organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1264-o1265

Carbinoxaminium dipicrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cSri Mahadeshwara Government First Grade College, Affiliated to University of Mysore, Kollegal 571 440, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 July 2013; accepted 8 July 2013; online 17 July 2013)

In the dication of the title salt, C16H21ClN2O2+·2C6H2N3O7 [systematic name: 2-{(4-chloro­phen­yl)[2-(di­methyl­aza­nium­yl)eth­oxy]meth­yl}pyridinium bis­(2,4,6-tri­nitro­phenolate), contains a carbinoxaminium dication and two picrate anions, which are held together through inter­molecular N—H⋯O hydrogen bonds. In the dication, the two aromatic rings form a dihedral angle of 80.1 (1)°. In the two independent picrate anions, the nitro groups are twisted from the benzene plane, the largest dihedral angle in each ion being 42.8 (1) and 81.1 (5)°. In the crystal, in addition to the classical N—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and ππ inter­actions between the aromatic rings of the anions [centroid–centroid distances of 3.5768 (15) and 3.7436 (15) Å] help to establish the packing.

Related literature

For the pharmacological importance of anti­histamines, see: Wagner (1962[Wagner, H. J. (1962). Arzneim.-Forsch. 12, 1065-1070.]). For the effect of anti­histamines on psychomotor performance, see: Seppala et al. (1981[Seppala, T., Nuotto, E. & Korttila, K. (1981). Br. J. Clin. Pharmacol. 12, 179-188.]). For related structures, see: Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 2287-2291.]); Parvez et al. (2001[Parvez, M., Dalrymple, S. & Cote, A. (2001). Acta Cryst. E57, o163-o165.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682-o683.]); Kaur et al. (2013[Kaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Siddaraju, B. P. (2013). Acta Cryst. E69, o248.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21ClN2O2+·2C6H2N3O7

  • Mr = 749.01

  • Triclinic, [P \overline 1]

  • a = 8.1719 (6) Å

  • b = 8.5341 (6) Å

  • c = 23.5868 (16) Å

  • α = 83.771 (6)°

  • β = 85.484 (6)°

  • γ = 74.827 (6)°

  • V = 1576.1 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.87 mm−1

  • T = 173 K

  • 0.24 × 0.16 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.871, Tmax = 1.000

  • 9838 measured reflections

  • 6071 independent reflections

  • 4958 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.02

  • 6071 reflections

  • 476 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1B 0.83 (3) 1.81 (3) 2.628 (2) 167 (3)
N2—H2⋯O1A 1.00 1.78 2.737 (3) 159
C1—H1A⋯O1B 1.00 2.43 3.183 (2) 132
C3—H3⋯O7A 0.95 2.53 3.366 (3) 148
C9—H9⋯O2Bi 0.95 2.38 3.137 (3) 136
C9—H9⋯O7B 0.95 2.36 2.956 (3) 120
C11—H11⋯O5Aii 0.95 2.49 3.309 (3) 144
C12—H12⋯O1A 0.95 2.59 3.430 (3) 148
C14—H14B⋯O5Aiii 0.99 2.46 3.253 (3) 137
C15—H15B⋯O4Aiv 0.98 2.59 3.400 (3) 140
C16—H16A⋯O5Bv 0.98 2.58 3.483 (3) 154
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Carbinoxamine (chemically, 2-[p-chloro-(a)-[2-(dimethylamino)ethoxyl]benzyl] pyridine) is one of the ethanolamine classes of H1 antihistamines and anticholinergic. Antihistamines are drugs used for the treatment of allergic conditions such as urticaria and allergic rhinitis. Due to their well-known sedative side effects most antihistamines are conventionally regarded as detrimental to drivers (Wagner, 1962). However reports of carbinoxamine and other antihistamines being harmless to psychomotor performance and driving skills have been shown (Seppala et al., 1981). A study on carbinoxamine maleate describing the crystallographic structure and chemical relationships of Clistin to other well known antihistaminic drugs and also correlating these chemical aspects with the pharmacological effects produced by this new drug as compared with other antihistaminic agents has been reported by Bertolasi et al. (1980). Some number of related structures was reported earlier - orphenadrinium picrate picric acid (Fun et al., 2010); orphenadrinium dihydrogen citrate (Kaur et al., 2013); doxylamine hydrogen succinate (Parvez et al., 2001). In view of the importance of carbinoxamine, this paper reports the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains a carbinoxaminium dication and two picrate anions, which are held together through intermolecular N—H···O hydrogen bonds (Table 1). In the dication, the pyridine ring contains a positively charged N atom with quaternary character at the 2 position and a second positive quaternay N atom at the amino group. The two aromatic rings form a dihedral angle of 80.1 (1)°. In picrate anion A, the mean plane of the N1A/C2A/O2A/O3A group is twisted by 42.8 (1)° from the attached benzene ring. In picrate anion B, the mean plane of the N1B/C2B/O2B/O3B group is twisted by 81.1 (5)° from the attached benzene ring. In the crystal, N—H···O hydrogen bonds and weak intermolecular C—H···O interactions between the cation and anion (Table 1) and /p—/p stacking interactions between the benzene rings with the intercentroid distances of 3.5768 (15) and 3.7436 (15) Å contribute to packing stability.

Related literature top

For the pharmacological importance oi antihistamines, see: Wagner (1962). For the effect of antihistamines on psychomotor performance, see: Seppala et al. (1981). For related structures, see: Bertolasi et al. (1980); Parvez et al. (2001); Fun et al. (2010); Kaur et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Carbinoxamine succinate (500 mg, 1.18 mmol) and picric acid (270 mg, 1.18 mmol) were dissolved in 20 ml of methanol and stirred for 30 min at 333 K. A yellow precipitate was obtained which was filtered and dried overnight in open air. The obtained compound was then recrystallized from a 1:1 solution of benzene and dimethylsulphoxide by the slow evaporation method. (m.p.: 423–438 K).

Refinement top

Amino atom H1 was located on a difference map and isotropically refined. All the rest H atoms were geometrically positioned (C—H 0.95–1.00 Å; N—H 1.00 Å), and then refined as riding, with Uiso =1.2 – 1.5 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A content of asymmetric unit of (I) showing the atomic labeling and 30% probability displacement ellipsoids. Dashed lines indicate N—H···O hydrogen bonds. C-bound H atoms were omitted for clarity.
2-{(4-Chlorophenyl)[2-(dimethylazaniumyl)ethoxy]methyl}pyridinium bis(2,4,6-trinitrophenolate) top
Crystal data top
C16H21ClN2O2+·2C6H2N3O7Z = 2
Mr = 749.01F(000) = 772
Triclinic, P1Dx = 1.578 Mg m3
a = 8.1719 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.5341 (6) ÅCell parameters from 3773 reflections
c = 23.5868 (16) Åθ = 3.8–72.4°
α = 83.771 (6)°µ = 1.87 mm1
β = 85.484 (6)°T = 173 K
γ = 74.827 (6)°Prism, yellow
V = 1576.1 (2) Å30.24 × 0.16 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6071 independent reflections
Radiation source: Enhance (Cu) X-ray Source4958 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.036
ω scansθmax = 72.5°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 910
Tmin = 0.871, Tmax = 1.000k = 610
9838 measured reflectionsl = 2628
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.3489P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.42 e Å3
6071 reflectionsΔρmin = 0.38 e Å3
476 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0006 (3)
Crystal data top
C16H21ClN2O2+·2C6H2N3O7γ = 74.827 (6)°
Mr = 749.01V = 1576.1 (2) Å3
Triclinic, P1Z = 2
a = 8.1719 (6) ÅCu Kα radiation
b = 8.5341 (6) ŵ = 1.87 mm1
c = 23.5868 (16) ÅT = 173 K
α = 83.771 (6)°0.24 × 0.16 × 0.12 mm
β = 85.484 (6)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6071 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4958 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 1.000Rint = 0.036
9838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.42 e Å3
6071 reflectionsΔρmin = 0.38 e Å3
476 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11261 (7)1.50201 (7)0.24701 (3)0.04328 (18)
O10.66697 (18)0.99915 (17)0.25648 (6)0.0256 (3)
N10.5260 (2)0.8100 (2)0.15238 (8)0.0259 (4)
H10.555 (4)0.868 (4)0.1249 (13)0.045 (8)*
N20.9121 (2)0.9449 (2)0.33517 (7)0.0270 (4)
H20.83130.87390.34110.032*
C10.5639 (2)1.0201 (2)0.20923 (8)0.0229 (4)
H1A0.62511.05400.17350.027*
C20.3938 (3)1.1451 (2)0.21871 (9)0.0232 (4)
C30.3387 (3)1.1925 (3)0.27286 (9)0.0273 (4)
H30.40761.14820.30430.033*
C40.1838 (3)1.3039 (3)0.28151 (9)0.0296 (5)
H40.14711.33820.31840.036*
C50.0832 (3)1.3645 (3)0.23545 (10)0.0288 (5)
C60.1341 (3)1.3170 (3)0.18120 (10)0.0304 (5)
H60.06301.35850.15010.037*
C70.2907 (3)1.2077 (3)0.17307 (9)0.0274 (4)
H70.32811.17520.13600.033*
C80.5295 (2)0.8557 (2)0.20483 (9)0.0232 (4)
C90.4844 (3)0.6731 (3)0.14378 (10)0.0311 (5)
H90.48420.64440.10600.037*
C100.4421 (3)0.5740 (3)0.18928 (10)0.0314 (5)
H100.40960.47830.18330.038*
C110.4475 (3)0.6162 (3)0.24404 (9)0.0298 (5)
H110.42080.54790.27610.036*
C120.4921 (3)0.7583 (2)0.25224 (9)0.0260 (4)
H120.49680.78790.28960.031*
C130.7505 (3)1.1265 (3)0.25669 (9)0.0278 (4)
H13A0.67051.23430.24800.033*
H13B0.84671.11320.22780.033*
C140.8134 (3)1.1129 (3)0.31594 (9)0.0285 (4)
H14A0.88601.18900.31660.034*
H14B0.71491.14640.34320.034*
C150.9831 (4)0.9471 (3)0.39156 (11)0.0432 (6)
H15A1.06241.01660.38710.065*
H15B1.04290.83600.40540.065*
H15C0.89030.99020.41910.065*
C161.0494 (3)0.8722 (3)0.29313 (11)0.0375 (5)
H16A0.99900.85860.25820.056*
H16B1.11420.76560.30950.056*
H16C1.12520.94440.28400.056*
O1A0.6767 (2)0.7783 (3)0.37604 (7)0.0510 (5)
O2A0.9906 (3)0.5583 (3)0.38556 (9)0.0628 (6)
O3A0.9285 (3)0.3338 (3)0.41788 (10)0.0648 (6)
O4A0.6720 (2)0.3773 (2)0.61350 (7)0.0384 (4)
O5A0.4787 (3)0.5957 (2)0.63041 (7)0.0499 (5)
O6A0.2565 (3)0.9728 (3)0.47738 (9)0.0603 (6)
O7A0.4233 (4)1.0273 (3)0.40692 (9)0.0810 (8)
N1A0.9039 (3)0.4822 (3)0.41567 (9)0.0450 (5)
N2A0.5868 (2)0.5149 (2)0.59866 (8)0.0323 (4)
N3A0.3898 (3)0.9401 (3)0.44864 (9)0.0467 (6)
C1A0.6573 (3)0.7231 (3)0.42626 (9)0.0360 (5)
C2A0.7648 (3)0.5717 (3)0.45134 (10)0.0348 (5)
C3A0.7429 (3)0.5018 (3)0.50562 (9)0.0328 (5)
H3A0.81560.40010.51860.039*
C4A0.6116 (3)0.5837 (3)0.54113 (9)0.0288 (4)
C5A0.4993 (3)0.7266 (3)0.52136 (9)0.0306 (5)
H5A0.40780.77900.54570.037*
C6A0.5199 (3)0.7930 (3)0.46644 (9)0.0333 (5)
O1B0.5906 (2)1.03134 (19)0.07357 (7)0.0357 (4)
O2B0.5038 (3)1.3996 (3)0.06288 (11)0.0659 (7)
O3B0.7430 (4)1.3352 (4)0.09961 (11)0.0893 (10)
O4B1.0327 (4)1.3210 (3)0.11434 (11)0.0780 (8)
O5B1.0417 (3)1.0971 (3)0.14993 (8)0.0573 (6)
O6B0.8368 (2)0.6875 (2)0.03911 (8)0.0453 (5)
O7B0.6563 (3)0.7393 (2)0.03210 (8)0.0549 (6)
N1B0.6504 (3)1.3270 (2)0.06334 (8)0.0350 (4)
N2B0.9919 (3)1.1925 (3)0.11323 (9)0.0426 (5)
N3B0.7522 (3)0.7805 (2)0.00549 (8)0.0336 (4)
C1B0.6833 (3)1.0589 (3)0.03035 (9)0.0270 (4)
C2B0.7212 (3)1.2152 (3)0.01923 (9)0.0286 (4)
C3B0.8166 (3)1.2631 (3)0.02558 (9)0.0308 (5)
H3B0.83601.36890.02990.037*
C4B0.8853 (3)1.1496 (3)0.06533 (9)0.0304 (5)
C5B0.8615 (3)0.9943 (3)0.05819 (9)0.0291 (5)
H5B0.91160.91850.08520.035*
C6B0.7647 (3)0.9490 (3)0.01178 (9)0.0272 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0298 (3)0.0375 (3)0.0553 (4)0.0028 (2)0.0052 (2)0.0063 (3)
O10.0273 (7)0.0240 (7)0.0269 (7)0.0089 (6)0.0051 (6)0.0002 (6)
N10.0313 (9)0.0245 (9)0.0216 (9)0.0076 (7)0.0021 (7)0.0014 (7)
N20.0272 (9)0.0278 (9)0.0258 (9)0.0056 (7)0.0026 (7)0.0032 (7)
C10.0253 (10)0.0231 (9)0.0201 (9)0.0060 (8)0.0006 (7)0.0019 (7)
C20.0253 (10)0.0203 (9)0.0255 (10)0.0085 (8)0.0002 (8)0.0027 (8)
C30.0280 (10)0.0300 (11)0.0247 (10)0.0091 (8)0.0018 (8)0.0024 (8)
C40.0314 (11)0.0334 (11)0.0249 (10)0.0100 (9)0.0055 (8)0.0070 (9)
C50.0229 (10)0.0230 (10)0.0391 (12)0.0040 (8)0.0043 (8)0.0051 (9)
C60.0291 (11)0.0296 (11)0.0327 (12)0.0068 (9)0.0056 (9)0.0019 (9)
C70.0318 (11)0.0252 (10)0.0256 (10)0.0066 (8)0.0012 (8)0.0055 (8)
C80.0196 (9)0.0232 (9)0.0256 (10)0.0032 (7)0.0001 (7)0.0038 (8)
C90.0380 (12)0.0285 (11)0.0268 (11)0.0070 (9)0.0009 (9)0.0066 (9)
C100.0372 (12)0.0233 (10)0.0355 (12)0.0101 (9)0.0002 (9)0.0058 (9)
C110.0330 (11)0.0265 (10)0.0278 (11)0.0069 (9)0.0017 (8)0.0030 (8)
C120.0290 (10)0.0260 (10)0.0218 (10)0.0047 (8)0.0005 (8)0.0033 (8)
C130.0255 (10)0.0251 (10)0.0344 (11)0.0092 (8)0.0035 (8)0.0010 (8)
C140.0275 (10)0.0245 (10)0.0341 (11)0.0058 (8)0.0028 (8)0.0067 (9)
C150.0522 (15)0.0412 (14)0.0344 (13)0.0036 (11)0.0166 (11)0.0057 (11)
C160.0297 (12)0.0378 (13)0.0400 (13)0.0007 (10)0.0022 (10)0.0051 (10)
O1A0.0498 (11)0.0875 (15)0.0252 (9)0.0400 (11)0.0032 (7)0.0092 (9)
O2A0.0600 (13)0.0879 (16)0.0548 (12)0.0453 (12)0.0332 (10)0.0307 (12)
O3A0.0659 (14)0.0592 (14)0.0602 (14)0.0059 (11)0.0231 (11)0.0100 (11)
O4A0.0377 (9)0.0383 (9)0.0337 (9)0.0026 (7)0.0031 (7)0.0050 (7)
O5A0.0605 (12)0.0493 (11)0.0245 (9)0.0068 (9)0.0119 (8)0.0020 (8)
O6A0.0566 (13)0.0600 (13)0.0517 (12)0.0047 (10)0.0095 (10)0.0065 (10)
O7A0.146 (3)0.0492 (13)0.0382 (12)0.0148 (15)0.0048 (13)0.0148 (10)
N1A0.0419 (12)0.0678 (16)0.0320 (11)0.0237 (11)0.0082 (9)0.0171 (10)
N2A0.0321 (10)0.0389 (11)0.0243 (9)0.0074 (8)0.0011 (7)0.0000 (8)
N3A0.0757 (17)0.0401 (12)0.0274 (11)0.0182 (11)0.0177 (11)0.0027 (9)
C1A0.0403 (13)0.0547 (15)0.0233 (11)0.0318 (11)0.0018 (9)0.0007 (10)
C2A0.0324 (12)0.0527 (14)0.0254 (11)0.0205 (11)0.0045 (9)0.0106 (10)
C3A0.0312 (12)0.0421 (13)0.0275 (11)0.0132 (10)0.0007 (9)0.0053 (9)
C4A0.0324 (11)0.0355 (11)0.0202 (10)0.0123 (9)0.0005 (8)0.0011 (8)
C5A0.0348 (11)0.0357 (12)0.0230 (10)0.0117 (9)0.0016 (8)0.0030 (9)
C6A0.0433 (13)0.0361 (12)0.0254 (11)0.0183 (10)0.0067 (9)0.0001 (9)
O1B0.0498 (10)0.0294 (8)0.0262 (8)0.0103 (7)0.0101 (7)0.0037 (6)
O2B0.0407 (11)0.0705 (15)0.0901 (17)0.0047 (10)0.0063 (11)0.0533 (13)
O3B0.0874 (18)0.102 (2)0.0667 (16)0.0240 (15)0.0328 (14)0.0554 (15)
O4B0.111 (2)0.0569 (14)0.0702 (15)0.0414 (14)0.0510 (15)0.0147 (12)
O5B0.0684 (14)0.0647 (13)0.0369 (10)0.0175 (11)0.0225 (9)0.0134 (9)
O6B0.0565 (11)0.0355 (9)0.0443 (10)0.0106 (8)0.0101 (8)0.0175 (8)
O7B0.0897 (16)0.0415 (11)0.0377 (10)0.0289 (11)0.0213 (10)0.0097 (8)
N1B0.0470 (12)0.0279 (10)0.0313 (10)0.0121 (9)0.0048 (9)0.0072 (8)
N2B0.0453 (12)0.0437 (12)0.0347 (11)0.0090 (10)0.0115 (9)0.0019 (9)
N3B0.0447 (11)0.0316 (10)0.0250 (9)0.0092 (8)0.0022 (8)0.0055 (8)
C1B0.0310 (11)0.0280 (10)0.0209 (10)0.0050 (8)0.0020 (8)0.0025 (8)
C2B0.0313 (11)0.0278 (10)0.0246 (10)0.0039 (8)0.0010 (8)0.0041 (8)
C3B0.0312 (11)0.0294 (11)0.0305 (11)0.0067 (9)0.0002 (9)0.0012 (9)
C4B0.0308 (11)0.0349 (12)0.0230 (10)0.0062 (9)0.0021 (8)0.0001 (9)
C5B0.0308 (11)0.0327 (11)0.0213 (10)0.0022 (9)0.0022 (8)0.0059 (8)
C6B0.0308 (11)0.0273 (10)0.0228 (10)0.0051 (8)0.0032 (8)0.0031 (8)
Geometric parameters (Å, º) top
Cl1—C51.741 (2)C16—H16A0.9800
O1—C11.418 (2)C16—H16B0.9800
O1—C131.428 (2)C16—H16C0.9800
N1—H10.83 (3)O1A—C1A1.240 (3)
N1—C81.341 (3)O2A—N1A1.220 (3)
N1—C91.338 (3)O3A—N1A1.226 (3)
N2—H21.0000O4A—N2A1.227 (3)
N2—C141.491 (3)O5A—N2A1.227 (3)
N2—C151.496 (3)O6A—N3A1.220 (3)
N2—C161.490 (3)O7A—N3A1.226 (3)
C1—H1A1.0000N1A—C2A1.455 (3)
C1—C21.532 (3)N2A—C4A1.440 (3)
C1—C81.517 (3)N3A—C6A1.463 (3)
C2—C31.387 (3)C1A—C2A1.454 (4)
C2—C71.392 (3)C1A—C6A1.456 (3)
C3—H30.9500C2A—C3A1.371 (3)
C3—C41.386 (3)C3A—H3A0.9500
C4—H40.9500C3A—C4A1.391 (3)
C4—C51.385 (3)C4A—C5A1.380 (3)
C5—C61.384 (3)C5A—H5A0.9500
C6—H60.9500C5A—C6A1.372 (3)
C6—C71.386 (3)O1B—C1B1.260 (3)
C7—H70.9500O2B—N1B1.196 (3)
C8—C121.382 (3)O3B—N1B1.205 (3)
C9—H90.9500O4B—N2B1.224 (3)
C9—C101.373 (3)O5B—N2B1.225 (3)
C10—H100.9500O6B—N3B1.225 (2)
C10—C111.385 (3)O7B—N3B1.221 (3)
C11—H110.9500N1B—C2B1.469 (3)
C11—C121.391 (3)N2B—C4B1.446 (3)
C12—H120.9500N3B—C6B1.459 (3)
C13—H13A0.9900C1B—C2B1.439 (3)
C13—H13B0.9900C1B—C6B1.443 (3)
C13—C141.509 (3)C2B—C3B1.355 (3)
C14—H14A0.9900C3B—H3B0.9500
C14—H14B0.9900C3B—C4B1.401 (3)
C15—H15A0.9800C4B—C5B1.380 (3)
C15—H15B0.9800C5B—H5B0.9500
C15—H15C0.9800C5B—C6B1.380 (3)
C1—O1—C13112.85 (15)H15A—C15—H15B109.5
C8—N1—H1118 (2)H15A—C15—H15C109.5
C9—N1—H1120 (2)H15B—C15—H15C109.5
C9—N1—C8122.27 (19)N2—C16—H16A109.5
C14—N2—H2107.7N2—C16—H16B109.5
C14—N2—C15109.09 (17)N2—C16—H16C109.5
C15—N2—H2107.7H16A—C16—H16B109.5
C16—N2—H2107.7H16A—C16—H16C109.5
C16—N2—C14113.72 (17)H16B—C16—H16C109.5
C16—N2—C15110.69 (19)O2A—N1A—O3A123.5 (2)
O1—C1—H1A110.2O2A—N1A—C2A118.5 (2)
O1—C1—C2111.44 (15)O3A—N1A—C2A118.0 (2)
O1—C1—C8106.13 (16)O4A—N2A—C4A118.84 (19)
C2—C1—H1A110.2O5A—N2A—O4A122.87 (19)
C8—C1—H1A110.2O5A—N2A—C4A118.27 (19)
C8—C1—C2108.51 (16)O6A—N3A—O7A123.5 (3)
C3—C2—C1120.58 (18)O6A—N3A—C6A118.3 (2)
C3—C2—C7119.51 (19)O7A—N3A—C6A118.1 (3)
C7—C2—C1119.87 (17)O1A—C1A—C2A123.5 (2)
C2—C3—H3119.7O1A—C1A—C6A125.4 (3)
C4—C3—C2120.5 (2)C2A—C1A—C6A111.06 (19)
C4—C3—H3119.7C1A—C2A—N1A117.9 (2)
C3—C4—H4120.5C3A—C2A—N1A116.6 (2)
C5—C4—C3118.96 (19)C3A—C2A—C1A125.5 (2)
C5—C4—H4120.5C2A—C3A—H3A120.8
C4—C5—Cl1118.57 (17)C2A—C3A—C4A118.3 (2)
C6—C5—Cl1119.81 (18)C4A—C3A—H3A120.8
C6—C5—C4121.6 (2)C3A—C4A—N2A119.7 (2)
C5—C6—H6120.6C5A—C4A—N2A119.2 (2)
C5—C6—C7118.7 (2)C5A—C4A—C3A121.1 (2)
C7—C6—H6120.6C4A—C5A—H5A120.0
C2—C7—H7119.7C6A—C5A—C4A119.9 (2)
C6—C7—C2120.67 (19)C6A—C5A—H5A120.0
C6—C7—H7119.7C1A—C6A—N3A120.1 (2)
N1—C8—C1117.61 (18)C5A—C6A—N3A115.8 (2)
N1—C8—C12119.82 (19)C5A—C6A—C1A124.0 (2)
C12—C8—C1122.46 (18)O2B—N1B—O3B123.5 (2)
N1—C9—H9119.8O2B—N1B—C2B118.9 (2)
N1—C9—C10120.3 (2)O3B—N1B—C2B117.5 (2)
C10—C9—H9119.8O4B—N2B—O5B122.8 (2)
C9—C10—H10120.6O4B—N2B—C4B118.2 (2)
C9—C10—C11118.8 (2)O5B—N2B—C4B119.0 (2)
C11—C10—H10120.6O6B—N3B—C6B117.99 (19)
C10—C11—H11120.0O7B—N3B—O6B123.0 (2)
C10—C11—C12120.1 (2)O7B—N3B—C6B118.96 (19)
C12—C11—H11120.0O1B—C1B—C2B119.94 (19)
C8—C12—C11118.64 (19)O1B—C1B—C6B127.9 (2)
C8—C12—H12120.7C2B—C1B—C6B112.14 (19)
C11—C12—H12120.7C1B—C2B—N1B113.88 (18)
O1—C13—H13A110.5C3B—C2B—N1B119.5 (2)
O1—C13—H13B110.5C3B—C2B—C1B126.6 (2)
O1—C13—C14106.08 (17)C2B—C3B—H3B121.5
H13A—C13—H13B108.7C2B—C3B—C4B116.9 (2)
C14—C13—H13A110.5C4B—C3B—H3B121.5
C14—C13—H13B110.5C3B—C4B—N2B119.4 (2)
N2—C14—C13113.08 (16)C5B—C4B—N2B119.0 (2)
N2—C14—H14A109.0C5B—C4B—C3B121.5 (2)
N2—C14—H14B109.0C4B—C5B—H5B120.0
C13—C14—H14A109.0C6B—C5B—C4B120.00 (19)
C13—C14—H14B109.0C6B—C5B—H5B120.0
H14A—C14—H14B107.8C1B—C6B—N3B120.33 (19)
N2—C15—H15A109.5C5B—C6B—N3B116.93 (18)
N2—C15—H15B109.5C5B—C6B—C1B122.7 (2)
N2—C15—H15C109.5
Cl1—C5—C6—C7179.84 (16)O6A—N3A—C6A—C1A162.2 (2)
O1—C1—C2—C315.7 (3)O6A—N3A—C6A—C5A15.9 (3)
O1—C1—C2—C7166.52 (17)O7A—N3A—C6A—C1A20.6 (3)
O1—C1—C8—N1142.31 (17)O7A—N3A—C6A—C5A161.2 (2)
O1—C1—C8—C1241.7 (2)N1A—C2A—C3A—C4A179.83 (19)
O1—C13—C14—N250.9 (2)N2A—C4A—C5A—C6A179.3 (2)
N1—C8—C12—C111.5 (3)C1A—C2A—C3A—C4A2.6 (3)
N1—C9—C10—C111.7 (3)C2A—C1A—C6A—N3A175.87 (19)
C1—O1—C13—C14164.84 (16)C2A—C1A—C6A—C5A2.1 (3)
C1—C2—C3—C4179.11 (19)C2A—C3A—C4A—N2A179.0 (2)
C1—C2—C7—C6177.94 (18)C2A—C3A—C4A—C5A3.9 (3)
C1—C8—C12—C11174.37 (19)C3A—C4A—C5A—C6A2.3 (3)
C2—C1—C8—N197.8 (2)C4A—C5A—C6A—N3A177.1 (2)
C2—C1—C8—C1278.2 (2)C4A—C5A—C6A—C1A1.0 (3)
C2—C3—C4—C51.4 (3)C6A—C1A—C2A—N1A177.21 (19)
C3—C2—C7—C60.2 (3)C6A—C1A—C2A—C3A0.3 (3)
C3—C4—C5—Cl1179.02 (16)O1B—C1B—C2B—N1B2.9 (3)
C3—C4—C5—C60.3 (3)O1B—C1B—C2B—C3B179.1 (2)
C4—C5—C6—C70.9 (3)O1B—C1B—C6B—N3B3.4 (4)
C5—C6—C7—C20.9 (3)O1B—C1B—C6B—C5B178.8 (2)
C7—C2—C3—C41.3 (3)O2B—N1B—C2B—C1B79.9 (3)
C8—N1—C9—C100.5 (3)O2B—N1B—C2B—C3B102.0 (3)
C8—C1—C2—C3100.8 (2)O3B—N1B—C2B—C1B97.2 (3)
C8—C1—C2—C777.0 (2)O3B—N1B—C2B—C3B80.9 (3)
C9—N1—C8—C1174.95 (19)O4B—N2B—C4B—C3B7.3 (4)
C9—N1—C8—C121.2 (3)O4B—N2B—C4B—C5B169.1 (3)
C9—C10—C11—C121.2 (3)O5B—N2B—C4B—C3B174.9 (2)
C10—C11—C12—C80.4 (3)O5B—N2B—C4B—C5B8.6 (4)
C13—O1—C1—C279.0 (2)O6B—N3B—C6B—C1B172.9 (2)
C13—O1—C1—C8163.01 (16)O6B—N3B—C6B—C5B5.0 (3)
C15—N2—C14—C13174.50 (19)O7B—N3B—C6B—C1B8.3 (3)
C16—N2—C14—C1350.4 (2)O7B—N3B—C6B—C5B173.8 (2)
O1A—C1A—C2A—N1A1.1 (3)N1B—C2B—C3B—C4B178.0 (2)
O1A—C1A—C2A—C3A176.5 (2)N2B—C4B—C5B—C6B177.9 (2)
O1A—C1A—C6A—N3A0.2 (3)C1B—C2B—C3B—C4B0.1 (4)
O1A—C1A—C6A—C5A178.2 (2)C2B—C1B—C6B—N3B175.34 (19)
O2A—N1A—C2A—C1A43.5 (3)C2B—C1B—C6B—C5B2.5 (3)
O2A—N1A—C2A—C3A138.8 (3)C2B—C3B—C4B—N2B178.4 (2)
O3A—N1A—C2A—C1A137.1 (3)C2B—C3B—C4B—C5B2.0 (3)
O3A—N1A—C2A—C3A40.7 (3)C3B—C4B—C5B—C6B1.6 (3)
O4A—N2A—C4A—C3A7.0 (3)C4B—C5B—C6B—N3B177.0 (2)
O4A—N2A—C4A—C5A170.1 (2)C4B—C5B—C6B—C1B0.9 (3)
O5A—N2A—C4A—C3A174.4 (2)C6B—C1B—C2B—N1B175.96 (18)
O5A—N2A—C4A—C5A8.5 (3)C6B—C1B—C2B—C3B2.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.83 (3)1.81 (3)2.628 (2)167 (3)
N2—H2···O1A1.001.782.737 (3)159
C1—H1A···O1B1.002.433.183 (2)132
C3—H3···O7A0.952.533.366 (3)148
C9—H9···O2Bi0.952.383.137 (3)136
C9—H9···O7B0.952.362.956 (3)120
C11—H11···O5Aii0.952.493.309 (3)144
C12—H12···O1A0.952.593.430 (3)148
C14—H14B···O5Aiii0.992.463.253 (3)137
C15—H15B···O4Aiv0.982.593.400 (3)140
C16—H16A···O5Bv0.982.583.483 (3)154
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H21ClN2O2+·2C6H2N3O7
Mr749.01
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.1719 (6), 8.5341 (6), 23.5868 (16)
α, β, γ (°)83.771 (6), 85.484 (6), 74.827 (6)
V3)1576.1 (2)
Z2
Radiation typeCu Kα
µ (mm1)1.87
Crystal size (mm)0.24 × 0.16 × 0.12
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.871, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9838, 6071, 4958
Rint0.036
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.02
No. of reflections6071
No. of parameters476
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.83 (3)1.81 (3)2.628 (2)167 (3)
N2—H2···O1A1.001.782.737 (3)158.9
C1—H1A···O1B1.002.433.183 (2)131.6
C3—H3···O7A0.952.533.366 (3)147.5
C9—H9···O2Bi0.952.383.137 (3)135.9
C9—H9···O7B0.952.362.956 (3)120.3
C11—H11···O5Aii0.952.493.309 (3)144.0
C12—H12···O1A0.952.593.430 (3)148.1
C14—H14B···O5Aiii0.992.463.253 (3)136.8
C15—H15B···O4Aiv0.982.593.400 (3)139.5
C16—H16A···O5Bv0.982.583.483 (3)154.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z.
 

Acknowledgements

VR thanks the UOM for research facilities to complete the MSc dissertation work. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 2287–2291.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o682–o683.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaur, M., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Siddaraju, B. P. (2013). Acta Cryst. E69, o248.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Dalrymple, S. & Cote, A. (2001). Acta Cryst. E57, o163–o165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeppala, T., Nuotto, E. & Korttila, K. (1981). Br. J. Clin. Pharmacol. 12, 179–188.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, H. J. (1962). Arzneim.-Forsch. 12, 1065–1070.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1264-o1265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds