organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1293-o1294

1-(4-Meth­­oxy­phen­yl)-2-[4-(tri­fluoro­meth­yl)phen­yl]-1H-phenanthro[9,10-d]imidazole

aShri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli 621 105, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India, cDepartment of Chemistry, Urumudhanalakshmi College, Tiruchirappalli 620 019, India, and dDepartment of Physics, Urumudhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

(Received 6 June 2013; accepted 13 July 2013; online 20 July 2013)

In the title compound, C29H19F3N2O, a phenanthroline-fused imidazole tetra­cyclic system, the fused benzene rings deviate slightly from the central ring and make dihedral angles with this ring of 3.47 (8) and 3.05 (8)°. The tri­fluoro­methyl­phenyl ring is roughly coplanar with the phenanthroline-fused imidazole tetra­cyclic system [dihedral angle = 11.02 (6)°], while the meth­oxy­phenyl ring is almost perpendicular [dihedral angle = 87.65 (6)°]. There are intra­molecular C—H ⋯π inter­actions involving the meth­oxy­phenyl ring and the central phenanthroline ring, as well as an inter­molecular C—H⋯π inter­action involving the phenanthroline ring. In addition, there is an inter­molecular ππ inter­action involving the central phenanthroline ring and the tri­fluoro­methyl­phenyl ring [centroid–centroid distance = 3.685 (2) Å], as well as C—H⋯N inter­actions linking the mol­ecules into dimers.

Related literature

For background to the supra­molecular architecture of phenanthroline compounds, see: Lehn (1995[Lehn, J. M. (1995). In Supramolecular Chemistry, Concept of Perspectives. Weinheim: VCH.]). For metal sensors, see: Walters et al. (2000[Walters, K. A., Trouillrt, L., Guillerez, S. & Schanze, K. S. (2000). Inorg. Chem. 39, 5496-5509.]). For mol­ecular electronics, see: Peng et al. (1997[Peng, Z., Gharavi, A. R. & Yu, L. J. (1997). J. Am. Chem. Soc. 119, 4622-4632.]). For photo sensitizers see: Hara et al. (2001[Hara, K., Sugihara, H., Tachibana, Y., Islam, A., Yanagida, M., Sayama, K. & Arakawa, H. (2001). Langmuir, 17, 5992-5999.]). For a related structure, see: Sathishkumar et al. (2013[Sathishkumar, R., Mohandas, T., Sakthivel, P. & Jayabharathi, J. (2013). Acta Cryst. E69, o367.]).

[Scheme 1]

.

Experimental

Crystal data
  • C29H19F3N2O

  • Mr = 468.46

  • Monoclinic, P 21 /c

  • a = 11.7063 (9) Å

  • b = 20.2301 (16) Å

  • c = 9.5419 (8) Å

  • β = 99.725 (2)°

  • V = 2227.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.32 × 0.29 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.999

  • 24449 measured reflections

  • 5128 independent reflections

  • 3511 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.01

  • 5128 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg are the centroids of the methoxyphenyl and phenthroline rings, repsectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯N2i 0.95 2.55 3.402 (2) 150
C3—H3⋯Cg1 0.95 2.86 3.719 (2) 154
C10—H10⋯Cg2ii 0.95 2.69 3.419 (2) 136
C17—H17⋯Cg1 0.95 2.74 3.6042 (2) 154
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The large variety of complexes based on phenanthroline or polypyridyl derivatives allows the formation of many different molecular systems with various applications ranging from metallo-supramolecular chemistry (Lehn, 1995), metal sensors (Walters et al., 2000), molecular electronics (Peng et al., 1997), and photo sensitizers (Hara et al., 2001). Therefore, in the recent years the preparation of phenanthroimidazoles has gained great attention.

In this phenanthroline triclinic ring system, the phenyl rings on either end are slightly deviated from the central ring and make the dihedral angles with this ring of 3.47 (8)° and 3.05 (8)° respectively. The trifluromethyl phenyl ring is almost coplanar with the phenanthroline fused imidazole tetracyclic system (dihedral angle of 11.02 (6)°) while methoxy phenyl ring is almost perpendicular (dihedral angle of 87.65 (6)°).

The maximum deviation of C9 atom from the mean plane of the tetracyclic phenantherene fused imidazole ring is 0.078 (2)° and that of C29 atom from the methoxy phenyl ring is -0.043 (3)°. The C22 atom of the trifluromethyl phenyl ring is deviated by -0.040 (2)°.

There are intramolecular C3—H3 ···π and C17—H17···π (methoxyphenyl ring system) interactions as well as an intermolecular C10—H10···π interaction involving the phenanthroline ring (at the symmetry code x, 1/2 - y, 1/2 + z). There is an intermolecular ππ interaction involving the central ring phenanthroline ring and the trifluoromethyl phenyl ring (Cg···Cg 3.685 Å, 1-x, -y, 2-z). In addition there C—H···N out-of-plane interactions linking the molecules into dimers as shown in Fig. 2.

Related literature top

For background to the supramolecular architecture of phenanthroline compounds, see: Lehn (1995). For metal sensors, see: Walters et al. (2000). For molecular electronics, see: Peng et al. (1997). For photo sensitizers see: Hara et al. (2001). For closely related structures, see: Sathishkumar et al. (2013).

.

Experimental top

A mixture of phenanthrene-9,10-dione (1.0 g,4.8 mmol), ammonium acetate (1.48 g,19.2 mmol), 4-trifluromethylbenzaldehyde(0.83 g,4.8 mmol) and 4-methoxyaniline (2.95 g,24 mmol) have been refluxed in ethanol (20 mL) at 80°C. The reaction was monitored by TLC and purified by column chromatography using petroleum ether:ethyl acetate (9:1) as the eluent.Yield: 0.74 g (51%)

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H= 0.93 - 0.97 Å,and Uiso(H) = 1.3Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A diagram showing the C-H···N out of plane π interactions linking molecules into dimers.A packing diagram for (I) is shown.
1-(4-Methoxyphenyl)-2-[4-(trifluromethyl)phenyl]-1H-phenanthro[9,10-d]imidazole top
Crystal data top
C29H19F3N2OF(000) = 968
Mr = 468.46Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5131 reflections
a = 11.7063 (9) Åθ = 1.8–27.6°
b = 20.2301 (16) ŵ = 0.10 mm1
c = 9.5419 (8) ÅT = 173 K
β = 99.725 (2)°Block, colourless
V = 2227.2 (3) Å30.32 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5128 independent reflections
Radiation source: fine-focus sealed tube3511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Ω and ϕ scanθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1514
Tmin = 0.956, Tmax = 0.999k = 026
24449 measured reflectionsl = 012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.6328P]
where P = (Fo2 + 2Fc2)/3
5128 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C29H19F3N2OV = 2227.2 (3) Å3
Mr = 468.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7063 (9) ŵ = 0.10 mm1
b = 20.2301 (16) ÅT = 173 K
c = 9.5419 (8) Å0.32 × 0.29 × 0.25 mm
β = 99.725 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5128 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3511 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.999Rint = 0.032
24449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
5128 reflectionsΔρmin = 0.24 e Å3
317 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.94082 (11)0.18352 (6)0.83630 (17)0.0945 (5)
F21.03787 (11)0.09609 (7)0.88946 (19)0.1026 (5)
F30.97313 (14)0.11886 (9)0.67561 (17)0.1112 (6)
O10.24682 (11)0.21387 (6)0.47694 (14)0.0615 (4)
N10.41440 (11)0.01373 (6)0.76779 (13)0.0381 (3)
N20.53956 (11)0.08671 (6)0.88301 (14)0.0414 (3)
C10.34962 (13)0.06745 (7)0.80056 (16)0.0375 (3)
C20.22709 (13)0.08118 (8)0.77095 (16)0.0404 (4)
C30.14290 (15)0.04019 (9)0.69130 (19)0.0516 (4)
H30.16560.00090.65650.062*
C40.02892 (16)0.05872 (11)0.6633 (2)0.0625 (5)
H40.02680.03060.60920.075*
C50.00549 (16)0.11848 (11)0.7138 (2)0.0674 (6)
H50.08460.13130.69380.081*
C60.07410 (16)0.15882 (10)0.7921 (2)0.0591 (5)
H60.04890.19950.82600.071*
C70.19225 (14)0.14223 (8)0.82452 (17)0.0439 (4)
C80.27615 (14)0.18711 (8)0.90664 (17)0.0435 (4)
C90.24350 (17)0.24581 (9)0.96904 (19)0.0546 (4)
H90.16370.25710.95800.066*
C100.32367 (19)0.28690 (9)1.0449 (2)0.0626 (5)
H100.29890.32601.08610.075*
C110.44104 (19)0.27210 (9)1.0624 (2)0.0621 (5)
H110.49640.30111.11460.075*
C120.47650 (16)0.21546 (8)1.00403 (18)0.0519 (4)
H120.55680.20531.01550.062*
C130.39540 (14)0.17238 (7)0.92748 (16)0.0410 (4)
C140.42898 (13)0.11102 (7)0.87125 (16)0.0387 (3)
C150.52887 (13)0.02806 (7)0.82138 (16)0.0380 (3)
C160.63143 (13)0.01355 (7)0.81555 (16)0.0388 (3)
C170.62932 (15)0.07882 (8)0.76912 (19)0.0505 (4)
H170.55710.10000.73790.061*
C180.73102 (16)0.11314 (9)0.7679 (2)0.0543 (4)
H180.72800.15770.73600.065*
C190.83675 (14)0.08351 (8)0.81246 (18)0.0467 (4)
C200.84057 (15)0.01934 (9)0.8612 (2)0.0533 (4)
H200.91310.00130.89380.064*
C210.73894 (15)0.01501 (8)0.86267 (19)0.0494 (4)
H210.74260.05920.89670.059*
C220.94602 (17)0.11998 (10)0.8042 (2)0.0606 (5)
C230.36937 (13)0.04529 (7)0.69415 (16)0.0374 (3)
C240.36221 (14)0.04960 (8)0.54819 (17)0.0434 (4)
H240.38550.01350.49600.052*
C250.32095 (15)0.10681 (8)0.47918 (18)0.0482 (4)
H250.31650.11020.37910.058*
C260.28607 (13)0.15923 (8)0.55452 (18)0.0450 (4)
C270.29213 (15)0.15426 (8)0.70017 (19)0.0502 (4)
H270.26760.19010.75230.060*
C280.33403 (15)0.09708 (8)0.76958 (18)0.0460 (4)
H280.33840.09360.86960.055*
C290.2023 (2)0.26684 (12)0.5502 (3)0.0963 (9)
H29A0.17610.30250.48300.144*
H29B0.13690.25100.59290.144*
H29C0.26330.28340.62510.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0725 (8)0.0575 (8)0.1538 (14)0.0215 (6)0.0206 (9)0.0119 (8)
F20.0504 (7)0.0934 (10)0.1529 (14)0.0193 (7)0.0148 (8)0.0329 (9)
F30.0985 (11)0.1497 (14)0.0970 (11)0.0515 (10)0.0497 (9)0.0126 (10)
O10.0598 (8)0.0564 (8)0.0657 (8)0.0134 (6)0.0028 (6)0.0200 (6)
N10.0384 (7)0.0357 (6)0.0391 (7)0.0013 (5)0.0033 (5)0.0015 (5)
N20.0398 (7)0.0414 (7)0.0417 (7)0.0010 (6)0.0033 (6)0.0023 (6)
C10.0414 (8)0.0365 (8)0.0347 (8)0.0008 (6)0.0067 (6)0.0039 (6)
C20.0397 (8)0.0431 (8)0.0383 (8)0.0010 (7)0.0062 (6)0.0059 (7)
C30.0422 (9)0.0547 (10)0.0570 (11)0.0020 (8)0.0058 (8)0.0037 (8)
C40.0418 (10)0.0735 (13)0.0690 (13)0.0058 (9)0.0002 (9)0.0066 (10)
C50.0391 (10)0.0775 (14)0.0831 (15)0.0087 (10)0.0035 (9)0.0001 (12)
C60.0470 (10)0.0600 (11)0.0709 (13)0.0087 (9)0.0118 (9)0.0003 (10)
C70.0431 (9)0.0467 (9)0.0432 (9)0.0031 (7)0.0112 (7)0.0065 (7)
C80.0504 (9)0.0427 (8)0.0392 (8)0.0019 (7)0.0127 (7)0.0045 (7)
C90.0592 (11)0.0505 (10)0.0568 (11)0.0083 (9)0.0175 (9)0.0018 (8)
C100.0811 (14)0.0501 (10)0.0589 (12)0.0058 (10)0.0186 (10)0.0136 (9)
C110.0718 (13)0.0532 (11)0.0610 (12)0.0081 (10)0.0102 (10)0.0159 (9)
C120.0549 (10)0.0471 (9)0.0536 (10)0.0038 (8)0.0083 (8)0.0082 (8)
C130.0482 (9)0.0392 (8)0.0363 (8)0.0009 (7)0.0086 (7)0.0016 (6)
C140.0402 (8)0.0379 (8)0.0375 (8)0.0014 (7)0.0054 (6)0.0020 (6)
C150.0391 (8)0.0395 (8)0.0344 (8)0.0031 (7)0.0033 (6)0.0014 (6)
C160.0412 (8)0.0412 (8)0.0339 (8)0.0003 (7)0.0059 (6)0.0029 (6)
C170.0427 (9)0.0438 (9)0.0625 (11)0.0007 (7)0.0018 (8)0.0029 (8)
C180.0524 (10)0.0424 (9)0.0665 (12)0.0042 (8)0.0053 (9)0.0037 (8)
C190.0447 (9)0.0482 (9)0.0470 (9)0.0067 (8)0.0073 (7)0.0049 (7)
C200.0404 (9)0.0550 (10)0.0629 (11)0.0003 (8)0.0040 (8)0.0046 (9)
C210.0458 (9)0.0446 (9)0.0562 (10)0.0001 (8)0.0041 (8)0.0088 (8)
C220.0517 (11)0.0564 (11)0.0738 (14)0.0082 (9)0.0105 (10)0.0025 (10)
C230.0356 (8)0.0366 (8)0.0385 (8)0.0016 (6)0.0023 (6)0.0017 (6)
C240.0452 (9)0.0450 (9)0.0388 (9)0.0016 (7)0.0043 (7)0.0057 (7)
C250.0504 (10)0.0563 (10)0.0355 (9)0.0002 (8)0.0003 (7)0.0043 (7)
C260.0357 (8)0.0465 (9)0.0503 (10)0.0025 (7)0.0002 (7)0.0086 (7)
C270.0546 (10)0.0447 (9)0.0513 (10)0.0127 (8)0.0091 (8)0.0011 (8)
C280.0541 (10)0.0470 (9)0.0370 (8)0.0083 (8)0.0081 (7)0.0012 (7)
C290.108 (2)0.0749 (15)0.112 (2)0.0536 (15)0.0387 (16)0.0358 (14)
Geometric parameters (Å, º) top
F1—C221.325 (2)C11—H110.9500
F2—C221.325 (2)C12—C131.400 (2)
F3—C221.319 (2)C12—H120.9500
O1—C261.3661 (19)C13—C141.433 (2)
O1—C291.425 (3)C15—C161.475 (2)
N1—C151.3819 (19)C16—C211.389 (2)
N1—C11.3907 (19)C16—C171.392 (2)
N1—C231.4395 (19)C17—C181.380 (2)
N2—C151.3209 (19)C17—H170.9500
N2—C141.371 (2)C18—C191.376 (2)
C1—C141.372 (2)C18—H180.9500
C1—C21.441 (2)C19—C201.377 (2)
C2—C31.408 (2)C19—C221.490 (2)
C2—C71.423 (2)C20—C211.380 (2)
C3—C41.368 (2)C20—H200.9500
C3—H30.9500C21—H210.9500
C4—C51.386 (3)C23—C281.374 (2)
C4—H40.9500C23—C241.384 (2)
C5—C61.363 (3)C24—C251.378 (2)
C5—H50.9500C24—H240.9500
C6—C71.406 (2)C25—C261.381 (2)
C6—H60.9500C25—H250.9500
C7—C81.464 (2)C26—C271.383 (2)
C8—C131.408 (2)C27—C281.381 (2)
C8—C91.410 (2)C27—H270.9500
C9—C101.366 (3)C28—H280.9500
C9—H90.9500C29—H29A0.9800
C10—C111.388 (3)C29—H29B0.9800
C10—H100.9500C29—H29C0.9800
C11—C121.369 (2)
C26—O1—C29117.39 (15)N1—C15—C16127.66 (13)
C15—N1—C1106.52 (12)C21—C16—C17117.66 (15)
C15—N1—C23127.36 (12)C21—C16—C15116.69 (14)
C1—N1—C23126.12 (13)C17—C16—C15125.64 (14)
C15—N2—C14105.58 (13)C18—C17—C16120.74 (16)
C14—C1—N1105.24 (13)C18—C17—H17119.6
C14—C1—C2122.77 (14)C16—C17—H17119.6
N1—C1—C2131.98 (14)C19—C18—C17120.69 (16)
C3—C2—C7119.22 (15)C19—C18—H18119.7
C3—C2—C1125.09 (15)C17—C18—H18119.7
C7—C2—C1115.66 (14)C18—C19—C20119.41 (16)
C4—C3—C2120.96 (17)C18—C19—C22120.21 (16)
C4—C3—H3119.5C20—C19—C22120.36 (16)
C2—C3—H3119.5C19—C20—C21119.95 (16)
C3—C4—C5120.16 (18)C19—C20—H20120.0
C3—C4—H4119.9C21—C20—H20120.0
C5—C4—H4119.9C20—C21—C16121.52 (16)
C6—C5—C4120.07 (18)C20—C21—H21119.2
C6—C5—H5120.0C16—C21—H21119.2
C4—C5—H5120.0F3—C22—F2105.49 (18)
C5—C6—C7122.25 (18)F3—C22—F1105.03 (17)
C5—C6—H6118.9F2—C22—F1106.03 (17)
C7—C6—H6118.9F3—C22—C19112.60 (17)
C6—C7—C2117.35 (16)F2—C22—C19113.69 (17)
C6—C7—C8121.05 (16)F1—C22—C19113.25 (16)
C2—C7—C8121.58 (14)C28—C23—C24120.45 (14)
C13—C8—C9116.85 (16)C28—C23—N1119.65 (13)
C13—C8—C7120.25 (14)C24—C23—N1119.91 (13)
C9—C8—C7122.90 (16)C25—C24—C23119.38 (15)
C10—C9—C8121.69 (18)C25—C24—H24120.3
C10—C9—H9119.2C23—C24—H24120.3
C8—C9—H9119.2C24—C25—C26120.45 (15)
C9—C10—C11120.66 (17)C24—C25—H25119.8
C9—C10—H10119.7C26—C25—H25119.8
C11—C10—H10119.7O1—C26—C25116.18 (15)
C12—C11—C10119.56 (18)O1—C26—C27123.97 (16)
C12—C11—H11120.2C25—C26—C27119.85 (15)
C10—C11—H11120.2C28—C27—C26119.76 (15)
C11—C12—C13120.53 (18)C28—C27—H27120.1
C11—C12—H12119.7C26—C27—H27120.1
C13—C12—H12119.7C23—C28—C27120.10 (15)
C12—C13—C8120.70 (15)C23—C28—H28120.0
C12—C13—C14121.98 (15)C27—C28—H28120.0
C8—C13—C14117.29 (14)O1—C29—H29A109.5
N2—C14—C1111.17 (13)O1—C29—H29B109.5
N2—C14—C13126.49 (14)H29A—C29—H29B109.5
C1—C14—C13122.31 (14)O1—C29—H29C109.5
N2—C15—N1111.48 (13)H29A—C29—H29C109.5
N2—C15—C16120.86 (13)H29B—C29—H29C109.5
C15—N1—C1—C140.30 (16)C8—C13—C14—C10.5 (2)
C23—N1—C1—C14179.48 (13)C14—N2—C15—N10.87 (17)
C15—N1—C1—C2179.13 (15)C14—N2—C15—C16179.16 (13)
C23—N1—C1—C21.7 (2)C1—N1—C15—N20.75 (16)
C14—C1—C2—C3175.80 (16)C23—N1—C15—N2179.92 (13)
N1—C1—C2—C32.9 (3)C1—N1—C15—C16179.28 (14)
C14—C1—C2—C72.3 (2)C23—N1—C15—C160.1 (2)
N1—C1—C2—C7179.08 (15)N2—C15—C16—C217.2 (2)
C7—C2—C3—C40.9 (3)N1—C15—C16—C21172.77 (15)
C1—C2—C3—C4177.09 (17)N2—C15—C16—C17171.79 (15)
C2—C3—C4—C50.2 (3)N1—C15—C16—C178.2 (3)
C3—C4—C5—C60.4 (3)C21—C16—C17—C181.2 (3)
C4—C5—C6—C70.2 (3)C15—C16—C17—C18179.86 (16)
C5—C6—C7—C20.6 (3)C16—C17—C18—C190.1 (3)
C5—C6—C7—C8178.84 (18)C17—C18—C19—C201.2 (3)
C3—C2—C7—C61.1 (2)C17—C18—C19—C22177.10 (18)
C1—C2—C7—C6177.11 (15)C18—C19—C20—C211.1 (3)
C3—C2—C7—C8179.34 (15)C22—C19—C20—C21177.20 (17)
C1—C2—C7—C81.2 (2)C19—C20—C21—C160.1 (3)
C6—C7—C8—C13174.43 (15)C17—C16—C21—C201.3 (3)
C2—C7—C8—C133.8 (2)C15—C16—C21—C20179.66 (16)
C6—C7—C8—C96.1 (2)C18—C19—C22—F380.8 (2)
C2—C7—C8—C9175.70 (15)C20—C19—C22—F397.5 (2)
C13—C8—C9—C100.7 (3)C18—C19—C22—F2159.34 (18)
C7—C8—C9—C10179.85 (17)C20—C19—C22—F222.4 (3)
C8—C9—C10—C110.3 (3)C18—C19—C22—F138.2 (3)
C9—C10—C11—C120.6 (3)C20—C19—C22—F1143.46 (19)
C10—C11—C12—C130.2 (3)C15—N1—C23—C2892.07 (19)
C11—C12—C13—C81.3 (3)C1—N1—C23—C2886.95 (19)
C11—C12—C13—C14176.70 (16)C15—N1—C23—C2487.77 (19)
C9—C8—C13—C121.5 (2)C1—N1—C23—C2493.20 (18)
C7—C8—C13—C12179.04 (15)C28—C23—C24—C251.0 (2)
C9—C8—C13—C14176.61 (14)N1—C23—C24—C25178.82 (14)
C7—C8—C13—C142.9 (2)C23—C24—C25—C260.5 (3)
C15—N2—C14—C10.67 (17)C29—O1—C26—C25175.49 (19)
C15—N2—C14—C13177.31 (14)C29—O1—C26—C274.5 (3)
N1—C1—C14—N20.23 (17)C24—C25—C26—O1179.80 (15)
C2—C1—C14—N2178.74 (13)C24—C25—C26—C270.2 (3)
N1—C1—C14—C13177.86 (13)O1—C26—C27—C28179.47 (16)
C2—C1—C14—C133.2 (2)C25—C26—C27—C280.6 (3)
C12—C13—C14—N20.2 (2)C24—C23—C28—C270.7 (2)
C8—C13—C14—N2178.24 (15)N1—C23—C28—C27179.15 (15)
C12—C13—C14—C1177.59 (15)C26—C27—C28—C230.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N2i0.952.553.402 (2)150
C3—H3···Cg10.952.863.719 (2)154
C10—H10···Cg2ii0.952.693.419 (2)136
C17—H17···Cg10.952.743.6042 (2)154
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N2i0.95002.55003.402 (2)150.00
C3—H3···Cg10.95002.86003.719 (2)154.00
C10—H10···Cg2ii0.95002.69003.419 (2)136.00
C17—H17···Cg10.95002.74003.6042 (2)154.00
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Chennai, India, for carrying out the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHara, K., Sugihara, H., Tachibana, Y., Islam, A., Yanagida, M., Sayama, K. & Arakawa, H. (2001). Langmuir, 17, 5992–5999.  Web of Science CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). In Supramolecular Chemistry, Concept of Perspectives. Weinheim: VCH.  Google Scholar
First citationPeng, Z., Gharavi, A. R. & Yu, L. J. (1997). J. Am. Chem. Soc. 119, 4622–4632.  CrossRef CAS Web of Science Google Scholar
First citationSathishkumar, R., Mohandas, T., Sakthivel, P. & Jayabharathi, J. (2013). Acta Cryst. E69, o367.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalters, K. A., Trouillrt, L., Guillerez, S. & Schanze, K. S. (2000). Inorg. Chem. 39, 5496–5509.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1293-o1294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds