organic compounds
2,2′-[Ethane-1,2-diylbis(oxy)]dibenzaldehyde
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, dSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, eChemistry Department, Faculty of Science, Sohag University, 82524-Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C16H14O4, the benzene rings are inclined at a dihedral angle of 75.14 (9)°. The torsion angle of the bridging O—C—C—O group is −76.50 (11)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming C(6) chains along [100]. Furthermore, C—H⋯π interactions and π–π stacking interactions [centroid–centroid distances = 3.6957 (7) and 3.6735 (8) Å] contribute to the stability of the crystal packing.
Related literature
For the synthesis and utlization of bis-funtionalized compounds, see: Holland et al. (2007); Pedras et al. (2010); Mabkhot et al. (2012); Gavrilova & Bosnich (2004). For bond-length data, see: Allen et al. (1987). For graph-set theory, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813019156/bt6920sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019156/bt6920Isup2.hkl
A solution of 1.22 g m (0.01 mol) salicyldehyde in hot ethanolic KOH (prepared by dissolving 560 mg (0.01 mol) KOH in 100 ml of absolute ethanol) was stirred until a clear solution was obtained, which was then evaporated under vacuum. The residue was dissolved in DMF (25 ml) and 940 mg (0.005 mol) of dibromoethane was added. The reaction mixture was refluxed for 5 minutes, during which KBr was separated out. The solvent was then removed in vacuo and the remaining solid was washed with water and crystallized from ethanol to give high quality crystals (Mp. 393 K) suitable for X-ray analysis in an good yield (84%).
All H atoms were found in a difference map, but placed geometrically with C—H = 0.95 Å (aromatic H) and 0.99 Å (methylene H) and were refined using a riding model with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell
CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. View of the molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. | |
Fig. 2. Partial packing diagram of the title compound showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. |
C16H14O4 | Z = 2 |
Mr = 270.27 | F(000) = 284 |
Triclinic, P1 | Dx = 1.381 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.7571 (1) Å | Cell parameters from 4015 reflections |
b = 8.3277 (1) Å | θ = 1.9–27.5° |
c = 11.2965 (1) Å | µ = 0.10 mm−1 |
α = 82.283 (7)° | T = 120 K |
β = 75.839 (7)° | Block, colourless |
γ = 66.823 (6)° | 0.62 × 0.44 × 0.22 mm |
V = 649.87 (4) Å3 |
Rigaku R-AXIS conversion diffractometer | 2969 independent reflections |
Radiation source: Sealed Tube | 2862 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.031 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
profile data from ω–scans | h = −10→8 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | k = −10→10 |
Tmin = 0.878, Tmax = 1.000 | l = −14→14 |
9715 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | W = 1/[Σ2(FO2) + (0.0397P)2 + 0.2051P] WHERE P = (FO2 + 2FC2)/3 |
wR(F2) = 0.101 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.34 e Å−3 |
2969 reflections | Δρmin = −0.19 e Å−3 |
182 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
0 restraints | Extinction coefficient: 0.039 (4) |
C16H14O4 | γ = 66.823 (6)° |
Mr = 270.27 | V = 649.87 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7571 (1) Å | Mo Kα radiation |
b = 8.3277 (1) Å | µ = 0.10 mm−1 |
c = 11.2965 (1) Å | T = 120 K |
α = 82.283 (7)° | 0.62 × 0.44 × 0.22 mm |
β = 75.839 (7)° |
Rigaku R-AXIS conversion diffractometer | 2969 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | 2862 reflections with I > 2σ(I) |
Tmin = 0.878, Tmax = 1.000 | Rint = 0.031 |
9715 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.34 e Å−3 |
2969 reflections | Δρmin = −0.19 e Å−3 |
182 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.02681 (11) | 0.67683 (11) | 0.39979 (7) | 0.0234 (2) | |
O2 | 0.09562 (12) | 0.63138 (10) | 0.13897 (7) | 0.0229 (2) | |
O3 | 0.42624 (12) | 0.70766 (12) | 0.54585 (8) | 0.0310 (3) | |
O4 | 0.29048 (14) | 0.91784 (11) | −0.12808 (8) | 0.0335 (3) | |
C1 | −0.10587 (16) | 0.66169 (14) | 0.33728 (10) | 0.0222 (3) | |
C2 | 0.00997 (16) | 0.53887 (14) | 0.23588 (10) | 0.0221 (3) | |
C3 | −0.04430 (16) | 0.76808 (13) | 0.50371 (9) | 0.0198 (3) | |
C4 | 0.09320 (16) | 0.78082 (14) | 0.55953 (10) | 0.0203 (3) | |
C5 | 0.03276 (17) | 0.87486 (14) | 0.66511 (10) | 0.0238 (3) | |
C6 | −0.16055 (18) | 0.95186 (15) | 0.71668 (10) | 0.0264 (3) | |
C7 | −0.29501 (17) | 0.93499 (15) | 0.66234 (10) | 0.0254 (3) | |
C8 | −0.23910 (16) | 0.84489 (14) | 0.55568 (10) | 0.0225 (3) | |
C9 | 0.29937 (16) | 0.69362 (15) | 0.50767 (10) | 0.0235 (3) | |
C10 | 0.20867 (15) | 0.54157 (14) | 0.03822 (10) | 0.0201 (3) | |
C11 | 0.28537 (16) | 0.63720 (14) | −0.05755 (10) | 0.0205 (3) | |
C12 | 0.40808 (16) | 0.55234 (15) | −0.16216 (10) | 0.0237 (3) | |
C13 | 0.45243 (17) | 0.37632 (16) | −0.17322 (11) | 0.0267 (3) | |
C14 | 0.37194 (17) | 0.28415 (15) | −0.07953 (11) | 0.0255 (3) | |
C15 | 0.25049 (17) | 0.36520 (15) | 0.02579 (10) | 0.0228 (3) | |
C16 | 0.23854 (17) | 0.82470 (15) | −0.04713 (11) | 0.0252 (3) | |
H1A | −0.18070 | 0.77750 | 0.30370 | 0.0270* | |
H1B | −0.19620 | 0.61520 | 0.39420 | 0.0270* | |
H2A | 0.11090 | 0.43660 | 0.26590 | 0.0270* | |
H2B | −0.07370 | 0.49650 | 0.20600 | 0.0270* | |
H5 | 0.12500 | 0.88620 | 0.70190 | 0.0290* | |
H6 | −0.20120 | 1.01580 | 0.78860 | 0.0320* | |
H7 | −0.42750 | 0.98600 | 0.69880 | 0.0300* | |
H8 | −0.33240 | 0.83580 | 0.51880 | 0.0270* | |
H9 | 0.33550 | 0.62190 | 0.44020 | 0.0280* | |
H12 | 0.46170 | 0.61600 | −0.22640 | 0.0280* | |
H13 | 0.53720 | 0.31880 | −0.24420 | 0.0320* | |
H14 | 0.40060 | 0.16380 | −0.08780 | 0.0310* | |
H15 | 0.19620 | 0.30080 | 0.08900 | 0.0270* | |
H16 | 0.16270 | 0.87630 | 0.02780 | 0.0300* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0200 (4) | 0.0302 (4) | 0.0205 (4) | −0.0089 (3) | −0.0034 (3) | −0.0061 (3) |
O2 | 0.0284 (4) | 0.0212 (4) | 0.0187 (4) | −0.0107 (3) | −0.0016 (3) | −0.0015 (3) |
O3 | 0.0251 (5) | 0.0358 (5) | 0.0361 (5) | −0.0147 (4) | −0.0104 (4) | 0.0025 (4) |
O4 | 0.0444 (6) | 0.0263 (4) | 0.0336 (5) | −0.0190 (4) | −0.0086 (4) | 0.0051 (4) |
C1 | 0.0208 (5) | 0.0257 (5) | 0.0218 (5) | −0.0099 (4) | −0.0053 (4) | −0.0010 (4) |
C2 | 0.0255 (6) | 0.0231 (5) | 0.0197 (5) | −0.0118 (4) | −0.0047 (4) | 0.0009 (4) |
C3 | 0.0227 (5) | 0.0180 (5) | 0.0180 (5) | −0.0084 (4) | −0.0031 (4) | 0.0013 (4) |
C4 | 0.0231 (5) | 0.0192 (5) | 0.0193 (5) | −0.0100 (4) | −0.0044 (4) | 0.0035 (4) |
C5 | 0.0310 (6) | 0.0215 (5) | 0.0222 (5) | −0.0123 (5) | −0.0090 (4) | 0.0026 (4) |
C6 | 0.0341 (6) | 0.0218 (5) | 0.0203 (5) | −0.0087 (5) | −0.0028 (5) | −0.0026 (4) |
C7 | 0.0240 (6) | 0.0220 (5) | 0.0244 (5) | −0.0059 (4) | 0.0002 (4) | −0.0003 (4) |
C8 | 0.0215 (5) | 0.0230 (5) | 0.0228 (5) | −0.0090 (4) | −0.0043 (4) | 0.0006 (4) |
C9 | 0.0240 (6) | 0.0250 (5) | 0.0219 (5) | −0.0107 (4) | −0.0056 (4) | 0.0035 (4) |
C10 | 0.0199 (5) | 0.0228 (5) | 0.0190 (5) | −0.0077 (4) | −0.0068 (4) | −0.0013 (4) |
C11 | 0.0210 (5) | 0.0220 (5) | 0.0210 (5) | −0.0093 (4) | −0.0077 (4) | 0.0009 (4) |
C12 | 0.0245 (6) | 0.0262 (6) | 0.0212 (5) | −0.0103 (4) | −0.0055 (4) | 0.0005 (4) |
C13 | 0.0284 (6) | 0.0272 (6) | 0.0217 (5) | −0.0079 (5) | −0.0029 (4) | −0.0045 (4) |
C14 | 0.0299 (6) | 0.0206 (5) | 0.0264 (6) | −0.0082 (4) | −0.0079 (5) | −0.0030 (4) |
C15 | 0.0264 (6) | 0.0224 (5) | 0.0219 (5) | −0.0111 (4) | −0.0071 (4) | 0.0015 (4) |
C16 | 0.0296 (6) | 0.0234 (5) | 0.0246 (5) | −0.0106 (5) | −0.0087 (5) | −0.0001 (4) |
O1—C1 | 1.4337 (16) | C12—C13 | 1.3834 (17) |
O1—C3 | 1.3611 (13) | C13—C14 | 1.3910 (18) |
O2—C2 | 1.4332 (14) | C14—C15 | 1.3876 (17) |
O2—C10 | 1.3593 (13) | C1—H1A | 0.9900 |
O3—C9 | 1.2166 (17) | C1—H1B | 0.9900 |
O4—C16 | 1.2147 (15) | C2—H2A | 0.9900 |
C1—C2 | 1.5011 (15) | C2—H2B | 0.9900 |
C3—C4 | 1.4081 (18) | C5—H5 | 0.9500 |
C3—C8 | 1.3940 (18) | C6—H6 | 0.9500 |
C4—C5 | 1.3942 (15) | C7—H7 | 0.9500 |
C4—C9 | 1.4731 (18) | C8—H8 | 0.9500 |
C5—C6 | 1.3839 (19) | C9—H9 | 0.9500 |
C6—C7 | 1.392 (2) | C12—H12 | 0.9500 |
C7—C8 | 1.3906 (16) | C13—H13 | 0.9500 |
C10—C11 | 1.4090 (16) | C14—H14 | 0.9500 |
C10—C15 | 1.3929 (16) | C15—H15 | 0.9500 |
C11—C12 | 1.3951 (16) | C16—H16 | 0.9500 |
C11—C16 | 1.4717 (16) | ||
C1—O1—C3 | 118.45 (10) | C2—C1—H1A | 110.00 |
C2—O2—C10 | 117.35 (8) | C2—C1—H1B | 110.00 |
O1—C1—C2 | 107.09 (10) | H1A—C1—H1B | 109.00 |
O2—C2—C1 | 108.23 (9) | O2—C2—H2A | 110.00 |
O1—C3—C4 | 115.69 (11) | O2—C2—H2B | 110.00 |
O1—C3—C8 | 124.17 (11) | C1—C2—H2A | 110.00 |
C4—C3—C8 | 120.14 (10) | C1—C2—H2B | 110.00 |
C3—C4—C5 | 119.49 (11) | H2A—C2—H2B | 108.00 |
C3—C4—C9 | 120.26 (10) | C4—C5—H5 | 120.00 |
C5—C4—C9 | 120.24 (12) | C6—C5—H5 | 120.00 |
C4—C5—C6 | 120.50 (12) | C5—C6—H6 | 120.00 |
C5—C6—C7 | 119.52 (11) | C7—C6—H6 | 120.00 |
C6—C7—C8 | 121.24 (12) | C6—C7—H7 | 119.00 |
C3—C8—C7 | 119.08 (12) | C8—C7—H7 | 119.00 |
O3—C9—C4 | 124.12 (11) | C3—C8—H8 | 120.00 |
O2—C10—C11 | 116.23 (9) | C7—C8—H8 | 120.00 |
O2—C10—C15 | 123.99 (10) | O3—C9—H9 | 118.00 |
C11—C10—C15 | 119.79 (10) | C4—C9—H9 | 118.00 |
C10—C11—C12 | 119.48 (10) | C11—C12—H12 | 120.00 |
C10—C11—C16 | 120.45 (10) | C13—C12—H12 | 120.00 |
C12—C11—C16 | 120.07 (11) | C12—C13—H13 | 120.00 |
C11—C12—C13 | 120.59 (11) | C14—C13—H13 | 120.00 |
C12—C13—C14 | 119.48 (11) | C13—C14—H14 | 119.00 |
C13—C14—C15 | 121.06 (11) | C15—C14—H14 | 119.00 |
C10—C15—C14 | 119.57 (11) | C10—C15—H15 | 120.00 |
O4—C16—C11 | 124.30 (11) | C14—C15—H15 | 120.00 |
O1—C1—H1A | 110.00 | O4—C16—H16 | 118.00 |
O1—C1—H1B | 110.00 | C11—C16—H16 | 118.00 |
C3—O1—C1—C2 | −173.57 (9) | C4—C5—C6—C7 | −0.04 (16) |
C1—O1—C3—C8 | 1.68 (15) | C5—C6—C7—C8 | −1.24 (17) |
C1—O1—C3—C4 | −178.90 (9) | C6—C7—C8—C3 | 0.98 (17) |
C10—O2—C2—C1 | 179.42 (10) | O2—C10—C11—C12 | 177.80 (11) |
C2—O2—C10—C15 | −2.20 (18) | O2—C10—C11—C16 | −1.51 (18) |
C2—O2—C10—C11 | 177.73 (11) | C15—C10—C11—C12 | −2.27 (19) |
O1—C1—C2—O2 | −76.50 (11) | C15—C10—C11—C16 | 178.42 (12) |
O1—C3—C4—C9 | −1.99 (15) | O2—C10—C15—C14 | −178.22 (12) |
C8—C3—C4—C5 | −1.78 (16) | C11—C10—C15—C14 | 1.9 (2) |
O1—C3—C8—C7 | 179.93 (9) | C10—C11—C12—C13 | 1.0 (2) |
C4—C3—C8—C7 | 0.54 (16) | C16—C11—C12—C13 | −179.70 (13) |
C8—C3—C4—C9 | 177.46 (10) | C10—C11—C16—O4 | −175.87 (13) |
O1—C3—C4—C5 | 178.78 (10) | C12—C11—C16—O4 | 4.8 (2) |
C3—C4—C9—O3 | 175.10 (11) | C11—C12—C13—C14 | 0.7 (2) |
C5—C4—C9—O3 | −5.67 (18) | C12—C13—C14—C15 | −1.1 (2) |
C3—C4—C5—C6 | 1.53 (16) | C13—C14—C15—C10 | −0.2 (2) |
C9—C4—C5—C6 | −177.71 (10) |
Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 0.95 | 2.44 | 3.2508 (17) | 144 |
C9—H9···O1 | 0.95 | 2.40 | 2.7412 (16) | 101 |
C16—H16···O2 | 0.95 | 2.42 | 2.7561 (15) | 101 |
C2—H2A···Cg1ii | 0.99 | 2.68 | 3.4220 (12) | 132 |
C2—H2B···Cg2iii | 0.99 | 2.70 | 3.5964 (14) | 151 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z. |
Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 0.95 | 2.44 | 3.2508 (17) | 144 |
C2—H2A···Cg1ii | 0.99 | 2.68 | 3.4220 (12) | 132 |
C2—H2B···Cg2iii | 0.99 | 2.70 | 3.5964 (14) | 151 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z. |
Acknowledgements
Manchester Metropolitan University and Erciyes University are gratefully acknowledged for supporting this study.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383. Web of Science CrossRef PubMed CAS Google Scholar
Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). Inorg. Chem. 46, 465–485. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mabkhot, Y. N., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci. 13, 2263–2275. Web of Science CrossRef CAS PubMed Google Scholar
Pedras, B., Gallego, D., Figueiredo, P., Nunes-Miranda, J. D., Capelo, J. L. & Lodeiro, C. (2010). Molbank, 2, M683. CrossRef Google Scholar
Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of bis functionalized compounds has attracted the interest of chemists in chemical industry. Such compounds are considered as significant precursores for building blocks of vital molecules in different studies such as supramolecular chemistry and nanoscience (Holland et al., 2007), bioactive bis heterocyclic compounds (Pedras et al., 2010; Mabkhot et al., 2012), and binucleating ligand designs (Gavrilova & Bosnich, 2004). In this concept the title compound has been synthesized among several derivatives of bis functionalized compounds as precursers for the synthesis of a series of macromolecular compounds.
The dihedral angle between the two benzene rings (C3–C8 and C10–C15) of the title compound (Fig. 1) is 75.14 (9)°. The torsion angle of the bridge O–C–C–O group is -76.50 (11)°. The C3–C4–C9–O3 and C10–C11–C16–O4 torsion angles of the two benzaldehyde groups are 175.10 (11) and -175.87 (13)°, respectively. Thus, they are almost coplanar with the rings to which they are attached. The bond lengths are normal (Allen et al., 1987).
In the crystal, molecules are connected by C–H···O hydrogen bonds, generating infinite chains with the graph-set motif C(6) (Table 1, Fig. 2; Bernstein et al., 1995) along the a axis. In addition, C–H···π interactions (Table 1) and π-π stacking interactions [Cg1···Cg1( - x, 2 - y, 1 - z) = 3.6957 (7) Å and Cg2···Cg2( 1 - x, 1 - y, 1 - z) = 3.6735 (8) Å; where Cg1 and Cg2 are the centroids of the C3–C8 and C10–C15 benzene rings, respectively] contribute to stabilize the crystal structure.