metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-formyl­phenolato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)samarium(III)

aSchool of Basical Science, East China Jiaotong University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: zhongyun1973@126.com

(Received 30 May 2013; accepted 10 June 2013; online 3 July 2013)

In the title compound, [Sm(C7H5O2)3(C12H8N2)], the SmIII cation is coordinated by six O atoms from three bidentate 2-formyl­phenolate ligands and by two N atoms from 1,10-phenanthroline ligand. The resulting SmN2O6 coordination polyhedron is a distorted square anti­prism. In the crystal, C—H⋯O inter­actions connect mol­ecules into chains along the b-axis direction. In addition, ππ stacking inter­actions are observed with centroid–centroid distances in the range 3.6422 (13)–3.7329 (13) Å.

Related literature

For the structures of metal complexes with 2-formyl­phenolate ligands, see: Li & Chen (2006[Li, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038-m1039.]); Li et al. (2007[Li, G.-Z., Zhang, S.-H., Liu, Z. & Jin, L.-X. (2007). Acta Cryst. E63, m2107.]); Xiao & Zhang (2008[Xiao, Y. & Zhang, M. (2008). Acta Cryst. E64, m1231.]); Yang et al. (2007[Yang, Y.-M., Lu, P.-C., Zhu, T.-T. & Liu, C.-H. (2007). Acta Cryst. E63, m1613.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(C7H5O2)3(C12H8N2)]

  • Mr = 693.88

  • Monoclinic, C 2/c

  • a = 24.1921 (9) Å

  • b = 14.6474 (6) Å

  • c = 17.4681 (7) Å

  • β = 115.28°

  • V = 5596.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.520, Tmax = 0.673

  • 20817 measured reflections

  • 5066 independent reflections

  • 4612 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.049

  • S = 1.09

  • 5066 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

N1—Sm1 2.6398 (18)
N2—Sm1 2.602 (2)
O1—Sm1 2.2906 (16)
O2—Sm1 2.4977 (16)
O3—Sm1 2.2925 (15)
O4—Sm1 2.4714 (18)
O5—Sm1 2.3025 (15)
O6—Sm1 2.4888 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O6i 0.93 2.46 3.326 (3) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many metal complexes with Schiff base ligands, which had been synthesized by salicylaldehyde and amine, have been reported. However, only a few metal complexes with 2-formylphenolate ligands had been reported so far. In metal complexes with 2-formylphenolate ligands, the metal ion had been likely coordinated by O atoms from bidentate 2-formylphenolate ligands in a square-planar geometry.(Li et al.,2006; Yang et al., 2007; Xiao & Zhang, 2008; Li et al., 2007)

The title compound, [Sm(C7H5O2)3(C12H8N2)], was obtained by the reaction of salicylaldehyde, 1,10-phenanthroline and samarium(III) chloride in methanol. The SmIII cation is coordinated by six O atoms from three bidentate 2-formylphenolate ligands and by two N atoms from 1,10-phenanthroline ligand. The Sm—O distances range from 2.2906 (16) to 2.4977 (16) Å, and the Sm—N distances range from 2.602 (2) to 2.6398 (18) Å.

Related literature top

For the structures of metal complexes with 2-formylphenolate ligands, see: Li & Chen (2006); Li et al. (2007); Xiao & Zhang (2008); Yang et al. (2007).

Experimental top

SmCl3 (0.26 g, 1.0 mmol), salicylaldehyde (0.37 g, 3.0 mmol) and triethylamine (0.3 g, 3 mmol) was stirred for 1 h in methanol (20 ml) at reflux temperature and cooled to room temperature. To this solution, a methanol solution (5 ml) containing 1,10-phenanthroline (0.18 g, 1 mmol) was added. The mixture was stirred for 1 h at room temperature and the precipitate was filtered off. Brown crystals were obtained by a slow evaporation of the filtrate.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 and O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest peak in the final difference Fourier map is 0.93 Å apart from the Sm1 atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
Tris(2-formylphenolato-κ2O,O')(1,10-phenanthroline-κ2N,N')samarium(III) top
Crystal data top
[Sm(C7H5O2)3(C12H8N2)]F(000) = 2760
Mr = 693.88Dx = 1.647 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9986 reflections
a = 24.1921 (9) Åθ = 2.3–28.4°
b = 14.6474 (6) ŵ = 2.15 mm1
c = 17.4681 (7) ÅT = 298 K
β = 115.28°Prism, brown
V = 5596.8 (4) Å30.35 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5066 independent reflections
Radiation source: fine-focus sealed tube4612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.520, Tmax = 0.673k = 1717
20817 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0247P)2 + 4.8252P]
where P = (Fo2 + 2Fc2)/3
5066 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Sm(C7H5O2)3(C12H8N2)]V = 5596.8 (4) Å3
Mr = 693.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.1921 (9) ŵ = 2.15 mm1
b = 14.6474 (6) ÅT = 298 K
c = 17.4681 (7) Å0.35 × 0.30 × 0.20 mm
β = 115.28°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4612 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.673Rint = 0.017
20817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
5066 reflectionsΔρmin = 0.32 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31169 (10)0.86165 (16)0.37537 (16)0.0465 (5)
H10.31990.86250.32800.056*
C20.35943 (11)0.84125 (17)0.45406 (17)0.0528 (6)
H20.39850.82940.45850.063*
C30.34823 (11)0.83896 (16)0.52364 (16)0.0518 (6)
H30.37960.82580.57640.062*
C40.28917 (11)0.85648 (14)0.51595 (14)0.0433 (5)
C50.27276 (13)0.85179 (16)0.58590 (15)0.0536 (6)
H50.30270.83870.63980.064*
C60.21547 (13)0.86576 (17)0.57504 (16)0.0560 (6)
H60.20620.86210.62140.067*
C70.16799 (12)0.88631 (16)0.49350 (16)0.0485 (6)
C80.10657 (14)0.89827 (19)0.4777 (2)0.0629 (7)
H80.09530.89470.52220.075*
C90.06353 (14)0.9149 (2)0.3984 (2)0.0679 (8)
H90.02270.92220.38780.081*
C100.08197 (13)0.9208 (2)0.3334 (2)0.0635 (8)
H100.05240.93300.27900.076*
C110.18228 (10)0.89213 (14)0.42354 (15)0.0395 (5)
C120.24393 (10)0.87700 (13)0.43492 (13)0.0365 (5)
C130.08129 (10)0.71970 (16)0.16434 (16)0.0470 (5)
C140.02349 (12)0.68030 (19)0.1451 (2)0.0747 (9)
H140.00620.71490.15220.090*
C150.01027 (15)0.59231 (19)0.1162 (3)0.0831 (11)
H150.02850.56910.10320.100*
C160.05290 (14)0.53738 (19)0.1060 (2)0.0723 (9)
H160.04290.47820.08530.087*
C170.10973 (14)0.57144 (17)0.12672 (18)0.0596 (7)
H170.13900.53440.12100.071*
C180.12548 (10)0.66124 (15)0.15659 (14)0.0424 (5)
C190.18756 (11)0.68770 (16)0.18207 (16)0.0486 (6)
H190.21330.64330.17700.058*
C200.27639 (11)0.93203 (15)0.14703 (15)0.0424 (5)
C210.33951 (11)0.94760 (18)0.17270 (17)0.0511 (6)
H210.36240.97430.22510.061*
C220.36752 (14)0.92430 (19)0.1224 (2)0.0651 (8)
H220.40930.93430.14190.078*
C230.33551 (17)0.8860 (3)0.0428 (2)0.0798 (10)
H230.35540.87030.00940.096*
C240.27492 (16)0.8721 (3)0.0150 (2)0.0764 (9)
H240.25300.84800.03880.092*
C250.24352 (13)0.89319 (18)0.06522 (16)0.0534 (6)
C260.17925 (14)0.8767 (2)0.03053 (17)0.0634 (7)
H260.16110.85700.02540.076*
C270.06299 (10)1.08986 (14)0.14602 (15)0.0391 (5)
C280.00641 (11)1.11852 (17)0.08153 (17)0.0509 (6)
H280.01681.07740.03950.061*
C290.01491 (13)1.20557 (19)0.0797 (2)0.0681 (8)
H290.05221.22240.03630.082*
C300.01791 (14)1.2692 (2)0.1412 (3)0.0832 (10)
H300.00251.32760.14000.100*
C310.07337 (14)1.24430 (19)0.2038 (2)0.0715 (8)
H310.09581.28680.24490.086*
C320.09729 (10)1.15610 (16)0.20742 (15)0.0457 (5)
C330.15714 (11)1.13771 (18)0.27111 (16)0.0525 (6)
H330.17581.18510.30880.063*
N10.25528 (8)0.87989 (12)0.36524 (11)0.0394 (4)
N20.13901 (9)0.91009 (13)0.34420 (13)0.0469 (5)
O10.09273 (7)0.80347 (11)0.18874 (13)0.0598 (5)
O20.21128 (7)0.76192 (11)0.20986 (11)0.0520 (4)
O30.25049 (7)0.95453 (11)0.19573 (9)0.0441 (4)
O40.14503 (8)0.88545 (14)0.06560 (11)0.0590 (4)
O50.08275 (7)1.00738 (10)0.14640 (10)0.0466 (4)
O60.18739 (8)1.06706 (11)0.28260 (11)0.0519 (4)
Sm10.165805 (5)0.913618 (7)0.214933 (7)0.03584 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (12)0.0541 (14)0.0520 (14)0.0006 (10)0.0175 (10)0.0100 (11)
C20.0300 (12)0.0578 (14)0.0624 (16)0.0004 (10)0.0120 (11)0.0116 (12)
C30.0409 (13)0.0494 (13)0.0483 (14)0.0062 (10)0.0030 (11)0.0079 (11)
C40.0469 (13)0.0336 (11)0.0414 (12)0.0087 (9)0.0112 (10)0.0009 (9)
C50.0689 (18)0.0470 (13)0.0371 (13)0.0123 (12)0.0152 (12)0.0046 (10)
C60.0786 (19)0.0516 (14)0.0466 (14)0.0115 (13)0.0353 (14)0.0101 (11)
C70.0618 (16)0.0388 (11)0.0531 (14)0.0061 (11)0.0322 (13)0.0078 (10)
C80.0698 (19)0.0687 (17)0.0714 (19)0.0014 (14)0.0505 (17)0.0100 (14)
C90.0515 (17)0.081 (2)0.087 (2)0.0063 (14)0.0441 (17)0.0033 (16)
C100.0419 (15)0.088 (2)0.0653 (18)0.0100 (13)0.0270 (14)0.0082 (14)
C110.0443 (13)0.0318 (10)0.0471 (13)0.0019 (9)0.0239 (11)0.0010 (9)
C120.0380 (11)0.0287 (10)0.0408 (12)0.0051 (8)0.0151 (9)0.0001 (8)
C130.0374 (12)0.0413 (12)0.0581 (14)0.0017 (10)0.0164 (11)0.0016 (10)
C140.0397 (14)0.0526 (15)0.126 (3)0.0060 (12)0.0298 (16)0.0042 (17)
C150.0470 (17)0.0553 (18)0.121 (3)0.0153 (13)0.0111 (18)0.0009 (17)
C160.0662 (19)0.0404 (14)0.084 (2)0.0048 (13)0.0068 (16)0.0043 (13)
C170.0625 (17)0.0431 (13)0.0621 (17)0.0061 (12)0.0162 (14)0.0036 (11)
C180.0422 (12)0.0395 (11)0.0407 (12)0.0028 (9)0.0131 (10)0.0030 (9)
C190.0441 (13)0.0457 (13)0.0558 (14)0.0096 (11)0.0212 (11)0.0013 (11)
C200.0467 (13)0.0407 (11)0.0424 (12)0.0048 (10)0.0214 (11)0.0114 (9)
C210.0454 (14)0.0561 (14)0.0552 (15)0.0038 (11)0.0246 (12)0.0108 (12)
C220.0542 (17)0.0742 (19)0.079 (2)0.0143 (13)0.0403 (16)0.0225 (15)
C230.083 (2)0.103 (2)0.077 (2)0.024 (2)0.056 (2)0.0081 (19)
C240.081 (2)0.102 (2)0.0538 (17)0.0125 (19)0.0354 (16)0.0070 (16)
C250.0563 (16)0.0635 (15)0.0414 (13)0.0075 (12)0.0220 (12)0.0021 (11)
C260.0644 (18)0.0795 (19)0.0384 (14)0.0023 (15)0.0143 (13)0.0093 (13)
C270.0354 (11)0.0417 (12)0.0431 (12)0.0006 (9)0.0195 (10)0.0004 (9)
C280.0374 (12)0.0518 (13)0.0578 (15)0.0042 (11)0.0149 (11)0.0007 (11)
C290.0426 (15)0.0593 (17)0.091 (2)0.0128 (12)0.0182 (15)0.0096 (15)
C300.0615 (19)0.0500 (16)0.130 (3)0.0175 (14)0.034 (2)0.0042 (18)
C310.0613 (18)0.0531 (16)0.097 (2)0.0012 (13)0.0307 (17)0.0223 (15)
C320.0397 (12)0.0462 (12)0.0526 (14)0.0019 (10)0.0211 (11)0.0069 (10)
C330.0495 (14)0.0513 (14)0.0524 (14)0.0113 (12)0.0179 (12)0.0159 (11)
N10.0321 (9)0.0423 (9)0.0424 (10)0.0011 (8)0.0145 (8)0.0068 (8)
N20.0340 (10)0.0582 (12)0.0500 (12)0.0033 (8)0.0193 (9)0.0071 (9)
O10.0401 (9)0.0434 (9)0.1014 (15)0.0057 (7)0.0356 (10)0.0149 (9)
O20.0372 (9)0.0495 (10)0.0678 (11)0.0019 (7)0.0211 (8)0.0022 (8)
O30.0427 (9)0.0518 (9)0.0408 (8)0.0062 (7)0.0207 (7)0.0004 (7)
O40.0445 (10)0.0777 (12)0.0443 (10)0.0014 (9)0.0089 (8)0.0070 (9)
O50.0371 (8)0.0414 (8)0.0482 (9)0.0040 (7)0.0056 (7)0.0046 (7)
O60.0391 (9)0.0502 (9)0.0532 (10)0.0047 (7)0.0071 (8)0.0056 (8)
Sm10.02721 (7)0.03827 (7)0.03935 (8)0.00068 (4)0.01164 (5)0.00116 (4)
Geometric parameters (Å, º) top
C1—N11.326 (3)C19—H190.9300
C1—C21.399 (3)C20—O31.296 (3)
C1—H10.9300C20—C211.414 (3)
C2—C31.354 (4)C20—C251.424 (4)
C2—H20.9300C21—C221.363 (4)
C3—C41.400 (3)C21—H210.9300
C3—H30.9300C22—C231.387 (5)
C4—C121.403 (3)C22—H220.9300
C4—C51.439 (3)C23—C241.348 (5)
C5—C61.332 (4)C23—H230.9300
C5—H50.9300C24—C251.418 (4)
C6—C71.429 (4)C24—H240.9300
C6—H60.9300C25—C261.428 (4)
C7—C81.401 (4)C26—O41.229 (3)
C7—C111.407 (3)C26—H260.9300
C8—C91.352 (5)C27—O51.298 (3)
C8—H80.9300C27—C281.415 (3)
C9—C101.390 (4)C27—C321.421 (3)
C9—H90.9300C28—C291.371 (4)
C10—N21.320 (3)C28—H280.9300
C10—H100.9300C29—C301.387 (4)
C11—N21.359 (3)C29—H290.9300
C11—C121.435 (3)C30—C311.369 (4)
C12—N11.358 (3)C30—H300.9300
C13—O11.290 (3)C31—C321.406 (4)
C13—C141.414 (3)C31—H310.9300
C13—C181.421 (3)C32—C331.425 (3)
C14—C151.371 (4)C33—O61.233 (3)
C14—H140.9300C33—H330.9300
C15—C161.379 (5)N1—Sm12.6398 (18)
C15—H150.9300N2—Sm12.602 (2)
C16—C171.358 (4)O1—Sm12.2906 (16)
C16—H160.9300O2—Sm12.4977 (16)
C17—C181.406 (3)O3—Sm12.2925 (15)
C17—H170.9300O4—Sm12.4714 (18)
C18—C191.426 (3)O5—Sm12.3025 (15)
C19—O21.228 (3)O6—Sm12.4888 (16)
N1—C1—C2123.0 (2)C23—C24—H24118.9
N1—C1—H1118.5C25—C24—H24118.9
C2—C1—H1118.5C24—C25—C20119.4 (3)
C3—C2—C1119.3 (2)C24—C25—C26118.4 (3)
C3—C2—H2120.3C20—C25—C26122.2 (2)
C1—C2—H2120.3O4—C26—C25127.9 (2)
C2—C3—C4119.8 (2)O4—C26—H26116.0
C2—C3—H3120.1C25—C26—H26116.0
C4—C3—H3120.1O5—C27—C28120.6 (2)
C3—C4—C12117.4 (2)O5—C27—C32122.4 (2)
C3—C4—C5123.4 (2)C28—C27—C32116.9 (2)
C12—C4—C5119.2 (2)C29—C28—C27121.4 (2)
C6—C5—C4121.3 (2)C29—C28—H28119.3
C6—C5—H5119.3C27—C28—H28119.3
C4—C5—H5119.3C28—C29—C30121.4 (3)
C5—C6—C7121.3 (2)C28—C29—H29119.3
C5—C6—H6119.4C30—C29—H29119.3
C7—C6—H6119.4C31—C30—C29118.8 (3)
C8—C7—C11117.0 (2)C31—C30—H30120.6
C8—C7—C6123.8 (2)C29—C30—H30120.6
C11—C7—C6119.2 (2)C30—C31—C32121.6 (3)
C9—C8—C7120.8 (3)C30—C31—H31119.2
C9—C8—H8119.6C32—C31—H31119.2
C7—C8—H8119.6C31—C32—C27119.8 (2)
C8—C9—C10118.2 (3)C31—C32—C33118.0 (2)
C8—C9—H9120.9C27—C32—C33122.1 (2)
C10—C9—H9120.9O6—C33—C32128.3 (2)
N2—C10—C9123.8 (3)O6—C33—H33115.8
N2—C10—H10118.1C32—C33—H33115.8
C9—C10—H10118.1C1—N1—C12117.69 (19)
N2—C11—C7122.0 (2)C1—N1—Sm1122.02 (15)
N2—C11—C12118.3 (2)C12—N1—Sm1120.23 (13)
C7—C11—C12119.8 (2)C10—N2—C11118.2 (2)
N1—C12—C4122.8 (2)C10—N2—Sm1120.39 (18)
N1—C12—C11117.84 (19)C11—N2—Sm1121.33 (15)
C4—C12—C11119.3 (2)C13—O1—Sm1140.77 (15)
O1—C13—C14121.2 (2)C19—O2—Sm1131.52 (15)
O1—C13—C18122.7 (2)C20—O3—Sm1137.92 (15)
C14—C13—C18116.1 (2)C26—O4—Sm1131.83 (17)
C15—C14—C13121.5 (3)C27—O5—Sm1142.69 (14)
C15—C14—H14119.2C33—O6—Sm1133.70 (15)
C13—C14—H14119.2O1—Sm1—O3144.74 (6)
C14—C15—C16121.8 (3)O1—Sm1—O583.60 (6)
C14—C15—H15119.1O3—Sm1—O5113.82 (6)
C16—C15—H15119.1O1—Sm1—O483.10 (7)
C17—C16—C15118.6 (3)O3—Sm1—O471.39 (6)
C17—C16—H16120.7O5—Sm1—O479.16 (6)
C15—C16—H16120.7O1—Sm1—O6135.93 (6)
C16—C17—C18121.7 (3)O3—Sm1—O679.29 (6)
C16—C17—H17119.1O5—Sm1—O670.59 (5)
C18—C17—H17119.1O4—Sm1—O6123.98 (6)
C17—C18—C13120.2 (2)O1—Sm1—O271.36 (5)
C17—C18—C19116.9 (2)O3—Sm1—O278.04 (6)
C13—C18—C19122.8 (2)O5—Sm1—O2144.28 (5)
O2—C19—C18128.0 (2)O4—Sm1—O273.03 (6)
O2—C19—H19116.0O6—Sm1—O2144.49 (5)
C18—C19—H19116.0O1—Sm1—N272.68 (7)
O3—C20—C21120.7 (2)O3—Sm1—N2134.55 (6)
O3—C20—C25122.8 (2)O5—Sm1—N288.71 (6)
C21—C20—C25116.6 (2)O4—Sm1—N2154.01 (6)
C22—C21—C20121.5 (3)O6—Sm1—N271.66 (6)
C22—C21—H21119.3O2—Sm1—N2106.85 (6)
C20—C21—H21119.3O1—Sm1—N1107.57 (6)
C21—C22—C23121.9 (3)O3—Sm1—N177.88 (5)
C21—C22—H22119.1O5—Sm1—N1142.33 (6)
C23—C22—H22119.1O4—Sm1—N1136.83 (6)
C24—C23—C22118.5 (3)O6—Sm1—N177.30 (6)
C24—C23—H23120.7O2—Sm1—N171.48 (6)
C22—C23—H23120.7N2—Sm1—N162.33 (6)
C23—C24—C25122.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O6i0.932.463.326 (3)154
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sm(C7H5O2)3(C12H8N2)]
Mr693.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.1921 (9), 14.6474 (6), 17.4681 (7)
β (°) 115.28
V3)5596.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.520, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
20817, 5066, 4612
Rint0.017
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.049, 1.09
No. of reflections5066
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Sm12.6398 (18)O3—Sm12.2925 (15)
N2—Sm12.602 (2)O4—Sm12.4714 (18)
O1—Sm12.2906 (16)O5—Sm12.3025 (15)
O2—Sm12.4977 (16)O6—Sm12.4888 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O6i0.932.463.326 (3)154
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (31160187).

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsis, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsis, USA.  Google Scholar
First citationLi, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038–m1039.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, G.-Z., Zhang, S.-H., Liu, Z. & Jin, L.-X. (2007). Acta Cryst. E63, m2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Y. & Zhang, M. (2008). Acta Cryst. E64, m1231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y.-M., Lu, P.-C., Zhu, T.-T. & Liu, C.-H. (2007). Acta Cryst. E63, m1613.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds