organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1237-o1238

Tenulin 0.25-hydrate, a sesquiterpene lactone isolated from Helenium amarum

aDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, and bCrystallographic Systems, Bruker AXS Inc., 4565 East Cheryl Parkway, Madison, WI 53711, USA
*Correspondence e-mail: kyle-knight@utc.edu

(Received 20 June 2013; accepted 2 July 2013; online 10 July 2013)

The asymmetric unit of the title compound, C17H22O5·0.25H2O [systematic name: 2-hy­droxy-2,2a,6,9a-tetra­methyl-2a,4a,5,6,6a,9a,9b,9c-octa­hydro-2H-1,4-dioxadi­cyclo­pent[cd,f]azulene-3,9-dione 0.25-hydrate], a natural product isolated from Helenium amarum, contains two independent tenulin mol­ecules and half a water mol­ecule of crystallization situated on a twofold rotation axis. The hy­droxy group of the hemiketal moiety is in a β-position. In the crystal, each water mol­ecule inter­acts with four tenulin mol­ecules via O—H⋯O hydrogen bonds. The two independent tenulin mol­ecules (A and B) differ only in the character of their participation in hydrogen bonding. Specifically, while A is an acceptor of Owater—H⋯OA and a donor of OA—H⋯OB hydrogen bonds, mol­ecule B is an acceptor of the latter hydrogen bond and the donor of an OB—H⋯Owater hydrogen bond. In the crystal, these O—H⋯O hydrogen bonds link the tenulin and water mol­ecules into layers parallel to the ac plane.

Related literature

For the discovery and structural identification of tenulin, see: Clark (1939[Clark, E. P. (1939). J. Am. Chem. Soc. 61, 1836-40.]); Herz & Sharma (1975[Herz, W. & Sharma, R. P. (1975). J. Org. Chem. 40, 2557-2559.]); Braun et al. (1956[Braun, B. H., Herz, W. & Rabindran, K. (1956). J. Am. Chem. Soc. 78, 4423-4429.]); Barton & De Mayo (1956[Barton, D. H. R. & De Mayo, P. (1956). J. Chem. Soc. pp. 142-149.]). For the biological activity of tenulin and its analogs, see: Lee et al. (1977[Lee, K. H., Hall, I. H., Mar, E. C., Starnes, C. O., ElGebaly, S. A., Waddell, T. G., Hadgraft, R. I., Ruffner, C. G. & Weidner, I. (1977). Science, 196, 533-536.]); Waddell et al. (1979[Waddell, T. G., Austin, A. M., Cochran, J. W., Gerhart, K. G., Hall, I. H. & Lee, K. H. (1979). J. Pharm. Sci. 68, 715-718.]); Hwang et al. (1996[Hwang, D., Fischer, N. H., Jang, B. C., Tak, H., Kim, J. K. & Lee, W. (1996). Biochem. Biophys. Res. Commun. 226, 810-818.]); Li & Zhang (2008[Li, X.-J. & Zhang, H.-Y. (2008). Trends Mol. Med. 14, 1-2.]); Hodge & Waddell (1995[Hodge, J. S. & Waddell, T. G. (1995). J. Nat. Prod. 58, 149-151.]) and references therein. For the crystal structure of bromo­isotenulin, see: Mazhar et al. (1974[Mazhar Ul, H., Rogers, D. & Caughlan, C. N. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 223-228.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22O5·0.25H2O

  • Mr = 310.86

  • Orthorhombic, P 21 21 2

  • a = 10.5508 (16) Å

  • b = 28.371 (4) Å

  • c = 10.5228 (14) Å

  • V = 3149.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.42 × 0.32 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 1.000

  • 19558 measured reflections

  • 5543 independent reflections

  • 4678 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.26

  • 5543 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O10i 0.84 1.87 2.711 (3) 175
O8—H8⋯O1Wii 0.84 2.17 2.945 (5) 153
O1W—H1W⋯O5 0.99 (3) 1.94 (3) 2.897 (4) 162 (6)
Symmetry codes: (i) -x+1, -y+1, z; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Tenulin, C17H22O5, is a sesquiterpene lactone isolated from sneezeweed Helenium amarum, a medicinal plant native to the southeastern USA. The crystal structure contains two crystallographically independent tenulin molecules with similar bond dimensions. There is a single molecule of water for every four molecules of tenulin. Each tenulin molecule is linked via hydrogen bonding to the central water molecule. Additionally, there is hydrogen bonding between the carbonyl oxygen (O5) of the ketone and the free hydroxy of the hemiketal (O8).

The structure clearly shows the hydroxy of the hemiketal to be in the beta position, a point of contention in older structural studies, using only nuclear magnetic resonance. The absolute configuration of all other stereocenters is that established for other sesquiterpene lactones (Mazhar et al., 1974).

Related literature top

For the discovery and structural identification of tenulin, see: Clark (1939); Herz & Sharma (1975); Braun et al. (1956); Barton & De Mayo (1956). For the biological activity of tenulin and its analogs, see: Lee et al. (1977); Waddell et al. (1979); Hwang et al. (1996); Li & Zhang (2008); Hodge & Waddell (1995) and references therein. For the crystal structure of bromoisotenulin, see: Mazhar et al. (1974).

Experimental top

tenulin was isolated as described previously (Waddell et al., 1979).

Refinement top

H atoms for the water molecule were found in the difference map and were constrained to ride on the oxygen at a fixed distance of 0.9 Å with Uiso(H)= 1.5Ueq (C). All other H atoms were positioned geometrically, with bond distances of 0.98, 0.99, 1.00 and 0.95 Å for methyl, methylene, methine and vinyl, respectively. All carbon bound H atoms were constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq (C) or 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al. 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering and 50% probablility displacement ellipsoids.
2-Hydroxy-2,2a,6,9a-tetramethyl-2a,4a,5,6,6a,9a,9b,9c-octahydro-2H- 1,4-dioxadicyclopent[cd,f]azulene-3,9-dione 0.25-hydrate top
Crystal data top
C17H22O5·0.25H2ODx = 1.311 Mg m3
Mr = 310.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 6528 reflections
a = 10.5508 (16) Åθ = 2.4–24.7°
b = 28.371 (4) ŵ = 0.10 mm1
c = 10.5228 (14) ÅT = 200 K
V = 3149.9 (8) Å3Plate, colorless
Z = 80.42 × 0.32 × 0.26 mm
F(000) = 1332
Data collection top
Bruker APEXII CCD
diffractometer
4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1112
Tmin = 0.818, Tmax = 1.000k = 3333
19558 measured reflectionsl = 1212
5543 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
5543 reflectionsΔρmax = 0.32 e Å3
415 parametersΔρmin = 0.22 e Å3
1 restraint
Crystal data top
C17H22O5·0.25H2OV = 3149.9 (8) Å3
Mr = 310.86Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 10.5508 (16) ŵ = 0.10 mm1
b = 28.371 (4) ÅT = 200 K
c = 10.5228 (14) Å0.42 × 0.32 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
5543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4678 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 1.000Rint = 0.041
19558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.121H-atom parameters constrained
S = 1.26Δρmax = 0.32 e Å3
5543 reflectionsΔρmin = 0.22 e Å3
415 parameters
Special details top

Experimental. SADABS-2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1805 before and 0.0485 after correction. The Ratio of minimum to maximum transmission is 0.8179. The λ/2 correction factor is 0.0000.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6817 (2)0.38776 (7)0.3835 (2)0.0356 (5)
O20.9660 (2)0.29325 (8)0.4251 (2)0.0377 (6)
O30.8861 (2)0.39337 (7)0.4678 (2)0.0365 (6)
H30.88470.42190.44600.055*
O40.9400 (2)0.29834 (9)0.6349 (2)0.0473 (7)
O50.5217 (3)0.41252 (13)0.1295 (3)0.0741 (10)
C10.7673 (3)0.32247 (10)0.4929 (3)0.0295 (7)
C20.7609 (3)0.37755 (11)0.4896 (3)0.0319 (7)
C30.6765 (3)0.34915 (11)0.2951 (3)0.0313 (7)
H3A0.58750.33700.29490.038*
C40.7608 (3)0.31057 (10)0.3520 (3)0.0294 (7)
H40.72130.27890.33930.035*
C50.9002 (3)0.30976 (11)0.3106 (3)0.0318 (7)
H50.92770.34280.29250.038*
C60.8988 (3)0.30454 (10)0.5302 (3)0.0317 (8)
C70.6632 (3)0.30040 (12)0.5743 (3)0.0394 (8)
H7A0.58070.31300.54850.059*
H7B0.67840.30790.66390.059*
H7C0.66380.26610.56280.059*
C80.7064 (4)0.40203 (12)0.6048 (3)0.0443 (9)
H8A0.75810.39460.67960.066*
H8B0.61930.39120.61880.066*
H8C0.70640.43620.59080.066*
C90.7099 (3)0.36289 (12)0.1567 (3)0.0374 (8)
C100.5949 (4)0.38274 (16)0.0850 (4)0.0546 (11)
C110.5928 (5)0.3623 (2)0.0398 (4)0.0716 (14)
H110.53830.37180.10690.086*
C120.6793 (5)0.32776 (18)0.0477 (4)0.0645 (12)
H120.69680.31100.12390.077*
C130.7463 (4)0.31812 (13)0.0771 (4)0.0428 (9)
H130.69960.29130.11700.051*
C140.8858 (4)0.30276 (13)0.0714 (4)0.0446 (9)
H140.93850.33150.05700.054*
C150.9297 (4)0.27972 (12)0.1967 (3)0.0418 (9)
H15A0.88750.24880.20630.050*
H15B1.02230.27420.19280.050*
C160.8068 (4)0.40361 (12)0.1463 (3)0.0427 (9)
H16A0.82580.40960.05660.064*
H16B0.88490.39490.19090.064*
H16C0.77110.43210.18480.064*
C170.9131 (6)0.26812 (17)0.0367 (4)0.0723 (15)
H17A0.85840.24040.02780.108*
H17B1.00210.25830.03300.108*
H17C0.89640.28340.11850.108*
O60.2271 (3)0.47141 (8)0.6628 (3)0.0565 (8)
O70.3046 (3)0.33787 (10)0.7457 (2)0.0548 (8)
O80.3753 (3)0.44016 (11)0.7977 (3)0.0672 (9)
H80.41300.46330.83020.101*
O90.2418 (4)0.34948 (12)0.9465 (3)0.0802 (11)
O100.1310 (3)0.51587 (8)0.3892 (3)0.0620 (8)
C180.1688 (4)0.40306 (13)0.7805 (4)0.0442 (9)
C190.2444 (4)0.45107 (14)0.7832 (4)0.0489 (10)
C200.1707 (3)0.43966 (10)0.5749 (3)0.0353 (8)
H200.07990.44910.56470.042*
C210.1730 (3)0.39150 (11)0.6398 (3)0.0330 (7)
H210.09760.37230.61450.040*
C220.2951 (3)0.36293 (12)0.6250 (3)0.0386 (8)
H220.36830.38510.61710.046*
C230.2409 (4)0.36239 (15)0.8373 (4)0.0553 (11)
C240.0352 (4)0.40600 (16)0.8354 (4)0.0561 (11)
H24A0.01050.37670.81710.084*
H24B0.00990.43260.79670.084*
H24C0.04000.41060.92750.084*
C250.2053 (5)0.48671 (17)0.8816 (4)0.0726 (14)
H25A0.26020.51450.87550.109*
H25B0.21330.47280.96650.109*
H25C0.11710.49610.86700.109*
C260.2326 (3)0.44109 (11)0.4425 (4)0.0345 (8)
C270.1662 (4)0.47665 (11)0.3560 (4)0.0459 (9)
C280.1556 (5)0.45658 (14)0.2310 (4)0.0567 (11)
H280.12880.47310.15720.068*
C290.1891 (4)0.41138 (14)0.2341 (4)0.0483 (10)
H290.19660.39220.16050.058*
C300.2139 (3)0.39387 (11)0.3672 (3)0.0334 (7)
H300.13190.38030.39780.040*
C310.3146 (3)0.35456 (11)0.3859 (3)0.0350 (8)
H310.40040.36950.38550.042*
C320.2963 (3)0.32945 (11)0.5136 (3)0.0358 (8)
H32A0.21520.31190.51180.043*
H32B0.36550.30630.52550.043*
C330.3739 (4)0.45762 (13)0.4442 (4)0.0506 (10)
H33A0.41130.45290.36000.076*
H33B0.42110.43920.50710.076*
H33C0.37770.49110.46670.076*
C340.3095 (4)0.31824 (12)0.2785 (4)0.0457 (9)
H34A0.37020.29290.29600.069*
H34B0.33130.33350.19790.069*
H34C0.22390.30500.27300.069*
O1W0.50000.50000.0109 (5)0.0797 (14)
H1W0.489 (7)0.4719 (14)0.043 (5)0.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (13)0.0341 (11)0.0342 (13)0.0081 (10)0.0026 (11)0.0019 (10)
O20.0333 (13)0.0367 (13)0.0433 (14)0.0071 (10)0.0067 (12)0.0040 (11)
O30.0342 (13)0.0259 (11)0.0495 (15)0.0051 (10)0.0021 (11)0.0033 (11)
O40.0521 (16)0.0495 (15)0.0403 (15)0.0028 (12)0.0176 (13)0.0100 (13)
O50.061 (2)0.104 (3)0.0569 (18)0.0353 (19)0.0044 (17)0.0231 (19)
C10.0315 (18)0.0256 (15)0.0315 (18)0.0051 (13)0.0032 (14)0.0032 (14)
C20.0333 (17)0.0312 (16)0.0313 (18)0.0017 (14)0.0012 (14)0.0016 (14)
C30.0238 (16)0.0374 (17)0.0328 (17)0.0026 (14)0.0020 (15)0.0028 (14)
C40.0303 (17)0.0271 (15)0.0309 (17)0.0086 (13)0.0035 (14)0.0001 (14)
C50.0293 (17)0.0292 (16)0.0367 (19)0.0029 (13)0.0033 (14)0.0056 (14)
C60.0363 (19)0.0234 (15)0.035 (2)0.0034 (14)0.0064 (16)0.0054 (14)
C70.0409 (19)0.0405 (18)0.0367 (19)0.0082 (16)0.0038 (17)0.0020 (16)
C80.054 (2)0.0390 (19)0.040 (2)0.0013 (17)0.0047 (18)0.0040 (17)
C90.0368 (19)0.0446 (18)0.0309 (18)0.0011 (15)0.0029 (15)0.0042 (16)
C100.051 (2)0.071 (3)0.042 (2)0.009 (2)0.004 (2)0.019 (2)
C110.065 (3)0.105 (4)0.045 (3)0.007 (3)0.019 (2)0.009 (3)
C120.079 (3)0.083 (3)0.032 (2)0.008 (3)0.010 (2)0.001 (2)
C130.051 (2)0.045 (2)0.0325 (18)0.0086 (17)0.0054 (18)0.0002 (16)
C140.058 (2)0.0407 (19)0.0349 (19)0.0012 (18)0.0070 (19)0.0034 (16)
C150.046 (2)0.0361 (19)0.043 (2)0.0073 (16)0.0024 (18)0.0056 (17)
C160.052 (2)0.0374 (18)0.0388 (19)0.0001 (16)0.0101 (18)0.0084 (16)
C170.114 (4)0.061 (3)0.042 (2)0.016 (3)0.005 (3)0.014 (2)
O60.087 (2)0.0373 (13)0.0453 (16)0.0181 (13)0.0064 (14)0.0092 (12)
O70.0617 (19)0.0587 (17)0.0439 (16)0.0192 (15)0.0111 (13)0.0038 (13)
O80.0531 (19)0.0671 (19)0.082 (2)0.0024 (15)0.0181 (17)0.0196 (17)
O90.114 (3)0.086 (2)0.0410 (18)0.022 (2)0.0086 (18)0.0097 (16)
O100.070 (2)0.0259 (13)0.090 (2)0.0007 (13)0.0007 (18)0.0017 (13)
C180.044 (2)0.050 (2)0.038 (2)0.0066 (18)0.0017 (18)0.0070 (17)
C190.048 (2)0.048 (2)0.051 (2)0.0038 (18)0.011 (2)0.0092 (19)
C200.0372 (18)0.0252 (15)0.0434 (19)0.0043 (14)0.0005 (17)0.0073 (14)
C210.0292 (17)0.0304 (15)0.0394 (18)0.0022 (14)0.0021 (15)0.0054 (15)
C220.0354 (19)0.0384 (18)0.042 (2)0.0021 (15)0.0058 (17)0.0028 (16)
C230.066 (3)0.059 (2)0.041 (2)0.003 (2)0.002 (2)0.003 (2)
C240.056 (3)0.067 (3)0.045 (2)0.001 (2)0.011 (2)0.003 (2)
C250.080 (3)0.068 (3)0.070 (3)0.002 (3)0.011 (3)0.028 (3)
C260.0318 (17)0.0236 (15)0.048 (2)0.0063 (13)0.0020 (16)0.0044 (15)
C270.049 (2)0.0280 (18)0.061 (2)0.0071 (16)0.005 (2)0.0074 (18)
C280.073 (3)0.047 (2)0.050 (2)0.005 (2)0.001 (2)0.016 (2)
C290.055 (2)0.050 (2)0.040 (2)0.001 (2)0.0006 (19)0.0001 (17)
C300.0336 (18)0.0268 (15)0.0399 (18)0.0037 (13)0.0045 (15)0.0045 (15)
C310.0311 (18)0.0289 (16)0.045 (2)0.0000 (14)0.0039 (16)0.0059 (15)
C320.0319 (19)0.0267 (15)0.049 (2)0.0080 (13)0.0029 (16)0.0054 (16)
C330.041 (2)0.042 (2)0.069 (3)0.0165 (18)0.011 (2)0.0112 (19)
C340.050 (2)0.039 (2)0.048 (2)0.0037 (17)0.004 (2)0.0099 (17)
O1W0.086 (3)0.081 (3)0.072 (3)0.001 (3)0.0000.000
Geometric parameters (Å, º) top
O1—C21.424 (4)O6—C201.421 (4)
O1—C31.438 (4)O7—C231.365 (5)
O2—C61.352 (4)O7—C221.459 (4)
O2—C51.468 (4)O8—C191.424 (5)
O3—C21.415 (4)O8—H80.8400
O3—H30.8400O9—C231.206 (5)
O4—C61.198 (4)O10—C271.224 (4)
O5—C101.237 (5)C18—C231.506 (6)
C1—C41.522 (5)C18—C211.517 (5)
C1—C71.527 (5)C18—C241.526 (6)
C1—C61.529 (5)C18—C191.578 (6)
C1—C21.564 (4)C19—C251.505 (6)
C2—C81.511 (5)C20—C211.528 (4)
C3—C41.532 (5)C20—C261.540 (5)
C3—C91.548 (5)C20—H201.0000
C3—H3A1.0000C21—C221.530 (5)
C4—C51.534 (5)C21—H211.0000
C4—H41.0000C22—C321.508 (5)
C5—C151.504 (5)C22—H221.0000
C5—H51.0000C24—H24A0.9800
C7—H7A0.9800C24—H24B0.9800
C7—H7B0.9800C24—H24C0.9800
C7—H7C0.9800C25—H25A0.9800
C8—H8A0.9800C25—H25B0.9800
C8—H8B0.9800C25—H25C0.9800
C8—H8C0.9800C26—C271.529 (5)
C9—C101.535 (5)C26—C331.562 (5)
C9—C161.546 (5)C26—C301.569 (4)
C9—C131.570 (5)C27—C281.438 (6)
C10—C111.437 (6)C28—C291.331 (5)
C11—C121.340 (7)C28—H280.9500
C11—H110.9500C29—C301.509 (5)
C12—C131.516 (6)C29—H290.9500
C12—H120.9500C30—C311.552 (5)
C13—C141.536 (6)C30—H301.0000
C13—H131.0000C31—C341.530 (5)
C14—C171.530 (6)C31—C321.534 (5)
C14—C151.544 (5)C31—H311.0000
C14—H141.0000C32—H32A0.9900
C15—H15A0.9900C32—H32B0.9900
C15—H15B0.9900C33—H33A0.9800
C16—H16A0.9800C33—H33B0.9800
C16—H16B0.9800C33—H33C0.9800
C16—H16C0.9800C34—H34A0.9800
C17—H17A0.9800C34—H34B0.9800
C17—H17B0.9800C34—H34C0.9800
C17—H17C0.9800O1W—H1W0.99 (3)
O6—C191.404 (5)
C2—O1—C3112.0 (2)C19—O6—C20112.4 (3)
C6—O2—C5110.3 (2)C23—O7—C22109.4 (3)
C2—O3—H3109.5C19—O8—H8109.5
C4—C1—C7115.0 (3)C23—C18—C21101.9 (3)
C4—C1—C6102.5 (3)C23—C18—C24111.0 (4)
C7—C1—C6111.8 (3)C21—C18—C24114.1 (3)
C4—C1—C2101.4 (3)C23—C18—C19113.5 (3)
C7—C1—C2113.0 (3)C21—C18—C19100.9 (3)
C6—C1—C2112.2 (3)C24—C18—C19114.4 (3)
O3—C2—O1110.9 (3)O6—C19—O8108.2 (4)
O3—C2—C8109.9 (3)O6—C19—C25108.0 (3)
O1—C2—C8108.2 (3)O8—C19—C25109.7 (3)
O3—C2—C1106.3 (2)O6—C19—C18105.8 (3)
O1—C2—C1104.2 (3)O8—C19—C18107.7 (3)
C8—C2—C1117.3 (3)C25—C19—C18117.0 (4)
O1—C3—C4105.6 (2)O6—C20—C21105.6 (3)
O1—C3—C9114.1 (3)O6—C20—C26113.2 (3)
C4—C3—C9114.6 (3)C21—C20—C26114.9 (3)
O1—C3—H3A107.4O6—C20—H20107.6
C4—C3—H3A107.4C21—C20—H20107.6
C9—C3—H3A107.4C26—C20—H20107.6
C1—C4—C3104.4 (3)C18—C21—C20104.0 (3)
C1—C4—C5103.7 (3)C18—C21—C22103.8 (3)
C3—C4—C5117.1 (3)C20—C21—C22116.2 (3)
C1—C4—H4110.4C18—C21—H21110.8
C3—C4—H4110.4C20—C21—H21110.8
C5—C4—H4110.4C22—C21—H21110.8
O2—C5—C15112.0 (3)O7—C22—C32111.7 (3)
O2—C5—C4103.1 (3)O7—C22—C21103.2 (3)
C15—C5—C4115.7 (3)C32—C22—C21114.8 (3)
O2—C5—H5108.6O7—C22—H22109.0
C15—C5—H5108.6C32—C22—H22109.0
C4—C5—H5108.6C21—C22—H22109.0
O4—C6—O2121.8 (3)O9—C23—O7120.9 (4)
O4—C6—C1127.9 (3)O9—C23—C18127.9 (4)
O2—C6—C1110.2 (3)O7—C23—C18111.0 (3)
C1—C7—H7A109.5C18—C24—H24A109.5
C1—C7—H7B109.5C18—C24—H24B109.5
H7A—C7—H7B109.5H24A—C24—H24B109.5
C1—C7—H7C109.5C18—C24—H24C109.5
H7A—C7—H7C109.5H24A—C24—H24C109.5
H7B—C7—H7C109.5H24B—C24—H24C109.5
C2—C8—H8A109.5C19—C25—H25A109.5
C2—C8—H8B109.5C19—C25—H25B109.5
H8A—C8—H8B109.5H25A—C25—H25B109.5
C2—C8—H8C109.5C19—C25—H25C109.5
H8A—C8—H8C109.5H25A—C25—H25C109.5
H8B—C8—H8C109.5H25B—C25—H25C109.5
C10—C9—C16102.3 (3)C27—C26—C20111.2 (3)
C10—C9—C3112.0 (3)C27—C26—C33104.2 (3)
C16—C9—C3113.9 (3)C20—C26—C33113.7 (3)
C10—C9—C13103.2 (3)C27—C26—C30101.9 (3)
C16—C9—C13113.9 (3)C20—C26—C30112.4 (3)
C3—C9—C13110.7 (3)C33—C26—C30112.5 (3)
O5—C10—C11127.8 (4)O10—C27—C28126.7 (4)
O5—C10—C9123.9 (4)O10—C27—C26124.7 (4)
C11—C10—C9108.2 (4)C28—C27—C26108.6 (3)
C12—C11—C10110.0 (4)C29—C28—C27109.8 (4)
C12—C11—H11125.0C29—C28—H28125.1
C10—C11—H11125.0C27—C28—H28125.1
C11—C12—C13113.3 (4)C28—C29—C30112.7 (3)
C11—C12—H12123.4C28—C29—H29123.6
C13—C12—H12123.4C30—C29—H29123.6
C12—C13—C14117.7 (4)C29—C30—C31118.2 (3)
C12—C13—C9101.7 (3)C29—C30—C26102.1 (3)
C14—C13—C9119.0 (3)C31—C30—C26117.6 (3)
C12—C13—H13105.8C29—C30—H30106.0
C14—C13—H13105.8C31—C30—H30106.0
C9—C13—H13105.8C26—C30—H30106.0
C17—C14—C13113.1 (4)C34—C31—C32109.3 (3)
C17—C14—C15107.8 (3)C34—C31—C30111.5 (3)
C13—C14—C15112.0 (3)C32—C31—C30111.0 (3)
C17—C14—H14107.9C34—C31—H31108.3
C13—C14—H14107.9C32—C31—H31108.3
C15—C14—H14107.9C30—C31—H31108.3
C5—C15—C14112.3 (3)C22—C32—C31112.9 (3)
C5—C15—H15A109.2C22—C32—H32A109.0
C14—C15—H15A109.2C31—C32—H32A109.0
C5—C15—H15B109.2C22—C32—H32B109.0
C14—C15—H15B109.2C31—C32—H32B109.0
H15A—C15—H15B107.9H32A—C32—H32B107.8
C9—C16—H16A109.5C26—C33—H33A109.5
C9—C16—H16B109.5C26—C33—H33B109.5
H16A—C16—H16B109.5H33A—C33—H33B109.5
C9—C16—H16C109.5C26—C33—H33C109.5
H16A—C16—H16C109.5H33A—C33—H33C109.5
H16B—C16—H16C109.5H33B—C33—H33C109.5
C14—C17—H17A109.5C31—C34—H34A109.5
C14—C17—H17B109.5C31—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C14—C17—H17C109.5C31—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
C3—O1—C2—O392.6 (3)C20—O6—C19—O8104.5 (4)
C3—O1—C2—C8146.9 (3)C20—O6—C19—C25136.8 (4)
C3—O1—C2—C121.4 (3)C20—O6—C19—C1810.8 (4)
C4—C1—C2—O383.8 (3)C23—C18—C19—O6135.6 (3)
C7—C1—C2—O3152.5 (3)C21—C18—C19—O627.3 (4)
C6—C1—C2—O324.9 (4)C24—C18—C19—O695.6 (4)
C4—C1—C2—O133.3 (3)C23—C18—C19—O820.0 (5)
C7—C1—C2—O190.4 (3)C21—C18—C19—O888.3 (4)
C6—C1—C2—O1142.1 (3)C24—C18—C19—O8148.8 (4)
C4—C1—C2—C8152.9 (3)C23—C18—C19—C25104.1 (4)
C7—C1—C2—C829.2 (4)C21—C18—C19—C25147.6 (4)
C6—C1—C2—C898.3 (4)C24—C18—C19—C2524.7 (5)
C2—O1—C3—C40.3 (3)C19—O6—C20—C2110.5 (4)
C2—O1—C3—C9126.4 (3)C19—O6—C20—C26137.1 (3)
C7—C1—C4—C389.3 (3)C23—C18—C21—C20149.9 (3)
C6—C1—C4—C3149.0 (2)C24—C18—C21—C2090.4 (4)
C2—C1—C4—C333.0 (3)C19—C18—C21—C2032.7 (3)
C7—C1—C4—C5147.5 (3)C23—C18—C21—C2227.8 (4)
C6—C1—C4—C525.9 (3)C24—C18—C21—C22147.5 (3)
C2—C1—C4—C590.2 (3)C19—C18—C21—C2289.3 (3)
O1—C3—C4—C121.6 (3)O6—C20—C21—C1828.0 (4)
C9—C3—C4—C1148.0 (3)C26—C20—C21—C18153.6 (3)
O1—C3—C4—C592.4 (3)O6—C20—C21—C2285.4 (3)
C9—C3—C4—C534.0 (4)C26—C20—C21—C2240.2 (4)
C6—O2—C5—C15151.6 (3)C23—O7—C22—C32148.9 (3)
C6—O2—C5—C426.6 (3)C23—O7—C22—C2125.1 (4)
C1—C4—C5—O231.9 (3)C18—C21—C22—O732.6 (3)
C3—C4—C5—O2146.3 (3)C20—C21—C22—O7146.1 (3)
C1—C4—C5—C15154.5 (3)C18—C21—C22—C32154.3 (3)
C3—C4—C5—C1591.1 (3)C20—C21—C22—C3292.2 (4)
C5—O2—C6—O4173.1 (3)C22—O7—C23—O9176.0 (4)
C5—O2—C6—C110.2 (3)C22—O7—C23—C187.4 (5)
C4—C1—C6—O4165.8 (3)C21—C18—C23—O9162.7 (5)
C7—C1—C6—O442.0 (4)C24—C18—C23—O940.8 (6)
C2—C1—C6—O486.1 (4)C19—C18—C23—O989.6 (6)
C4—C1—C6—O210.7 (3)C21—C18—C23—O713.6 (4)
C7—C1—C6—O2134.5 (3)C24—C18—C23—O7135.5 (4)
C2—C1—C6—O297.3 (3)C19—C18—C23—O794.1 (4)
O1—C3—C9—C1084.3 (4)O6—C20—C26—C2791.2 (4)
C4—C3—C9—C10153.8 (3)C21—C20—C26—C27147.3 (3)
O1—C3—C9—C1631.2 (4)O6—C20—C26—C3326.1 (4)
C4—C3—C9—C1690.6 (3)C21—C20—C26—C3395.4 (3)
O1—C3—C9—C13161.1 (3)O6—C20—C26—C30155.3 (3)
C4—C3—C9—C1339.3 (4)C21—C20—C26—C3033.8 (4)
C16—C9—C10—O576.5 (5)C20—C26—C27—O1042.1 (5)
C3—C9—C10—O545.9 (5)C33—C26—C27—O1080.8 (4)
C13—C9—C10—O5165.1 (4)C30—C26—C27—O10162.0 (4)
C16—C9—C10—C11101.2 (4)C20—C26—C27—C28139.2 (3)
C3—C9—C10—C11136.4 (4)C33—C26—C27—C2897.8 (4)
C13—C9—C10—C1117.2 (4)C30—C26—C27—C2819.3 (4)
O5—C10—C11—C12173.5 (5)O10—C27—C28—C29172.2 (4)
C9—C10—C11—C128.9 (5)C26—C27—C28—C299.2 (5)
C10—C11—C12—C134.0 (6)C27—C28—C29—C306.1 (5)
C11—C12—C13—C14146.4 (4)C28—C29—C30—C31148.7 (4)
C11—C12—C13—C914.6 (5)C28—C29—C30—C2617.9 (5)
C10—C9—C13—C1218.2 (4)C27—C26—C30—C2921.2 (4)
C16—C9—C13—C1291.9 (4)C20—C26—C30—C29140.3 (3)
C3—C9—C13—C12138.2 (3)C33—C26—C30—C2989.9 (4)
C10—C9—C13—C14149.2 (3)C27—C26—C30—C31152.3 (3)
C16—C9—C13—C1439.1 (4)C20—C26—C30—C3188.6 (4)
C3—C9—C13—C1490.8 (4)C33—C26—C30—C3141.3 (4)
C12—C13—C14—C1740.3 (5)C29—C30—C31—C3438.4 (4)
C9—C13—C14—C17163.8 (3)C26—C30—C31—C34161.6 (3)
C12—C13—C14—C15162.4 (3)C29—C30—C31—C32160.4 (3)
C9—C13—C14—C1574.1 (4)C26—C30—C31—C3276.3 (4)
O2—C5—C15—C14167.3 (3)O7—C22—C32—C31167.9 (3)
C4—C5—C15—C1475.0 (4)C21—C22—C32—C3175.2 (4)
C17—C14—C15—C5176.7 (4)C34—C31—C32—C22177.9 (3)
C13—C14—C15—C551.6 (4)C30—C31—C32—C2254.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10i0.841.872.711 (3)175
O8—H8···O1Wii0.842.172.945 (5)153
O1W—H1W···O50.99 (3)1.94 (3)2.897 (4)162 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H22O5·0.25H2O
Mr310.86
Crystal system, space groupOrthorhombic, P21212
Temperature (K)200
a, b, c (Å)10.5508 (16), 28.371 (4), 10.5228 (14)
V3)3149.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.32 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.818, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19558, 5543, 4678
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.26
No. of reflections5543
No. of parameters415
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al. 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10i0.841.872.711 (3)175
O8—H8···O1Wii0.842.172.945 (5)153
O1W—H1W···O50.99 (3)1.94 (3)2.897 (4)162 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711) and the Grote Chemistry Fund at the University of Tennessee at Chattanooga for their generous support of our work.

References

First citationBarton, D. H. R. & De Mayo, P. (1956). J. Chem. Soc. pp. 142–149.  CrossRef Web of Science Google Scholar
First citationBraun, B. H., Herz, W. & Rabindran, K. (1956). J. Am. Chem. Soc. 78, 4423–4429.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, E. P. (1939). J. Am. Chem. Soc. 61, 1836–40.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerz, W. & Sharma, R. P. (1975). J. Org. Chem. 40, 2557–2559.  CrossRef CAS Web of Science Google Scholar
First citationHodge, J. S. & Waddell, T. G. (1995). J. Nat. Prod. 58, 149–151.  CrossRef CAS Web of Science Google Scholar
First citationHwang, D., Fischer, N. H., Jang, B. C., Tak, H., Kim, J. K. & Lee, W. (1996). Biochem. Biophys. Res. Commun. 226, 810–818.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLee, K. H., Hall, I. H., Mar, E. C., Starnes, C. O., ElGebaly, S. A., Waddell, T. G., Hadgraft, R. I., Ruffner, C. G. & Weidner, I. (1977). Science, 196, 533–536.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLi, X.-J. & Zhang, H.-Y. (2008). Trends Mol. Med. 14, 1–2.  Web of Science CrossRef PubMed Google Scholar
First citationMazhar Ul, H., Rogers, D. & Caughlan, C. N. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 223–228.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaddell, T. G., Austin, A. M., Cochran, J. W., Gerhart, K. G., Hall, I. H. & Lee, K. H. (1979). J. Pharm. Sci. 68, 715–718.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1237-o1238
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds