organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­phen­yl)-3-(2-ethyl­hexa­noyl)thio­urea

aDepartment of Physics, Government Arts College for Women (Autonomous), Pudukkottai 622 001, India, bDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, cDepartment of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, dDepartment of Chemistry, Government Arts College, Karaikudi 630 303, India, and eSchool of Chemical Sciences and Food Technology, Kebangsaan Universiti, Bangi, Selangor 43650, Malaysia
*Correspondence e-mail: santhasrinithi@yahoo.co.in

(Received 18 June 2013; accepted 2 July 2013; online 10 July 2013)

In the title compound, C15H21ClN2OS, the central chromophore moiety (C2N2OS) is approximately planar, with a maximum deviation of −0.027 (1) Å, and is oriented at a dihedral angle of 86.7 (1)° with respect to the chloro­phenyl ring. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, mol­ecules associate via N—H⋯S hydrogen bonds, forming inversion dimers with motif R22(8). These dimers are further connected by N—H⋯O hydrogen bonds, forming R22(12) dimers. As a result, hydrogen-bonded chains running along [110] are formed. C—H⋯S inter­actions also occur. The terminal two C atoms of the butyl chain are disordered over two positions with an occupancy ratio of 0.54:0.46.

Related literature

For general background to the biological activity of thio­urea derivatives, see: Yang et al. (2012[Yang, W., Liu, H., Li, M., Wang, F., Zhou, W. & Fan, J. (2012). J. Inorg. Biochem. 116, 97-105.]); Wu et al. (2012[Wu, J., Shi, Q., Chen, Z., He, M., Jin, L. & Hu, D. (2012). Molecules, 17, 5139-5150.]); Abbas et al. (2013[Abbas, S. Y., El-Sharief, M. A., Basyouni, W. M., Fakhr, I. M. & El-Gammal, E. W. (2013). Eur. J. Med. Chem. 64, 111-120.]); Ryu et al. (2012[Ryu, B. J., Hwang, M. K., Park, M., Lee, K. & Kim, S. H. (2012). Bioorg. Med. Chem. Lett. 22, 3862-3865.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21ClN2OS

  • Mr = 312.85

  • Triclinic, [P \overline 1]

  • a = 7.264 (5) Å

  • b = 10.056 (7) Å

  • c = 11.935 (9) Å

  • α = 97.748 (17)°

  • β = 98.100 (17)°

  • γ = 103.72 (2)°

  • V = 825.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 292 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 8136 measured reflections

  • 2878 independent reflections

  • 1700 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.230

  • S = 1.02

  • 2878 reflections

  • 200 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.98 2.652 (4) 134
N1—H1⋯O1i 0.86 2.49 3.184 (5) 139
N2—H2⋯S1ii 0.86 2.61 3.451 (4) 168
C9—H9⋯S1ii 0.98 2.81 3.725 (5) 157
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Thiourea derivatives are an important class of organic compounds in which sulfur is the major ligand atom which plays an important role in coordination chemistry. Thiourea derivatives possess a wide range of biological activities such as antibacterial (Yang et al., 2012), antifungal (Wu et al., 2012; Abbas et al., 2013) activities. These derivatives sensitizes human H1299 lung carcinoma cells (Ryu et al., 2012). In view of the biological importance of thioureas, we have undertaken a single-crystal X-ray diffraction study of the title compound, and the results are presented here.

The molecular structure and atomic connectivity for the title compound are illustrated in Fig. 1. The central chromophore moiety (C2N2OS) is planar with a maximum deviation of -0.027 (1) Å for atom C8. The dihedral angle between the chlorophenyl ring and the chromophor moiety is 86.7 (1)°.

The molecular structure is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the molecular packing, N—H···S hydrogen bonds involving atoms N2 and S1 link inversion-related molecules to form R22(8) graph set dimer (Fig. 2). These dimers are further connected by N—H···O hydrogen bonds forming R22(12) dimers (Fig. 3). As a result of that, hydrogen bonded chains running along [110] are formed.

Related literature top

For general background to the biological activity of thiourea derivatives, see: Yang et al. (2012); Wu et al. (2012); Abbas et al. (2013); Ryu et al. (2012).

Experimental top

A mixture of supersaturated solutions of 2-chlorophenol (1 mmol), thiourea (1 mmol) and 2-ethylhexanoic acid (1mmol) were dissolved in ethanol (20ml). The mixture was stirred well and refluxed to 3hours. The reaction was ensured with a yellow crystalline solid deposited at the bottom of the beaker. Single crystals of (I) were obtained by slow evaporation method using ethanol as solvent at at room temperature.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with N—-H distance of 0.86 Å and C—H distances of 0.93-0.98 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C or N) for other H atoms. Atoms C14 and C15 are disordered over two positions with an occupancy of 0.46 and 0.54. The bond lengths of C13—C14 and C14—C15 are restrained to the value of 1.54 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor occupied atoms of the disordered part have been omitted for clarity.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the b axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted. The minor occupied atoms of the disordered part have been omitted for clarity.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed down the a axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted. Minor component of the disorder have been omitted for clarity.
1-(2-Chlorophenyl)-3-(2-ethylhexanoyl)thiourea top
Crystal data top
C15H21ClN2OSZ = 2
Mr = 312.85F(000) = 332
Triclinic, P1Dx = 1.259 Mg m3
a = 7.264 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.056 (7) ÅCell parameters from 6222 reflections
c = 11.935 (9) Åθ = 2.3–24.8°
α = 97.748 (17)°µ = 0.36 mm1
β = 98.100 (17)°T = 292 K
γ = 103.72 (2)°Block, colourless
V = 825.5 (11) Å30.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.067
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
ω scansh = 88
8136 measured reflectionsk = 1111
2878 independent reflectionsl = 1414
1700 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.230 w = 1/[σ2(Fo2) + (0.125P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2878 reflectionsΔρmax = 0.37 e Å3
200 parametersΔρmin = 0.26 e Å3
4 restraints
Crystal data top
C15H21ClN2OSγ = 103.72 (2)°
Mr = 312.85V = 825.5 (11) Å3
Triclinic, P1Z = 2
a = 7.264 (5) ÅMo Kα radiation
b = 10.056 (7) ŵ = 0.36 mm1
c = 11.935 (9) ÅT = 292 K
α = 97.748 (17)°0.22 × 0.20 × 0.18 mm
β = 98.100 (17)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1700 reflections with I > 2σ(I)
8136 measured reflectionsRint = 0.067
2878 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0764 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
2878 reflectionsΔρmin = 0.26 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.0875 (2)0.56892 (16)0.31845 (12)0.0787 (5)
S10.23733 (18)0.95432 (13)0.12264 (10)0.0649 (5)
O10.1744 (4)0.6032 (3)0.0822 (3)0.0589 (9)
N10.0376 (5)0.7093 (4)0.0934 (3)0.0478 (9)
H10.02490.64070.05660.057*
N20.3169 (5)0.8104 (4)0.0374 (3)0.0480 (9)
H20.41810.87900.05780.058*
C10.2560 (7)0.7626 (5)0.1733 (4)0.0581 (12)
H1A0.25910.80890.10100.070*
C20.4017 (7)0.7532 (6)0.2651 (5)0.0677 (15)
H2A0.50340.79210.25470.081*
C30.3938 (8)0.6860 (6)0.3712 (5)0.0733 (16)
H30.49110.67950.43290.088*
C40.2470 (8)0.6287 (5)0.3879 (4)0.0645 (14)
H40.24410.58260.46040.077*
C50.1014 (6)0.6392 (5)0.2968 (4)0.0514 (12)
C60.1079 (6)0.7039 (4)0.1892 (3)0.0425 (10)
C70.1916 (6)0.8164 (4)0.0593 (3)0.0455 (11)
C80.3017 (6)0.7097 (5)0.1054 (3)0.0454 (10)
C90.4490 (7)0.7445 (5)0.2141 (4)0.0563 (13)
H90.53580.83560.21470.068*
C100.5689 (8)0.6399 (6)0.2138 (4)0.0719 (15)
H10A0.65360.65870.28780.086*
H10B0.48310.54780.20560.086*
C110.6883 (9)0.6393 (7)0.1219 (5)0.094 (2)
H11A0.60620.61960.04800.142*
H11B0.75720.56930.12740.142*
H11C0.77830.72870.13120.142*
C120.3511 (8)0.7576 (6)0.3165 (4)0.0711 (15)
H12A0.27090.66650.31940.085*
H12B0.44950.78450.38530.085*
C130.2284 (12)0.8584 (8)0.3208 (5)0.110 (2)
H13A0.14490.84680.24730.132*0.46
H13B0.30810.95340.34000.132*0.46
H13C0.14020.83440.24780.132*0.54
H13D0.31380.94870.32120.132*0.54
C140.104 (3)0.8234 (19)0.4181 (15)0.109 (8)0.46
H14A0.02310.83850.40330.131*0.46
H14B0.09910.73240.43820.131*0.46
C150.251 (4)0.941 (2)0.499 (3)0.187 (13)0.46
H15A0.21420.94920.57370.280*0.46
H15B0.25671.02590.47050.280*0.46
H15C0.37510.92180.50570.280*0.46
C14'0.105 (3)0.882 (2)0.4141 (13)0.174 (14)0.54
H14C0.07560.97080.41280.209*0.54
H14D0.01640.81030.39450.209*0.54
C15'0.197 (3)0.879 (2)0.5325 (13)0.141 (10)0.54
H15D0.11410.89680.58530.211*0.54
H15E0.31760.94910.55290.211*0.54
H15F0.22000.78930.53600.211*0.54
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0737 (10)0.0888 (11)0.0753 (9)0.0267 (8)0.0178 (7)0.0058 (8)
S10.0619 (8)0.0570 (8)0.0629 (8)0.0092 (6)0.0105 (6)0.0332 (6)
O10.056 (2)0.054 (2)0.0582 (19)0.0049 (17)0.0026 (15)0.0277 (16)
N10.048 (2)0.047 (2)0.0413 (19)0.0009 (18)0.0026 (16)0.0199 (17)
N20.046 (2)0.047 (2)0.0398 (19)0.0049 (16)0.0046 (15)0.0137 (16)
C10.055 (3)0.061 (3)0.057 (3)0.010 (2)0.007 (2)0.015 (2)
C20.045 (3)0.066 (3)0.093 (4)0.012 (3)0.004 (3)0.029 (3)
C30.065 (4)0.081 (4)0.067 (4)0.010 (3)0.014 (3)0.030 (3)
C40.073 (4)0.066 (3)0.044 (3)0.003 (3)0.005 (2)0.014 (2)
C50.043 (3)0.057 (3)0.051 (3)0.003 (2)0.004 (2)0.022 (2)
C60.035 (2)0.045 (2)0.042 (2)0.0019 (19)0.0005 (18)0.016 (2)
C70.044 (2)0.050 (3)0.035 (2)0.000 (2)0.0018 (18)0.010 (2)
C80.044 (2)0.051 (3)0.042 (2)0.007 (2)0.0069 (19)0.018 (2)
C90.057 (3)0.062 (3)0.046 (3)0.003 (2)0.003 (2)0.028 (2)
C100.068 (4)0.083 (4)0.063 (3)0.023 (3)0.008 (3)0.023 (3)
C110.086 (4)0.123 (6)0.089 (4)0.045 (4)0.018 (4)0.033 (4)
C120.090 (4)0.069 (3)0.046 (3)0.006 (3)0.004 (3)0.014 (3)
C130.161 (7)0.129 (6)0.063 (4)0.081 (6)0.025 (4)0.017 (4)
C140.113 (14)0.079 (15)0.15 (2)0.065 (12)0.018 (12)0.013 (12)
C150.14 (2)0.12 (2)0.27 (4)0.027 (16)0.07 (2)0.04 (2)
C14'0.27 (3)0.13 (2)0.144 (18)0.16 (2)0.006 (17)0.049 (15)
C15'0.27 (3)0.143 (17)0.089 (11)0.130 (19)0.113 (15)0.073 (12)
Geometric parameters (Å, º) top
Cl1—C51.720 (5)C10—H10B0.9700
S1—C71.655 (4)C11—H11A0.9600
O1—C81.206 (5)C11—H11B0.9600
N1—C71.326 (5)C11—H11C0.9600
N1—C61.430 (5)C12—C131.501 (8)
N1—H10.8600C12—H12A0.9700
N2—C81.374 (5)C12—H12B0.9700
N2—C71.384 (5)C13—C14'1.553 (10)
N2—H20.8600C13—C141.592 (10)
C1—C61.367 (6)C13—H13A0.9700
C1—C21.388 (7)C13—H13B0.9700
C1—H1A0.9300C13—H13C0.9700
C2—C31.367 (7)C13—H13D0.9700
C2—H2A0.9300C14—C151.507 (10)
C3—C41.352 (7)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.379 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.372 (6)C15—H15C0.9600
C8—C91.503 (6)C14'—C15'1.484 (10)
C9—C121.505 (7)C14'—H14C0.9700
C9—C101.516 (7)C14'—H14D0.9700
C9—H90.9800C15'—H15D0.9600
C10—C111.492 (8)C15'—H15E0.9600
C10—H10A0.9700C15'—H15F0.9600
C7—N1—C6122.2 (3)C10—C11—H11C109.5
C7—N1—H1118.9H11A—C11—H11C109.5
C6—N1—H1118.9H11B—C11—H11C109.5
C8—N2—C7128.9 (4)C13—C12—C9116.9 (4)
C8—N2—H2115.6C13—C12—H12A108.1
C7—N2—H2115.6C9—C12—H12A108.1
C6—C1—C2120.0 (5)C13—C12—H12B108.1
C6—C1—H1A120.0C9—C12—H12B108.1
C2—C1—H1A120.0H12A—C12—H12B107.3
C3—C2—C1119.2 (5)C12—C13—C14'125.5 (8)
C3—C2—H2A120.4C12—C13—C14105.6 (9)
C1—C2—H2A120.4C12—C13—H13A110.6
C4—C3—C2121.1 (5)C14—C13—H13A110.6
C4—C3—H3119.4C12—C13—H13B110.6
C2—C3—H3119.4C14—C13—H13B110.6
C3—C4—C5119.6 (5)H13A—C13—H13B108.7
C3—C4—H4120.2C12—C13—H13C105.9
C5—C4—H4120.2C14'—C13—H13C105.9
C6—C5—C4120.3 (5)C12—C13—H13D105.9
C6—C5—Cl1120.0 (3)C14'—C13—H13D105.9
C4—C5—Cl1119.7 (4)H13C—C13—H13D106.3
C1—C6—C5119.7 (4)C15—C14—C1387.7 (19)
C1—C6—N1119.8 (4)C15—C14—H14A114.0
C5—C6—N1120.6 (4)C13—C14—H14A114.0
N1—C7—N2116.1 (3)C15—C14—H14B114.0
N1—C7—S1124.4 (3)C13—C14—H14B114.0
N2—C7—S1119.5 (3)H14A—C14—H14B111.2
O1—C8—N2122.6 (4)C14—C15—H15A109.5
O1—C8—C9122.1 (4)C14—C15—H15B109.5
N2—C8—C9115.3 (4)H15A—C15—H15B109.5
C8—C9—C12109.7 (4)C14—C15—H15C109.5
C8—C9—C10110.0 (4)H15A—C15—H15C109.5
C12—C9—C10114.5 (4)H15B—C15—H15C109.5
C8—C9—H9107.5C15'—C14'—C13114.4 (11)
C12—C9—H9107.5C15'—C14'—H14C108.7
C10—C9—H9107.5C13—C14'—H14C108.7
C11—C10—C9115.2 (4)C15'—C14'—H14D108.7
C11—C10—H10A108.5C13—C14'—H14D108.7
C9—C10—H10A108.5H14C—C14'—H14D107.6
C11—C10—H10B108.5C14'—C15'—H15D109.5
C9—C10—H10B108.5C14'—C15'—H15E109.5
H10A—C10—H10B107.5H15D—C15'—H15E109.5
C10—C11—H11A109.5C14'—C15'—H15F109.5
C10—C11—H11B109.5H15D—C15'—H15F109.5
H11A—C11—H11B109.5H15E—C15'—H15F109.5
C6—C1—C2—C30.7 (7)C7—N2—C8—O15.4 (7)
C1—C2—C3—C40.0 (8)C7—N2—C8—C9171.6 (4)
C2—C3—C4—C50.6 (8)O1—C8—C9—C1262.7 (6)
C3—C4—C5—C61.7 (7)N2—C8—C9—C12114.3 (4)
C3—C4—C5—Cl1178.9 (4)O1—C8—C9—C1064.0 (6)
C2—C1—C6—C51.8 (7)N2—C8—C9—C10119.0 (4)
C2—C1—C6—N1177.5 (4)C8—C9—C10—C1164.0 (6)
C4—C5—C6—C12.3 (7)C12—C9—C10—C11172.0 (5)
Cl1—C5—C6—C1178.3 (3)C8—C9—C12—C1355.1 (6)
C4—C5—C6—N1177.0 (4)C10—C9—C12—C13179.3 (5)
Cl1—C5—C6—N12.4 (6)C9—C12—C13—C14'176.0 (12)
C7—N1—C6—C186.5 (5)C9—C12—C13—C14166.2 (9)
C7—N1—C6—C594.1 (5)C12—C13—C14—C1597.6 (12)
C6—N1—C7—N2177.5 (4)C14'—C13—C14—C1560 (3)
C6—N1—C7—S11.0 (6)C12—C13—C14'—C15'39 (2)
C8—N2—C7—N11.8 (7)C14—C13—C14'—C15'66 (4)
C8—N2—C7—S1176.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.982.652 (4)134
N1—H1···O1i0.862.493.184 (5)139
N2—H2···S1ii0.862.613.451 (4)168
C9—H9···S1ii0.982.813.725 (5)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H21ClN2OS
Mr312.85
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.264 (5), 10.056 (7), 11.935 (9)
α, β, γ (°)97.748 (17), 98.100 (17), 103.72 (2)
V3)825.5 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8136, 2878, 1700
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.230, 1.02
No. of reflections2878
No. of parameters200
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.982.652 (4)134.2
N1—H1···O1i0.862.493.184 (5)138.5
N2—H2···S1ii0.862.613.451 (4)167.9
C9—H9···S1ii0.982.813.725 (5)156.6
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
 

References

First citationAbbas, S. Y., El-Sharief, M. A., Basyouni, W. M., Fakhr, I. M. & El-Gammal, E. W. (2013). Eur. J. Med. Chem. 64, 111–120.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRyu, B. J., Hwang, M. K., Park, M., Lee, K. & Kim, S. H. (2012). Bioorg. Med. Chem. Lett. 22, 3862–3865.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Shi, Q., Chen, Z., He, M., Jin, L. & Hu, D. (2012). Molecules, 17, 5139–5150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, W., Liu, H., Li, M., Wang, F., Zhou, W. & Fan, J. (2012). J. Inorg. Biochem. 116, 97–105.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds