect.

From the X-ray structural analysis, it is interesting to note that this structure presents some zwitterionic character, since the bond length for C3—C10 is 1.449 (5) Å, intermediate between carbon-carbon single bond and double bond, while bond angles around C10 are close to 120°: C13—C10—C11 = 119.8 (4), C11—C10—C3 = 120.5 (4), and C13—C10—C3 = 119.5 (4)°. The crystal structure reveals the negative charge to be localized at the thiobarbituric-acid ring, with a contribution of the enolate form [C10—C11 = 1.418 (6), C10—C13 = 1.406 (6), C11—O1 = 1.231 (5), C13—O2 = 1.229 (5) Å; see Sweidan et al., 2012]. The carbon-sulfur bond length is 1.665 (5) Å, which is close to that observed in a 2-thioxo-1,2,3,4-tetrahydropyrimidine derivative [1.673 (9) Å, Shishkin et al., 1997; see also Al-Qawasmeh, 2012].

The displacement parameters in the 4-chlorobutyl branch are rather high, indicating, together with residual electron density in the vicinity, some degree of disorder. For example, C22—C23 bond length, 1.402 (9) Å, is a bit short for a single C—C bond. After convergence, it seems that benzene ring substituted by F1 and Cl1 could also be partly disordered. However, attempts to model such disordered parts did not improve the picture.

Related literature top

For the biological activity of fluoroquinolone derivatives, see: Li et al. (2000); Baker et al. (2004); Mitscher (2005). For the crystal structures of some fluoroquinolone and 1,3-diethyl-2-thiobarbituric acid derivatives, see: Al-Qawasmeh (2012); Sweidan et al. (2012); Shishkin et al. (1997).

Experimental top

The title compound was prepared as followed: 8 ml of thionyl chloride was added to a solution containing 1.5 g (5.3 mmol) of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid in 15 ml of dry THF. The resulting solution was refluxed for 6 h, then cooled, and evaporated under reduced pressure to remove the excess thionyl chloride. To the resulting residue, a solution of 1,3-diethyl-2-thiobarbituric acid (1.19 g, 6.0 mmol) and 1.5 ml (10.0 mmol) of dry triethylamine in 20 ml of dry THF were added, at room temperature. After stirring overnight, the resulting precipitate was filtered off, washed with H2O/THF (1:2), and dried under reduced pressure. Yield: 1.5 g (51%). This solid was recrystallized from dichloromethane/diethylether, affording brownish crystals. A flat elongated crystal was mounted and data collected using five omega scans and a total of 277 frames with an exposure time of 76 s per frame.

Refinement top

All non-H atoms were refined anisotropically. H atoms were positioned geometrically, with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2), or 0.98 Å (methine CH), and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(carrier atoms) for methyl groups and 1.2Ueq(carrier atoms) otherwise. Highest difference peak and hole in the last difference map are 0.58 and -0.40 e/Å3, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing showing the molecular conformation of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen atoms are represented as small spheres of arbitrary radii.
4-Chlorobutyl 7-chloro-1-cyclopropyl-4-(1,3-diethyl-4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ylidene)-6-fluoro-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C25H26Cl2FN3O4SF(000) = 2304
Mr = 554.45Dx = 1.395 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 2598 reflections
a = 24.3035 (15) Åθ = 2.9–29.0°
b = 13.8310 (8) ŵ = 0.37 mm1
c = 16.4507 (16) ÅT = 293 K
β = 107.345 (8)°Parallelpiped, orange
V = 5278.3 (7) Å30.30 × 0.15 × 0.06 mm
Z = 8
Data collection top
Agilent Xcalibur Eos
diffractometer
4664 independent reflections
Radiation source: Enhance (Mo) X-ray Source2477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 2822
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.606, Tmax = 1.000l = 1918
12511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1011P)2 + 5.5588P]
where P = (Fo2 + 2Fc2)/3
4664 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.40 e Å3
0 constraints
Crystal data top
C25H26Cl2FN3O4SV = 5278.3 (7) Å3
Mr = 554.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.3035 (15) ŵ = 0.37 mm1
b = 13.8310 (8) ÅT = 293 K
c = 16.4507 (16) Å0.30 × 0.15 × 0.06 mm
β = 107.345 (8)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4664 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2477 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 1.000Rint = 0.047
12511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
4664 reflectionsΔρmin = 0.40 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24101 (6)0.17120 (14)0.14821 (12)0.0943 (6)
Cl10.19348 (8)0.14374 (13)0.09519 (18)0.1377 (10)
Cl20.08427 (9)1.00624 (14)0.18342 (15)0.1267 (8)
F10.07857 (15)0.0682 (2)0.1166 (3)0.1128 (14)
O10.03572 (14)0.2291 (3)0.0014 (2)0.0712 (11)
O20.12679 (13)0.4217 (2)0.2354 (2)0.0586 (9)
O30.08993 (13)0.5366 (2)0.0784 (2)0.0578 (9)
O40.06525 (13)0.6089 (2)0.1858 (2)0.0612 (10)
N10.08816 (13)0.4624 (2)0.1034 (2)0.0369 (8)
N20.12960 (16)0.2031 (3)0.0780 (2)0.0483 (10)
N30.17566 (15)0.3066 (3)0.1881 (2)0.0531 (11)
C10.08558 (17)0.3631 (3)0.1035 (3)0.0405 (10)
C20.03227 (17)0.3163 (3)0.1127 (3)0.0390 (10)
C30.01920 (16)0.3715 (3)0.1196 (2)0.0374 (10)
C40.01378 (17)0.4713 (3)0.1244 (3)0.0377 (10)
C50.03978 (18)0.5125 (3)0.1162 (3)0.0401 (10)
H5A0.04180.57940.12000.048*
C60.1360 (2)0.3092 (3)0.0963 (3)0.0552 (13)
H6A0.17100.34050.08870.066*
C70.1331 (2)0.2110 (4)0.1008 (4)0.0736 (17)
C80.0802 (2)0.1650 (4)0.1120 (4)0.0724 (17)
C90.0314 (2)0.2151 (3)0.1193 (3)0.0582 (14)
H9A0.00330.18210.12870.070*
C100.07331 (17)0.3246 (3)0.1239 (3)0.0401 (10)
C110.07575 (18)0.2519 (3)0.0643 (3)0.0462 (11)
C120.1791 (2)0.2288 (4)0.1375 (3)0.0516 (12)
C130.12424 (17)0.3552 (3)0.1849 (3)0.0434 (11)
C140.1290 (2)0.1194 (4)0.0207 (4)0.0677 (15)
H14A0.15610.07110.05170.081*
H14B0.09090.09050.00410.081*
C150.1443 (3)0.1470 (4)0.0569 (4)0.092 (2)
H15A0.14330.09070.09150.138*
H15B0.18230.17430.04090.138*
H15C0.11710.19380.08860.138*
C160.2289 (2)0.3434 (5)0.2500 (4)0.0736 (17)
H16A0.25640.29100.26750.088*
H16B0.22000.36710.30010.088*
C170.2549 (3)0.4222 (6)0.2130 (5)0.107 (2)
H17A0.28930.44460.25450.161*
H17B0.22790.47460.19650.161*
H17C0.26430.39850.16390.161*
C180.14249 (17)0.5130 (3)0.0928 (3)0.0437 (11)
H18A0.15490.51880.14410.052*
C190.1571 (2)0.5954 (4)0.0329 (3)0.0594 (14)
H19A0.17680.65020.04840.071*
H19B0.13020.61160.00160.071*
C200.1889 (2)0.5045 (4)0.0120 (3)0.0610 (14)
H20A0.18170.46470.03240.073*
H20B0.22830.50320.01440.073*
C210.06135 (18)0.5399 (3)0.1271 (3)0.0455 (11)
C220.1124 (3)0.6771 (5)0.1981 (5)0.094 (2)
H22A0.13020.68660.25870.113*
H22B0.14120.64960.17490.113*
C230.0952 (3)0.7671 (6)0.1597 (6)0.130 (3)
H23A0.08250.75780.09850.156*
H23B0.12880.80870.17280.156*
C240.0490 (3)0.8188 (5)0.1840 (6)0.112 (2)
H24A0.06100.82830.24520.134*
H24B0.01460.77890.16940.134*
C250.0342 (4)0.9178 (6)0.1395 (6)0.145 (4)
H25A0.00320.93850.14290.174*
H25B0.03140.91060.07980.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0580 (9)0.1077 (14)0.1167 (15)0.0380 (9)0.0255 (9)0.0067 (10)
Cl10.0780 (11)0.0645 (11)0.284 (3)0.0280 (9)0.0751 (15)0.0082 (14)
Cl20.1264 (17)0.0849 (14)0.161 (2)0.0058 (12)0.0313 (15)0.0051 (12)
F10.094 (3)0.0357 (18)0.222 (5)0.0059 (17)0.067 (3)0.003 (2)
O10.052 (2)0.082 (3)0.072 (3)0.0024 (19)0.0056 (19)0.036 (2)
O20.0491 (19)0.075 (2)0.043 (2)0.0087 (17)0.0004 (16)0.0185 (17)
O30.0477 (18)0.070 (2)0.060 (2)0.0072 (17)0.0225 (17)0.0007 (17)
O40.0503 (19)0.046 (2)0.090 (3)0.0131 (16)0.0254 (19)0.0231 (18)
N10.0313 (18)0.036 (2)0.045 (2)0.0007 (16)0.0143 (16)0.0002 (16)
N20.048 (2)0.042 (2)0.061 (3)0.0062 (18)0.027 (2)0.0024 (18)
N30.035 (2)0.073 (3)0.047 (2)0.0094 (19)0.0070 (18)0.008 (2)
C10.038 (2)0.039 (3)0.046 (3)0.003 (2)0.017 (2)0.002 (2)
C20.038 (2)0.037 (2)0.043 (3)0.003 (2)0.012 (2)0.0028 (19)
C30.035 (2)0.042 (3)0.035 (2)0.001 (2)0.0089 (19)0.0015 (18)
C40.036 (2)0.040 (3)0.038 (3)0.001 (2)0.0111 (19)0.0021 (18)
C50.043 (2)0.037 (2)0.042 (3)0.002 (2)0.015 (2)0.0022 (19)
C60.042 (3)0.046 (3)0.080 (4)0.003 (2)0.022 (3)0.003 (2)
C70.057 (3)0.051 (3)0.120 (5)0.016 (3)0.036 (3)0.009 (3)
C80.065 (4)0.036 (3)0.126 (5)0.000 (3)0.044 (4)0.000 (3)
C90.051 (3)0.042 (3)0.086 (4)0.005 (2)0.027 (3)0.004 (2)
C100.038 (2)0.041 (3)0.041 (3)0.003 (2)0.012 (2)0.0051 (19)
C110.039 (2)0.046 (3)0.056 (3)0.003 (2)0.018 (2)0.005 (2)
C120.046 (3)0.059 (3)0.052 (3)0.009 (2)0.018 (2)0.003 (2)
C130.037 (2)0.056 (3)0.037 (3)0.005 (2)0.011 (2)0.004 (2)
C140.069 (3)0.049 (3)0.092 (4)0.001 (3)0.035 (3)0.021 (3)
C150.118 (5)0.074 (4)0.106 (5)0.016 (4)0.066 (4)0.034 (4)
C160.044 (3)0.108 (5)0.057 (4)0.010 (3)0.003 (3)0.010 (3)
C170.070 (4)0.130 (6)0.105 (6)0.020 (4)0.001 (4)0.013 (5)
C180.035 (2)0.050 (3)0.049 (3)0.008 (2)0.017 (2)0.006 (2)
C190.046 (3)0.060 (3)0.077 (4)0.014 (3)0.026 (3)0.024 (3)
C200.038 (3)0.073 (4)0.071 (4)0.010 (3)0.014 (3)0.005 (3)
C210.037 (2)0.047 (3)0.051 (3)0.001 (2)0.011 (2)0.000 (2)
C220.067 (4)0.065 (4)0.145 (7)0.019 (3)0.023 (4)0.037 (4)
C230.068 (5)0.105 (6)0.203 (9)0.009 (5)0.019 (5)0.021 (6)
C240.088 (5)0.091 (5)0.150 (7)0.004 (4)0.027 (5)0.002 (5)
C250.119 (7)0.102 (6)0.170 (9)0.009 (5)0.022 (6)0.002 (6)
Geometric parameters (Å, º) top
S1—C121.665 (5)C10—C111.418 (6)
Cl1—C71.717 (5)C14—C151.481 (8)
Cl2—C251.725 (7)C14—H14A0.9700
F1—C81.341 (6)C14—H14B0.9700
O1—C111.231 (5)C15—H15A0.9600
O2—C131.229 (5)C15—H15B0.9600
O3—C211.208 (5)C15—H15C0.9600
O4—C211.340 (5)C16—C171.479 (8)
O4—C221.451 (6)C16—H16A0.9700
N1—C51.326 (5)C16—H16B0.9700
N1—C11.375 (5)C17—H17A0.9600
N1—C181.458 (5)C17—H17B0.9600
N2—C121.352 (6)C17—H17C0.9600
N2—C111.429 (5)C18—C201.469 (6)
N2—C141.491 (6)C18—C191.479 (6)
N3—C121.379 (6)C18—H18A0.9800
N3—C131.406 (5)C19—C201.462 (7)
N3—C161.477 (6)C19—H19A0.9700
C1—C61.409 (6)C19—H19B0.9700
C1—C21.415 (5)C20—H20A0.9700
C2—C91.404 (6)C20—H20B0.9700
C2—C31.441 (5)C22—C231.402 (9)
C3—C41.391 (6)C22—H22A0.9700
C3—C101.449 (5)C22—H22B0.9700
C4—C51.390 (5)C23—C241.484 (10)
C4—C211.486 (6)C23—H23A0.9700
C5—H5A0.9300C23—H23B0.9700
C6—C71.361 (7)C24—C251.544 (10)
C6—H6A0.9300C24—H24A0.9700
C7—C81.396 (7)C24—H24B0.9700
C8—C91.348 (7)C25—H25A0.9700
C9—H9A0.9300C25—H25B0.9700
C10—C131.406 (6)
C21—O4—C22116.5 (4)H15A—C15—H15C109.5
C5—N1—C1118.9 (3)H15B—C15—H15C109.5
C5—N1—C18119.8 (3)N3—C16—C17111.4 (5)
C1—N1—C18121.3 (3)N3—C16—H16A109.4
C12—N2—C11124.5 (4)C17—C16—H16A109.4
C12—N2—C14120.0 (4)N3—C16—H16B109.4
C11—N2—C14115.5 (4)C17—C16—H16B109.4
C12—N3—C13124.3 (4)H16A—C16—H16B108.0
C12—N3—C16119.1 (4)C16—C17—H17A109.5
C13—N3—C16116.6 (4)C16—C17—H17B109.5
N1—C1—C6119.4 (4)H17A—C17—H17B109.5
N1—C1—C2119.8 (4)C16—C17—H17C109.5
C6—C1—C2120.8 (4)H17A—C17—H17C109.5
C9—C2—C1117.2 (4)H17B—C17—H17C109.5
C9—C2—C3122.0 (4)N1—C18—C20119.5 (4)
C1—C2—C3120.8 (4)N1—C18—C19118.6 (4)
C4—C3—C2115.8 (3)C20—C18—C1959.5 (3)
C4—C3—C10122.8 (4)N1—C18—H18A115.9
C2—C3—C10121.3 (4)C20—C18—H18A115.9
C5—C4—C3120.2 (4)C19—C18—H18A115.9
C5—C4—C21116.0 (4)C20—C19—C1859.9 (3)
C3—C4—C21123.3 (4)C20—C19—H19A117.8
N1—C5—C4124.1 (4)C18—C19—H19A117.8
N1—C5—H5A117.9C20—C19—H19B117.8
C4—C5—H5A117.9C18—C19—H19B117.8
C7—C6—C1119.6 (4)H19A—C19—H19B114.9
C7—C6—H6A120.2C19—C20—C1860.6 (3)
C1—C6—H6A120.2C19—C20—H20A117.7
C6—C7—C8119.6 (5)C18—C20—H20A117.7
C6—C7—Cl1120.5 (4)C19—C20—H20B117.7
C8—C7—Cl1119.9 (4)C18—C20—H20B117.7
F1—C8—C9119.8 (5)H20A—C20—H20B114.8
F1—C8—C7118.3 (5)O3—C21—O4125.1 (4)
C9—C8—C7121.9 (5)O3—C21—C4123.4 (4)
C8—C9—C2120.9 (4)O4—C21—C4111.3 (4)
C8—C9—H9A119.6C23—C22—O4113.5 (6)
C2—C9—H9A119.6C23—C22—H22A108.9
C13—C10—C11119.8 (4)O4—C22—H22A108.9
C13—C10—C3119.5 (4)C23—C22—H22B108.9
C11—C10—C3120.5 (4)O4—C22—H22B108.9
O1—C11—C10125.3 (4)H22A—C22—H22B107.7
O1—C11—N2118.0 (4)C22—C23—C24117.0 (8)
C10—C11—N2116.8 (4)C22—C23—H23A108.1
N2—C12—N3116.2 (4)C24—C23—H23A108.1
N2—C12—S1122.2 (4)C22—C23—H23B108.1
N3—C12—S1121.7 (4)C24—C23—H23B108.1
O2—C13—N3117.9 (4)H23A—C23—H23B107.3
O2—C13—C10124.4 (4)C23—C24—C25112.8 (7)
N3—C13—C10117.8 (4)C23—C24—H24A109.0
C15—C14—N2112.8 (4)C25—C24—H24A109.0
C15—C14—H14A109.0C23—C24—H24B109.0
N2—C14—H14A109.0C25—C24—H24B109.0
C15—C14—H14B109.0H24A—C24—H24B107.8
N2—C14—H14B109.0C24—C25—Cl2113.3 (6)
H14A—C14—H14B107.8C24—C25—H25A108.9
C14—C15—H15A109.5Cl2—C25—H25A108.9
C14—C15—H15B109.5C24—C25—H25B108.9
H15A—C15—H15B109.5Cl2—C25—H25B108.9
C14—C15—H15C109.5H25A—C25—H25B107.7
C5—N1—C1—C6175.2 (4)C12—N2—C11—O1171.1 (5)
C18—N1—C1—C62.4 (6)C14—N2—C11—O18.3 (6)
C5—N1—C1—C23.3 (6)C12—N2—C11—C107.7 (6)
C18—N1—C1—C2179.1 (4)C14—N2—C11—C10173.0 (4)
N1—C1—C2—C9175.0 (4)C11—N2—C12—N31.1 (7)
C6—C1—C2—C93.5 (6)C14—N2—C12—N3179.6 (4)
N1—C1—C2—C31.8 (6)C11—N2—C12—S1177.9 (3)
C6—C1—C2—C3179.7 (4)C14—N2—C12—S11.4 (6)
C9—C2—C3—C4171.0 (4)C13—N3—C12—N24.1 (7)
C1—C2—C3—C45.6 (6)C16—N3—C12—N2175.3 (4)
C9—C2—C3—C107.2 (6)C13—N3—C12—S1176.8 (4)
C1—C2—C3—C10176.3 (4)C16—N3—C12—S13.7 (7)
C2—C3—C4—C54.6 (6)C12—N3—C13—O2177.8 (4)
C10—C3—C4—C5177.3 (4)C16—N3—C13—O22.7 (6)
C2—C3—C4—C21176.7 (4)C12—N3—C13—C102.3 (7)
C10—C3—C4—C215.2 (6)C16—N3—C13—C10177.1 (4)
C1—N1—C5—C44.5 (6)C11—C10—C13—O2175.2 (4)
C18—N1—C5—C4177.9 (4)C3—C10—C13—O21.3 (7)
C3—C4—C5—N10.3 (6)C11—C10—C13—N34.7 (6)
C21—C4—C5—N1172.3 (4)C3—C10—C13—N3178.8 (4)
N1—C1—C6—C7176.7 (5)C12—N2—C14—C1587.5 (6)
C2—C1—C6—C71.8 (7)C11—N2—C14—C1591.9 (6)
C1—C6—C7—C80.2 (9)C12—N3—C16—C1792.7 (6)
C1—C6—C7—Cl1178.2 (4)C13—N3—C16—C1786.8 (6)
C6—C7—C8—F1179.6 (5)C5—N1—C18—C20117.2 (5)
Cl1—C7—C8—F11.2 (8)C1—N1—C18—C2065.2 (5)
C6—C7—C8—C90.5 (10)C5—N1—C18—C1948.1 (6)
Cl1—C7—C8—C9178.0 (5)C1—N1—C18—C19134.3 (5)
F1—C8—C9—C2178.6 (5)N1—C18—C19—C20109.3 (5)
C7—C8—C9—C22.3 (9)N1—C18—C20—C19107.7 (4)
C1—C2—C9—C83.8 (7)C22—O4—C21—O38.1 (7)
C3—C2—C9—C8179.5 (5)C22—O4—C21—C4176.5 (4)
C4—C3—C10—C1343.7 (6)C5—C4—C21—O3123.8 (5)
C2—C3—C10—C13134.2 (4)C3—C4—C21—O348.6 (7)
C4—C3—C10—C11132.7 (5)C5—C4—C21—O451.7 (5)
C2—C3—C10—C1149.3 (6)C3—C4—C21—O4135.9 (4)
C13—C10—C11—O1169.4 (5)C21—O4—C22—C23102.8 (7)
C3—C10—C11—O17.0 (7)O4—C22—C23—C2455.7 (10)
C13—C10—C11—N29.3 (6)C22—C23—C24—C25178.9 (7)
C3—C10—C11—N2174.3 (4)C23—C24—C25—Cl276.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.982.323.014 (6)127
C20—H20A···O3ii0.972.563.233 (6)126
C25—H25A···F1iii0.972.513.371 (10)148
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H26Cl2FN3O4S
Mr554.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.3035 (15), 13.8310 (8), 16.4507 (16)
β (°) 107.345 (8)
V3)5278.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.15 × 0.06
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.606, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12511, 4664, 2477
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.230, 1.02
No. of reflections4664
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.40

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.982.323.014 (6)127
C20—H20A···O3ii0.972.563.233 (6)126
C25—H25A···F1iii0.972.513.371 (10)148
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Deanship of Scientific Research at the University of Jordan. The X-ray structural work was done at the Hamdi Mango Center for Scientific Research of The University of Jordan, Amman 11942, Jordan.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Qawasmeh, R. A. (2012). Acta Cryst. E68, o2533.  CSD CrossRef IUCr Journals Google Scholar
First citationBaker, W. R., Cai, S. P., Dimitroff, M., Fang, L. M., Huh, K. K., Ryckman, D. R., Shang, X., Shawar, R. M. & Therrien, J. H. (2004). J. Med. Chem. 47, 4693–4709.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231–293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitscher, L. A. (2005). Chem. Rev. 105, 559–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishkin, O. V., Solomovich, E. V., Vakula, V. M. & Yaremenko, F. G. (1997). Russ. Chem. Bull. 46, 1838–1843.  Web of Science CrossRef CAS Google Scholar
First citationSweidan, K., AlDamen, M. A., Maichle-Mö\, C. & Mubarak, M. S. (2012). J. Chem. Crystallogr. 42, 427–431.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds