organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Fluoro-N-[(E)-3,4,5-tri­meth­­oxy­benzyl­­idene]aniline

aCentre for Crystal Growth, School of Advanced sciences, VIT University, Vellore 632 014, India, bSophisticated Test and Instrumentation Centre (STIC), Cochin University PO, Cochin 682 022, Kerala, India, and cDepartment of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
*Correspondence e-mail: jpodder@phy.buet.ac.bd

(Received 5 June 2013; accepted 27 June 2013; online 10 July 2013)

The title compound, C16H16FNO3, exists in a trans configuration with respect to the C=N bond [1.258 (2) Å]. The central meth­oxy O atom deviates from the plane of the attached benzene ring by 0.0911 (14) Å. The dihedral angle between the aromatic rings is 47.58 (11)°. The crystal structure features C—H⋯N and C—H⋯O inter­actions.

Related literature

For the uses and biological importance of Schiff base compounds, see: Xia et al. (2009[Xia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.]); Shah et al. (1992[Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590-590.]); Ünver et al. (2004[Ünver, H., Karakas, A. & Elmali, A. (2004). J. Mol. Struct. 702, 49-54.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011). Acta Cryst. E67, o1273-o1274.]); Khalaji & Simpson (2009[Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.]); Balachandar et al. (2013[Balachandar, R. K., Kalainathan, S., Eappen, S. M. & Podder, J. (2013). Acta Cryst. E69, o905.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16FNO3

  • Mr = 289.30

  • Monoclinic, P 21

  • a = 7.1147 (9) Å

  • b = 8.3841 (9) Å

  • c = 12.9217 (13) Å

  • β = 105.266 (5)°

  • V = 743.59 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.971

  • 5699 measured reflections

  • 3358 independent reflections

  • 2468 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.128

  • S = 1.00

  • 3358 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.93 2.57 3.492 (3) 174
C7—H7⋯O3ii 0.93 2.58 3.504 (3) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are among the most useful ligands in coordination chemistry as they readily form stable complexes with most transition metals (Xia et al., 2009). They are known to exibit potent anti-bacterial, anti-convulsant, anti-inflammatory and anti-cancer activities (Shah et al., 1992). In addition to that, it shows the Non-linear optical properties (Ünver et al., 2004). Therefore, successful application of Schiff bases requires a careful study of their characteristics.

The title compound, C16 H16 F N O3, exists in a trans configuration with respect to the CN bond [1.258 (2) Å]. The N1C8 bond length of 1.258 (2) Å is shorter than the N–C bond [1.411 (3) Å], indicating a typical imine double bond. Moreover, the C–N–C angle is 118.93 (17) °. X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.

The dihedral angle formed between the phenyl rings (C1–C6) and (C8–C13) is 47.58 (11) °. The flurine atom F1 is deviated from the phenyl ring (C1–C6) by -0.0243 (23) Å. One of the oxygen atom attached to the phenyl ring (C8–C13) is deviated from the same plane by -0.0911 (14) Å.

The crystal packing is stabilized by C4—H4···N1i and C7—H7···O3ii inter-molecular interactions. The symmetry codes: (i). 1 - x,1/2 + y,1 - z. (ii). 1 - x,1/2 + y,2 - z.

Related literature top

For the uses and biological importance of Schiff base compounds, see: Xia et al. (2009); Shah et al. (1992); Ünver et al. (2004). For related structures, see: Fun et al. (2011); Khalaji & Simpson (2009); Balachandar et al. (2013)

Experimental top

The title compound was prepared by the condensation reaction between of 3,4,5-trimethoxybenzaldehyde (1 mmol, 0.196 g) and 4-Fluoroaniline (1 mmol, 0.172 g), which were taken in equimolar ratio and dissolved in methanol (20 ml). The resulting mixture was stirred at room temperature for overnight. Then filtering, drying the synthesized compound dissolved in a 20 ml of methanol to purify the title material by recrystallization process at least for three times. After 4 days, colourless single crystals were obtained using methanol as solvent by keeping the solution for slow evaporation suitable for single-crystal X-ray structure analysis.

Refinement top

The positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The H atoms bound to the C atoms were treated as riding atoms, with d(C–H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aryl atoms. d(C–H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl group. The rotation angles for methyl group is optimized by least squares. During the diffraction experiment, 998 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipaoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down a-axis, showing C4—H4···N1i and C7—H7···O3ii inter-molecular interactions. The H atoms not involved in the bonding have been excluded for clarity.
4-Fluoro-N-[(E)-3,4,5-trimethoxybenzylidene]aniline top
Crystal data top
C16H16FNO3F(000) = 304
Mr = 289.30Dx = 1.292 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2468 reflections
a = 7.1147 (9) Åθ = 2.9–28.3°
b = 8.3841 (9) ŵ = 0.10 mm1
c = 12.9217 (13) ÅT = 296 K
β = 105.266 (5)°Block, colourless
V = 743.59 (14) Å30.40 × 0.35 × 0.30 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scanθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 69
Tmin = 0.962, Tmax = 0.971k = 1111
5699 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.017P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C16H16FNO3V = 743.59 (14) Å3
Mr = 289.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1147 (9) ŵ = 0.10 mm1
b = 8.3841 (9) ÅT = 296 K
c = 12.9217 (13) Å0.40 × 0.35 × 0.30 mm
β = 105.266 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3358 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2468 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.971Rint = 0.017
5699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3358 reflectionsΔρmin = 0.13 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.9942 (4)0.5751 (3)0.51013 (17)0.1191 (7)
N10.4847 (3)0.2770 (2)0.70169 (14)0.0557 (4)
O30.0659 (2)0.05790 (17)1.02505 (12)0.0596 (4)
C40.6764 (5)0.5185 (4)0.5155 (2)0.0901 (9)
H40.62950.58100.45480.108*
O50.0273 (2)0.0800 (2)0.81378 (13)0.0745 (5)
O60.3531 (2)0.12728 (18)1.13224 (11)0.0608 (4)
C30.8696 (5)0.5003 (3)0.5578 (2)0.0763 (7)
C20.9455 (4)0.4108 (4)0.6458 (2)0.0737 (7)
H21.07950.39870.67240.088*
C60.6199 (3)0.3532 (3)0.65551 (15)0.0530 (5)
C70.5225 (3)0.2666 (2)0.80220 (16)0.0474 (4)
H70.63630.31370.84300.057*
C80.3977 (3)0.1847 (2)0.85798 (15)0.0453 (4)
C130.4394 (3)0.1984 (2)0.96847 (15)0.0465 (4)
H130.54470.25981.00530.056*
C110.1708 (3)0.0279 (2)0.96978 (16)0.0482 (4)
C10.8184 (3)0.3381 (3)0.69503 (18)0.0605 (6)
H10.86790.27740.75640.073*
C120.3258 (3)0.1214 (2)1.02398 (15)0.0468 (4)
C150.0943 (4)0.0258 (3)1.0437 (2)0.0794 (7)
H15A0.16120.04111.08270.119*
H15B0.18190.05520.97630.119*
H15C0.04880.12011.08470.119*
C50.5502 (4)0.4435 (4)0.56337 (18)0.0777 (7)
H50.41660.45320.53380.093*
C90.2415 (3)0.0927 (2)0.80236 (17)0.0513 (5)
H90.21320.08380.72810.062*
C100.1283 (3)0.0142 (2)0.85863 (16)0.0513 (5)
C140.0696 (4)0.1114 (4)0.7021 (2)0.0955 (10)
H14A0.18240.17880.68120.143*
H14B0.03960.16390.68640.143*
H14C0.09480.01280.66320.143*
C160.5085 (4)0.2205 (4)1.1925 (2)0.0863 (8)
H16A0.51160.21451.26710.129*
H16B0.49050.32941.16910.129*
H16C0.62910.18111.18240.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1440 (16)0.1259 (17)0.1116 (12)0.0088 (14)0.0766 (12)0.0330 (12)
N10.0526 (10)0.0608 (10)0.0501 (9)0.0022 (8)0.0073 (7)0.0009 (8)
O30.0550 (8)0.0458 (8)0.0784 (10)0.0049 (6)0.0179 (7)0.0129 (7)
C40.115 (3)0.096 (2)0.0619 (14)0.0216 (18)0.0283 (15)0.0319 (15)
O50.0697 (10)0.0754 (11)0.0697 (9)0.0290 (9)0.0030 (8)0.0048 (9)
O60.0667 (9)0.0585 (9)0.0548 (8)0.0136 (7)0.0117 (7)0.0029 (7)
C30.103 (2)0.0727 (16)0.0654 (15)0.0007 (14)0.0434 (15)0.0111 (12)
C20.0710 (15)0.0847 (18)0.0699 (14)0.0018 (13)0.0266 (12)0.0071 (13)
C60.0614 (13)0.0531 (11)0.0437 (10)0.0027 (9)0.0125 (9)0.0014 (9)
C70.0448 (10)0.0406 (10)0.0540 (11)0.0010 (8)0.0077 (8)0.0028 (8)
C80.0416 (9)0.0364 (9)0.0562 (11)0.0053 (7)0.0097 (8)0.0019 (8)
C130.0425 (9)0.0379 (9)0.0558 (11)0.0014 (7)0.0071 (8)0.0019 (8)
C110.0445 (10)0.0345 (9)0.0638 (11)0.0031 (8)0.0111 (9)0.0074 (8)
C10.0630 (14)0.0647 (13)0.0543 (12)0.0057 (10)0.0164 (10)0.0139 (10)
C120.0481 (10)0.0363 (9)0.0546 (11)0.0033 (8)0.0110 (8)0.0039 (8)
C150.0658 (15)0.0681 (16)0.113 (2)0.0018 (12)0.0385 (14)0.0099 (14)
C50.0791 (15)0.099 (2)0.0506 (12)0.0123 (15)0.0093 (11)0.0191 (13)
C90.0511 (10)0.0456 (10)0.0522 (10)0.0007 (8)0.0047 (8)0.0010 (8)
C100.0454 (10)0.0378 (10)0.0650 (12)0.0016 (8)0.0049 (9)0.0012 (9)
C140.0864 (19)0.102 (2)0.0858 (18)0.0330 (17)0.0016 (16)0.0256 (17)
C160.097 (2)0.097 (2)0.0620 (14)0.0355 (17)0.0170 (14)0.0132 (14)
Geometric parameters (Å, º) top
F1—C31.359 (3)C8—C131.384 (3)
N1—C71.258 (2)C8—C91.388 (3)
N1—C61.411 (3)C13—C121.375 (3)
O3—C111.366 (2)C13—H130.9300
O3—C151.412 (3)C11—C121.384 (2)
C4—C31.347 (4)C11—C101.392 (3)
C4—C51.370 (4)C1—H10.9300
C4—H40.9300C15—H15A0.9600
O5—C101.359 (2)C15—H15B0.9600
O5—C141.419 (3)C15—H15C0.9600
O6—C121.362 (2)C5—H50.9300
O6—C161.409 (3)C9—C101.386 (3)
C3—C21.351 (4)C9—H90.9300
C2—C11.378 (3)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C6—C11.375 (3)C14—H14C0.9600
C6—C51.388 (3)C16—H16A0.9600
C7—C81.455 (3)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C7—N1—C6118.93 (17)O6—C12—C13125.09 (17)
C11—O3—C15113.85 (16)O6—C12—C11114.78 (16)
C3—C4—C5119.0 (2)C13—C12—C11120.13 (17)
C3—C4—H4120.5O3—C15—H15A109.5
C5—C4—H4120.5O3—C15—H15B109.5
C10—O5—C14118.18 (19)H15A—C15—H15B109.5
C12—O6—C16117.81 (17)O3—C15—H15C109.5
C4—C3—C2122.9 (3)H15A—C15—H15C109.5
C4—C3—F1118.8 (2)H15B—C15—H15C109.5
C2—C3—F1118.3 (3)C4—C5—C6120.6 (3)
C3—C2—C1117.9 (2)C4—C5—H5119.7
C3—C2—H2121.0C6—C5—H5119.7
C1—C2—H2121.0C10—C9—C8119.28 (18)
C1—C6—C5117.9 (2)C10—C9—H9120.4
C1—C6—N1123.28 (19)C8—C9—H9120.4
C5—C6—N1118.7 (2)O5—C10—C9124.98 (18)
N1—C7—C8123.50 (17)O5—C10—C11114.75 (18)
N1—C7—H7118.3C9—C10—C11120.27 (17)
C8—C7—H7118.3O5—C14—H14A109.5
C13—C8—C9120.36 (17)O5—C14—H14B109.5
C13—C8—C7118.60 (16)H14A—C14—H14B109.5
C9—C8—C7121.03 (17)O5—C14—H14C109.5
C12—C13—C8120.21 (16)H14A—C14—H14C109.5
C12—C13—H13119.9H14B—C14—H14C109.5
C8—C13—H13119.9O6—C16—H16A109.5
O3—C11—C12120.42 (17)O6—C16—H16B109.5
O3—C11—C10119.75 (17)H16A—C16—H16B109.5
C12—C11—C10119.73 (17)O6—C16—H16C109.5
C6—C1—C2121.5 (2)H16A—C16—H16C109.5
C6—C1—H1119.2H16B—C16—H16C109.5
C2—C1—H1119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.932.573.492 (3)174
C7—H7···O3ii0.932.583.504 (3)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H16FNO3
Mr289.30
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.1147 (9), 8.3841 (9), 12.9217 (13)
β (°) 105.266 (5)
V3)743.59 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.962, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5699, 3358, 2468
Rint0.017
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.128, 1.00
No. of reflections3358
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.932.573.492 (3)174
C7—H7···O3ii0.932.583.504 (3)173
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2.
 

Acknowledgements

The authors acknowledge the STIC, Cochin, for the single- crystal XRD facility. They also thank Mr P. Narayanan and Dr K. Sethusankar, RKM Vivekananda College (Autonomous), Chennai 600 004, and VIT University Management for providing the research facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalachandar, R. K., Kalainathan, S., Eappen, S. M. & Podder, J. (2013). Acta Cryst. E69, o905.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590–590.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, H., Karakas, A. & Elmali, A. (2004). J. Mol. Struct. 702, 49–54.  Google Scholar
First citationXia, D.-G., Ye, Y.-F. & Lei, K.-W. (2009). Acta Cryst. E65, o3168.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds