organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1221-o1222

2,2′-{[2-(2-Chloro­phen­yl)-4-methyl­imidazolidine-1,3-di­yl]bis­­(methyl­ene)}diphenol

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 28 May 2013; accepted 28 June 2013; online 10 July 2013)

In the title compound, C24H25ClN2O2, the 2-hy­droxy­benzyl substituents and the 2-chloro­phenyl group occupy the sterically preferred equatorial positions, whereas the methyl group occupies the axial position. The imidazolidine ring adopts an envelope conformation with one of the N atoms adjacent to the methylene group as the flap. The chloro­phenyl substit­uent approaches a nearly perpendicular orientation relative to the mean plane of the imidazolidine ring, making a dihedral angle of 73.44 (12)° and the Cl atom is almost coplanar with the C atom bearing the chloro­phenyl substituent [Cl—C—C—C torsion angle = 1.1 (3)°]. The hy­droxy­benzyl groups make dihedral angles of 71.23 (15) and 69.13 (19)° with the mean plane of the heterocyclic ring. The dihedral angle between the two hy­droxy­benzyl groups is 69.61 (12)°. The mol­ecular structure features two intra­molecular O—H⋯N hydrogen bonds with graph-set motif S(6) between the phenolic hydroxyl groups and N atoms.

Related literature

For related structures, see: Rivera et al. (2012a[Rivera, A., Cardenas, L., Ríos-Motta, J., Eigner, V. & Dušek, M. (2012a). Acta Cryst. E68, o3427-o3428.],b[Rivera, A., Pacheco, D., Ríos-Motta, J., Fejfarová, K. & Dusek, M. (2012b). Tetrahedron Lett. 53, 6132-6135.]). For the synthesis of the title compound, see: Rivera et al. (2013[Rivera, A., Cárdenas, L. & Ríos-Motta, J. (2013). Curr. Org. Chem. Accepted.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25ClN2O2

  • Mr = 408.9

  • Monoclinic, P 21 /c

  • a = 7.0281 (2) Å

  • b = 9.7903 (3) Å

  • c = 30.3813 (6) Å

  • β = 94.168 (2)°

  • V = 2084.92 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.24 × 0.15 × 0.08 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.392, Tmax = 1

  • 25057 measured reflections

  • 3732 independent reflections

  • 3164 reflections with I > 3σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.081

  • S = 2.66

  • 3732 reflections

  • 268 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 1.01 (3) 1.79 (3) 2.721 (3) 152 (3)
O2—H2⋯N1 1.01 (3) 1.79 (3) 2.723 (3) 152 (3)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al. 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As a continuation of systematic studies into the synthesis, characterization and structural properties of substituted Mannich bases, crystals of the title compound were isolated and characterized crystallographically.

In the title compound (Fig. 1), all values of the geometric parameters are normal (Allen et al., 1987). The largest difference maximum 1.2 e- A-3 coincides with the hydrogen H1—C13 and it could be explained by an atom with the scattering power of 2.2 H atoms. We tried to describe this maximum with an O—H group disordered between C5 (occupancy 0.85) and C13 (occupancy 0.15). The difference maximum decreased to ~0.5 e- A-3, which unfortunately still dominates the difference electron density map and remains at the position of the partially occupied (0.85) H1—C13. Because this disorder complicates the structure description and at the same time does not fully explain the difference maximum, we used for the final CIF the structure model without disorder.

The distances within the imidazolidine ring of the title compund are very similar to those found in related strctures (Rivera et al., 2012a,b). However, the observed N1—C20 bond length [1.498 (3) Å] is shorter in relation to the value observed in related structure [1.513 (2) Å] (Rivera et al., 2012a). The central imidazolidine core bearing a chlorophenyl, a methyl as well as two ortho-hydroxybenzyl groups as substituents, while the orientation of the ortho-hydroxybenzyl substituents on both sides of the imidazolidine ring and the chlorinated phenyl group are the sterically preferred equatorial positions and only the methyl group adopts a axial orientation. The mean plane of the imidazolidine ring defined by C17, N1, C20 makes a dihedral angle of 73.44 (12)° with the chlorophenyl substituent and the chlorine atom is almost coplanar with the C atom bearing the chlorophenyl substituent [Cl1—C18—C2—C17 torsion angle == 1.05 (31)°]. The hydroxybenzyl groups makes an angle of 71.23 (15)° and 69.13 (19)° with the mean plane of heterocyclic ring. The dihedral angle between the two hydroxybenzyl groups is 69.61 (12)°.

The crystal structure of the title confirms the presence of two O—H···N(1,3-imidazolidine) hydrogen bond with graph-set motif S(6) (Bernstein et al. 1995) (Table 1). The N···O distances [N1···O2, 2.723 (3) and N2···O1, 2.721 (3) Å] is longer in comparison with the values observed in related structure (Rivera, et al. 2012b), showing a slightly decrease in hydrogen-bonding strength.

Related literature top

For related structures, see: Rivera et al. (2012a,b). For the synthesis of the title compound, see: Rivera et al. (2013). For bond-length data, see: Allen et al. (1987). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

For the originally reported synthesis, see: Rivera et al. (2013). Single crystals of the title compound (I) were grown from ethanol by recrystallization

Refinement top

The hydroxyl hydrogen atoms were found in difference Fourier maps and their coordinates were refined with a distance restraint d(O—H) = 1.012 Å with σ 0.01. All other H atoms atoms were kept in the geometrically correct positions with C—H distance 0.96 A. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis 2007); program(s) used to refine structure: JANA2006 (Petříček et al. 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al. 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.
2,2'-{[2-(2-Chlorophenyl)-4-methylimidazolidine-1,3-diyl]bis(methylene)}diphenol top
Crystal data top
C24H25ClN2O2F(000) = 864
Mr = 408.9Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ycbCell parameters from 10626 reflections
a = 7.0281 (2) Åθ = 2.9–67.0°
b = 9.7903 (3) ŵ = 0.21 mm1
c = 30.3813 (6) ÅT = 120 K
β = 94.168 (2)°Polygon shape, white
V = 2084.92 (10) Å30.24 × 0.15 × 0.08 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3732 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3164 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.3784 pixels mm-1θmax = 25.1°, θmin = 1.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.392, Tmax = 1l = 3631
25057 measured reflections
Refinement top
Refinement on F94 constraints
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.081Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
S = 2.66(Δ/σ)max = 0.024
3732 reflectionsΔρmax = 1.29 e Å3
268 parametersΔρmin = 0.33 e Å3
1 restraint
Crystal data top
C24H25ClN2O2V = 2084.92 (10) Å3
Mr = 408.9Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0281 (2) ŵ = 0.21 mm1
b = 9.7903 (3) ÅT = 120 K
c = 30.3813 (6) Å0.24 × 0.15 × 0.08 mm
β = 94.168 (2)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3732 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3164 reflections with I > 3σ(I)
Tmin = 0.392, Tmax = 1Rint = 0.034
25057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 2.66Δρmax = 1.29 e Å3
3732 reflectionsΔρmin = 0.33 e Å3
268 parameters
Special details top

Experimental. (CrysAlis PRO; Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47526 (9)0.37100 (7)0.066197 (19)0.0426 (2)
O11.1631 (3)0.0315 (2)0.09734 (7)0.0521 (7)
N10.6652 (3)0.10467 (19)0.17016 (6)0.0276 (5)
N20.7887 (3)0.02087 (19)0.10763 (6)0.0281 (5)
O20.8058 (3)0.2490 (2)0.24193 (6)0.0533 (7)
C10.9092 (3)0.1023 (2)0.04481 (7)0.0313 (7)
C20.7791 (3)0.2711 (2)0.11711 (7)0.0303 (6)
C30.9648 (4)0.2880 (2)0.13809 (7)0.0358 (7)
C40.8047 (4)0.5012 (3)0.08815 (8)0.0408 (8)
C61.0958 (4)0.1154 (3)0.06367 (8)0.0373 (7)
C50.6590 (4)0.1942 (3)0.26237 (8)0.0398 (8)
C70.9840 (4)0.5144 (3)0.10888 (8)0.0439 (8)
C81.1541 (4)0.3039 (3)0.01561 (7)0.0405 (8)
C90.7795 (3)0.0089 (2)0.05926 (7)0.0327 (7)
C100.5015 (4)0.1449 (3)0.23719 (8)0.0374 (7)
C111.2177 (4)0.2147 (3)0.04910 (8)0.0420 (8)
C120.7072 (4)0.0978 (2)0.12959 (7)0.0361 (7)
C130.3618 (4)0.0796 (3)0.25849 (9)0.0468 (9)
C140.5252 (4)0.1215 (3)0.32865 (8)0.0440 (9)
C150.8499 (4)0.1925 (3)0.01111 (7)0.0375 (7)
C160.9707 (4)0.2924 (3)0.00355 (8)0.0415 (8)
C170.6776 (3)0.1362 (2)0.12301 (7)0.0286 (6)
C180.7034 (4)0.3801 (2)0.09253 (7)0.0334 (7)
C190.4922 (4)0.1602 (3)0.18752 (8)0.0410 (8)
C200.6855 (4)0.0468 (2)0.17574 (8)0.0383 (8)
C210.6697 (4)0.1850 (3)0.30818 (8)0.0436 (8)
C220.3725 (5)0.0669 (3)0.30433 (9)0.0513 (10)
C231.0644 (4)0.4083 (3)0.13432 (8)0.0407 (8)
C240.8613 (5)0.0821 (3)0.20628 (9)0.0509 (9)
H1c31.0219740.2143030.1552060.043*
H1c40.7494720.5748920.0707450.049*
H1c71.0542010.5975490.1057940.0527*
H1c81.2375840.3734250.0058220.0486*
H1c90.8150690.0942960.0467060.0392*
H2c90.6506550.0103540.048320.0392*
H1c111.3458680.221670.0621550.0504*
H1c120.7967550.1719140.1305350.0433*
H2c120.5836910.1184230.1155810.0433*
H1c130.2542340.0416370.2414310.0562*
H1c140.5316980.115630.3602650.0528*
H1c150.7223690.1853920.0023350.045*
H1c160.9267180.3531190.0269180.0499*
H1c170.5555380.1462350.1069730.0344*
H1c190.3827650.1121640.1746490.0492*
H2c190.4800640.2550550.1798760.0492*
H1c200.5791610.0873020.1889780.0459*
H1c210.7771320.2225410.3253960.0523*
H1c220.273750.0204250.318630.0616*
H1c231.1888410.4187160.14920.0489*
H1c240.8718650.1795340.2091130.0611*
H2c240.9733920.0466570.1940760.0611*
H3c240.8488060.0423680.2348110.0611*
H11.042 (5)0.005 (4)0.1092 (11)0.0625*
H20.785 (5)0.212 (4)0.2108 (10)0.0639*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0468 (4)0.0437 (4)0.0364 (3)0.0097 (3)0.0034 (2)0.0023 (2)
O10.0435 (11)0.0589 (13)0.0526 (11)0.0001 (9)0.0056 (8)0.0247 (9)
N10.0304 (9)0.0255 (10)0.0272 (9)0.0014 (7)0.0043 (7)0.0034 (7)
N20.0372 (10)0.0226 (9)0.0243 (9)0.0034 (7)0.0009 (7)0.0007 (7)
O20.0551 (12)0.0583 (13)0.0464 (11)0.0161 (10)0.0039 (8)0.0061 (9)
C10.0434 (13)0.0267 (12)0.0243 (10)0.0071 (9)0.0052 (8)0.0018 (8)
C20.0372 (12)0.0283 (12)0.0259 (10)0.0002 (9)0.0068 (8)0.0010 (8)
C30.0466 (13)0.0259 (12)0.0361 (12)0.0080 (10)0.0104 (10)0.0046 (9)
C40.0672 (17)0.0270 (12)0.0306 (12)0.0012 (11)0.0196 (11)0.0022 (9)
C60.0465 (14)0.0359 (13)0.0295 (11)0.0031 (10)0.0026 (9)0.0035 (9)
C50.0427 (13)0.0392 (14)0.0384 (12)0.0076 (11)0.0093 (10)0.0087 (10)
C70.0622 (17)0.0301 (13)0.0420 (13)0.0130 (12)0.0209 (11)0.0062 (10)
C80.0570 (16)0.0358 (14)0.0304 (11)0.0025 (11)0.0143 (10)0.0024 (9)
C90.0434 (13)0.0281 (12)0.0258 (11)0.0033 (9)0.0021 (9)0.0003 (8)
C100.0397 (13)0.0395 (14)0.0337 (12)0.0115 (10)0.0073 (9)0.0046 (9)
C110.0479 (15)0.0433 (15)0.0349 (12)0.0027 (12)0.0047 (10)0.0007 (10)
C120.0491 (14)0.0249 (12)0.0344 (12)0.0045 (10)0.0034 (10)0.0047 (9)
C130.0526 (16)0.0492 (16)0.0402 (14)0.0001 (13)0.0151 (11)0.0013 (11)
C140.0668 (18)0.0326 (13)0.0342 (13)0.0154 (12)0.0142 (11)0.0040 (9)
C150.0483 (14)0.0361 (13)0.0282 (11)0.0084 (11)0.0036 (9)0.0035 (9)
C160.0624 (17)0.0344 (14)0.0291 (11)0.0084 (12)0.0113 (10)0.0072 (9)
C170.0296 (11)0.0293 (12)0.0266 (10)0.0010 (9)0.0002 (8)0.0019 (8)
C180.0453 (13)0.0308 (12)0.0250 (10)0.0022 (10)0.0092 (9)0.0022 (8)
C190.0355 (12)0.0549 (16)0.0329 (12)0.0113 (11)0.0047 (9)0.0066 (10)
C200.0508 (14)0.0277 (12)0.0370 (12)0.0068 (10)0.0080 (10)0.0035 (9)
C210.0529 (15)0.0400 (14)0.0379 (13)0.0119 (12)0.0042 (11)0.0043 (11)
C220.0700 (19)0.0444 (16)0.0423 (14)0.0010 (14)0.0235 (13)0.0041 (12)
C230.0421 (13)0.0366 (14)0.0449 (13)0.0096 (11)0.0121 (10)0.0088 (10)
C240.0688 (19)0.0407 (16)0.0413 (14)0.0111 (13)0.0097 (12)0.0010 (11)
Geometric parameters (Å, º) top
O1—C61.369 (3)C9—H1c90.96
N1—C171.474 (3)C9—H2c90.96
N1—C191.465 (3)C10—C131.373 (4)
N1—C201.498 (3)C10—C191.513 (3)
N2—C91.471 (3)C11—H1c110.96
N2—C121.476 (3)C12—C201.507 (3)
N2—C171.468 (3)C12—H1c120.96
O2—C51.353 (3)C12—H2c120.96
C1—C61.398 (3)C13—C221.395 (4)
C1—C91.506 (3)C13—H1c130.96
C1—C151.392 (3)C14—C211.377 (4)
C2—C31.420 (3)C14—C221.367 (4)
C2—C171.518 (3)C14—H1c140.96
C2—C181.386 (3)C15—C161.389 (4)
C3—C231.380 (4)C15—H1c150.96
C3—H1c30.96C16—H1c160.96
C4—C71.373 (4)C17—H1c170.96
C4—C181.394 (4)C19—H1c190.96
C4—H1c40.96C19—H2c190.96
C6—C111.389 (4)C20—C241.529 (4)
C5—C101.386 (3)C20—H1c200.96
C5—C211.391 (3)C21—H1c210.96
C7—C231.390 (4)C22—H1c220.96
C7—H1c70.96C23—H1c230.96
C8—C111.390 (4)C24—H1c240.96
C8—C161.380 (4)C24—H2c240.96
C8—H1c80.96C24—H3c240.96
C17—N1—C19112.41 (17)H1c12—C12—H2c12115.07
C17—N1—C20107.79 (17)C10—C13—C22121.6 (3)
C19—N1—C20113.64 (19)C10—C13—H1c13119.2
C9—N2—C12113.49 (17)C22—C13—H1c13119.2
C9—N2—C17113.18 (17)C21—C14—C22120.5 (2)
C12—N2—C17103.20 (17)C21—C14—H1c14119.73
C6—C1—C9121.1 (2)C22—C14—H1c14119.73
C6—C1—C15117.7 (2)C1—C15—C16121.6 (2)
C9—C1—C15121.1 (2)C1—C15—H1c15119.18
C3—C2—C17118.20 (19)C16—C15—H1c15119.18
C3—C2—C18117.2 (2)C8—C16—C15119.8 (2)
C17—C2—C18124.6 (2)C8—C16—H1c16120.12
C2—C3—C23121.2 (2)C15—C16—H1c16120.12
C2—C3—H1c3119.42N1—C17—N2102.62 (16)
C23—C3—H1c3119.42N1—C17—C2110.98 (17)
C7—C4—C18119.6 (2)N1—C17—H1c17113.65
C7—C4—H1c4120.18N2—C17—C2111.48 (18)
C18—C4—H1c4120.18N2—C17—H1c17113.17
O1—C6—C1120.9 (2)C2—C17—H1c17105.14
O1—C6—C11118.1 (2)C2—C18—C4121.8 (2)
C1—C6—C11121.0 (2)N1—C19—C10110.23 (19)
O2—C5—C10119.3 (2)N1—C19—H1c19109.47
O2—C5—C21119.8 (2)N1—C19—H2c19109.47
C10—C5—C21120.9 (2)C10—C19—H1c19109.47
C4—C7—C23120.5 (2)C10—C19—H2c19109.47
C4—C7—H1c7119.77H1c19—C19—H2c19108.7
C23—C7—H1c7119.76N1—C20—C12103.76 (18)
C11—C8—C16119.9 (2)N1—C20—C24111.0 (2)
C11—C8—H1c8120.06N1—C20—H1c20112.71
C16—C8—H1c8120.06C12—C20—C24111.0 (2)
N2—C9—C1111.43 (18)C12—C20—H1c20112.78
N2—C9—H1c9109.47C24—C20—H1c20105.75
N2—C9—H2c9109.47C5—C21—C14119.5 (2)
C1—C9—H1c9109.47C5—C21—H1c21120.23
C1—C9—H2c9109.47C14—C21—H1c21120.23
H1c9—C9—H2c9107.44C13—C22—C14119.2 (3)
C5—C10—C13118.1 (2)C13—C22—H1c22120.39
C5—C10—C19119.4 (2)C14—C22—H1c22120.39
C13—C10—C19122.4 (2)C3—C23—C7119.7 (2)
C6—C11—C8120.0 (2)C3—C23—H1c23120.14
C6—C11—H1c11120C7—C23—H1c23120.14
C8—C11—H1c11120C20—C24—H1c24109.47
N2—C12—C20103.23 (18)C20—C24—H2c24109.47
N2—C12—H1c12109.47C20—C24—H3c24109.47
N2—C12—H2c12109.47H1c24—C24—H2c24109.47
C20—C12—H1c12109.47H1c24—C24—H3c24109.47
C20—C12—H2c12109.47H2c24—C24—H3c24109.47
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N21.01 (3)1.79 (3)2.721 (3)152 (3)
O2—H2···N11.01 (3)1.79 (3)2.723 (3)152 (3)
O1—H1···C91.01 (3)2.31 (3)2.883 (3)115 (2)
O2—H2···C191.01 (3)2.19 (4)2.796 (3)117 (3)

Experimental details

Crystal data
Chemical formulaC24H25ClN2O2
Mr408.9
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)7.0281 (2), 9.7903 (3), 30.3813 (6)
β (°) 94.168 (2)
V3)2084.92 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.24 × 0.15 × 0.08
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.392, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
25057, 3732, 3164
Rint0.034
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.081, 2.66
No. of reflections3732
No. of parameters268
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.33

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis 2007), JANA2006 (Petříček et al. 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N21.01 (3)1.79 (3)2.721 (3)152 (3)
O2—H2···N11.01 (3)1.79 (3)2.723 (3)152 (3)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB), and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Cárdenas, L. & Ríos-Motta, J. (2013). Curr. Org. Chem. Accepted.  Google Scholar
First citationRivera, A., Cardenas, L., Ríos-Motta, J., Eigner, V. & Dušek, M. (2012a). Acta Cryst. E68, o3427–o3428.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Pacheco, D., Ríos-Motta, J., Fejfarová, K. & Dusek, M. (2012b). Tetrahedron Lett. 53, 6132–6135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1221-o1222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds