organic compounds
(Z)-Ethyl 2-cyano-3-(1H-imidazol-2-yl)acrylate
aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnatak, India, bDepartment of Biotechnology, Dr. M.G.R Educational and Research Institute University, Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095, India, and cDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea
*Correspondence e-mail: ytjeong@pknu.ac.kr
The 9H9N3O2, features N—H⋯N and C—H⋯O interactions. The N—H⋯N interaction generates a chain running along the a axis and the C—H⋯O interaction generates a chain along the c axis. An intramolecular C—H⋯O interaction is also observed.
of the title compound, CRelated literature
For background references and the biological importance of related compounds, see: Bigi et al. (1999); Yu et al. (2000). For the synthesis, see: Knoevenagel (1898); Yadav et al. (2004).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813018278/fj2635sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018278/fj2635Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813018278/fj2635Isup3.cml
A solution of 1H-Imidazole-2-aldehyde (1 mol), ethyl cyanoacetate (1.2 mol) and piperidine (0.1 ml) in ethanol (20 ml) was stirred at room temperature for 4 h. After removal of the volatiles in vacuo, yellow solid was obtained in quantitative yield. A sample for analysis was obtained by recrystallization from EtOAc as pale yellow needles.
Friedel pairs were merged in the absence of any anamalous scatterers in the molecule. The
in the present model has been chosen arbitrarily. All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atomsData collection: SMART (Bruker 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H9N3O2 | F(000) = 400 |
Mr = 191.19 | Dx = 1.359 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | θ = 2.6–25.0° |
a = 10.0768 (7) Å | µ = 0.10 mm−1 |
b = 12.0387 (8) Å | T = 293 K |
c = 7.7047 (6) Å | Needle, pale yellow |
V = 934.67 (12) Å3 | 0.4 × 0.23 × 0.2 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1436 independent reflections |
Radiation source: fine-focus sealed tube | 1189 reflections with ( > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
phi and ω scans | θmax = 30.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→14 |
Tmin = 0.980, Tmax = 0.984 | k = −16→12 |
7118 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.1215P)2 + 0.160P] where P = (Fo2 + 2Fc2)/3 |
1436 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.22 e Å−3 |
C9H9N3O2 | V = 934.67 (12) Å3 |
Mr = 191.19 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 10.0768 (7) Å | µ = 0.10 mm−1 |
b = 12.0387 (8) Å | T = 293 K |
c = 7.7047 (6) Å | 0.4 × 0.23 × 0.2 mm |
Bruker SMART CCD area-detector diffractometer | 1436 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1189 reflections with ( > 2σ(I) |
Tmin = 0.980, Tmax = 0.984 | Rint = 0.033 |
7118 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 1 restraint |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 0.83 | Δρmax = 0.33 e Å−3 |
1436 reflections | Δρmin = −0.22 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1765 (3) | −0.1284 (2) | −0.3293 (4) | 0.0457 (6) | |
H1 | 0.1447 | −0.1956 | −0.3719 | 0.055* | |
C2 | 0.3054 (2) | −0.0942 (2) | −0.3241 (4) | 0.0447 (6) | |
H2 | 0.3770 | −0.1355 | −0.3647 | 0.054* | |
C3 | 0.1905 (2) | 0.03689 (18) | −0.2134 (3) | 0.0364 (5) | |
C4 | 0.1407 (2) | 0.13759 (19) | −0.1392 (4) | 0.0394 (5) | |
H4 | 0.0487 | 0.1416 | −0.1308 | 0.047* | |
C5 | 0.20598 (19) | 0.22724 (19) | −0.0798 (4) | 0.0366 (4) | |
C6 | 0.1238 (2) | 0.32086 (19) | −0.0127 (4) | 0.0416 (5) | |
C7 | 0.1271 (3) | 0.4938 (2) | 0.1330 (5) | 0.0623 (9) | |
H7A | 0.0624 | 0.5220 | 0.0509 | 0.075* | |
H7B | 0.0806 | 0.4701 | 0.2368 | 0.075* | |
C8 | 0.2242 (4) | 0.5808 (3) | 0.1760 (6) | 0.0696 (10) | |
H8A | 0.2917 | 0.5503 | 0.2499 | 0.104* | |
H8B | 0.1802 | 0.6406 | 0.2350 | 0.104* | |
H8C | 0.2641 | 0.6082 | 0.0713 | 0.104* | |
C9 | 0.3471 (2) | 0.23680 (19) | −0.0740 (4) | 0.0421 (5) | |
N1 | 0.10482 (18) | −0.04511 (16) | −0.2601 (3) | 0.0420 (5) | |
H1A | 0.0200 | −0.0440 | −0.2477 | 0.050* | |
N2 | 0.31525 (19) | 0.00888 (17) | −0.2512 (3) | 0.0396 (5) | |
N3 | 0.4589 (2) | 0.2480 (2) | −0.0668 (5) | 0.0642 (8) | |
O1 | 0.00530 (18) | 0.32337 (16) | −0.0221 (4) | 0.0626 (7) | |
O2 | 0.19908 (17) | 0.40053 (15) | 0.0574 (3) | 0.0515 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0384 (11) | 0.0307 (12) | 0.0680 (15) | 0.0007 (9) | −0.0019 (11) | −0.0053 (12) |
C2 | 0.0371 (11) | 0.0332 (12) | 0.0637 (15) | 0.0045 (9) | 0.0035 (10) | −0.0040 (12) |
C3 | 0.0309 (9) | 0.0250 (10) | 0.0533 (13) | −0.0030 (8) | 0.0008 (8) | 0.0027 (9) |
C4 | 0.0323 (9) | 0.0308 (11) | 0.0551 (12) | −0.0001 (8) | 0.0024 (10) | 0.0029 (9) |
C5 | 0.0348 (9) | 0.0251 (9) | 0.0500 (12) | 0.0025 (7) | −0.0003 (9) | 0.0015 (9) |
C6 | 0.0371 (10) | 0.0286 (11) | 0.0591 (14) | −0.0003 (8) | 0.0065 (10) | 0.0011 (10) |
C7 | 0.0554 (16) | 0.0366 (14) | 0.095 (2) | 0.0014 (11) | 0.0195 (16) | −0.0130 (15) |
C8 | 0.086 (3) | 0.0436 (15) | 0.079 (2) | −0.0112 (15) | 0.017 (2) | −0.0204 (16) |
C9 | 0.0397 (11) | 0.0264 (10) | 0.0602 (14) | 0.0028 (8) | −0.0018 (11) | −0.0017 (10) |
N1 | 0.0291 (8) | 0.0292 (9) | 0.0677 (13) | −0.0027 (7) | 0.0001 (9) | −0.0027 (10) |
N2 | 0.0323 (9) | 0.0297 (10) | 0.0566 (11) | −0.0022 (7) | 0.0014 (9) | 0.0001 (8) |
N3 | 0.0388 (10) | 0.0502 (14) | 0.103 (2) | 0.0028 (9) | −0.0041 (14) | −0.0151 (15) |
O1 | 0.0395 (9) | 0.0418 (10) | 0.1065 (19) | 0.0051 (8) | 0.0059 (10) | −0.0154 (11) |
O2 | 0.0434 (9) | 0.0291 (8) | 0.0819 (15) | −0.0001 (6) | 0.0067 (9) | −0.0126 (9) |
C1—N1 | 1.346 (3) | C6—O1 | 1.197 (3) |
C1—C2 | 1.363 (3) | C6—O2 | 1.337 (3) |
C1—H1 | 0.9300 | C7—C8 | 1.472 (5) |
C2—N2 | 1.366 (3) | C7—O2 | 1.458 (3) |
C2—H2 | 0.9300 | C7—H7A | 0.9700 |
C3—N2 | 1.334 (3) | C7—H7B | 0.9700 |
C3—N1 | 1.360 (3) | C8—H8A | 0.9600 |
C3—C4 | 1.431 (3) | C8—H8B | 0.9600 |
C4—C5 | 1.344 (3) | C8—H8C | 0.9600 |
C4—H4 | 0.9300 | C9—N3 | 1.135 (3) |
C5—C9 | 1.428 (3) | N1—H1A | 0.8600 |
C5—C6 | 1.491 (3) | ||
N1—C1—C2 | 105.9 (2) | C8—C7—O2 | 107.9 (3) |
N1—C1—H1 | 127.0 | C8—C7—H7A | 110.1 |
C2—C1—H1 | 127.0 | O2—C7—H7A | 110.1 |
N2—C2—C1 | 110.8 (2) | C8—C7—H7B | 110.1 |
N2—C2—H2 | 124.6 | O2—C7—H7B | 110.1 |
C1—C2—H2 | 124.6 | H7A—C7—H7B | 108.4 |
N2—C3—N1 | 110.9 (2) | C7—C8—H8A | 109.5 |
N2—C3—C4 | 129.2 (2) | C7—C8—H8B | 109.5 |
N1—C3—C4 | 119.9 (2) | H8A—C8—H8B | 109.5 |
C5—C4—C3 | 130.1 (2) | C7—C8—H8C | 109.5 |
C5—C4—H4 | 114.9 | H8A—C8—H8C | 109.5 |
C3—C4—H4 | 114.9 | H8B—C8—H8C | 109.5 |
C4—C5—C9 | 124.3 (2) | N3—C9—C5 | 177.6 (3) |
C4—C5—C6 | 116.95 (19) | C1—N1—C3 | 107.74 (18) |
C9—C5—C6 | 118.8 (2) | C1—N1—H1A | 126.1 |
O1—C6—O2 | 124.9 (2) | C3—N1—H1A | 126.1 |
O1—C6—C5 | 123.5 (2) | C3—N2—C2 | 104.54 (19) |
O2—C6—C5 | 111.56 (19) | C6—O2—C7 | 115.6 (2) |
N1—C1—C2—N2 | 0.6 (4) | C2—C1—N1—C3 | −0.5 (3) |
N2—C3—C4—C5 | −4.1 (5) | N2—C3—N1—C1 | 0.2 (3) |
N1—C3—C4—C5 | 177.9 (3) | C4—C3—N1—C1 | 178.6 (3) |
C3—C4—C5—C9 | −2.6 (5) | N1—C3—N2—C2 | 0.1 (3) |
C3—C4—C5—C6 | 178.8 (3) | C4—C3—N2—C2 | −178.1 (3) |
C4—C5—C6—O1 | −6.1 (5) | C1—C2—N2—C3 | −0.4 (3) |
C9—C5—C6—O1 | 175.1 (3) | O1—C6—O2—C7 | 2.7 (5) |
C4—C5—C6—O2 | 174.2 (3) | C5—C6—O2—C7 | −177.6 (3) |
C9—C5—C6—O2 | −4.5 (4) | C8—C7—O2—C6 | −170.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1 | 0.93 | 2.38 | 2.771 (3) | 105 |
N1—H1A···N2i | 0.86 | 2.11 | 2.951 (3) | 167 |
C1—H1···O1ii | 0.93 | 2.45 | 3.328 (4) | 158 |
Symmetry codes: (i) x−1/2, −y, z; (ii) −x, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9N3O2 |
Mr | 191.19 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 293 |
a, b, c (Å) | 10.0768 (7), 12.0387 (8), 7.7047 (6) |
V (Å3) | 934.67 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.4 × 0.23 × 0.2 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.980, 0.984 |
No. of measured, independent and observed [( > 2σ(I)] reflections | 7118, 1436, 1189 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.145, 0.83 |
No. of reflections | 1436 |
No. of parameters | 128 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.22 |
Computer programs: SMART (Bruker 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1 | 0.93 | 2.38 | 2.771 (3) | 105 |
N1—H1A···N2i | 0.86 | 2.11 | 2.951 (3) | 167 |
C1—H1···O1ii | 0.93 | 2.45 | 3.328 (4) | 158 |
Symmetry codes: (i) x−1/2, −y, z; (ii) −x, −y, z−1/2. |
Acknowledgements
The authors thank the Director, USIC Karnatak University Dharwad, India, for the X-ray data collection.
References
Bigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033–1035. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Knoevenagel, E. (1898). Berichte, 31, 2585–2596. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, J. S., Subba Reddy, B. V., Basak, A. K., Visali, B., Narsaiah, A. V. & Nagaiah, K. (2004). Eur. J. Org. Chem. pp. 546–551. Web of Science CrossRef Google Scholar
Yu, N., Aramini, J. M. M., Germann, W. & Huang, Z. (2000). Tetrahedron Lett. 41, 6993–6996. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Knoevenagel condensation is an important carbon-carbon bond-forming reaction in organic synthesis (Knoevenagel, 1898; Yadav et al., 2004). This reaction has been widely used in organic synthesis to prepare many biologically active derivatives, and in the synthesis of cosmetics, perfumes and pharmaceuticals (Bigi et al., 1999; Yu et al., 2000). With the view of biological importance, the series of compounds are synthesized and here we report the crystal structure of the title compound.
The bond lengths and bond angles are within the normal ranges. The imidazole ring is planar and the acrylate moiety is nearly planar with torsion angles C4—C5—C6—O1 and C4—C5—C6—O2 being -6.1 (5) and 174.2 (3)°, respectively. Atoms C6, C9, N3 and O1 deviate from the planarity of the title compound with maximum deviation of 0.31 (3) Å by O1 atom. The crystal structure is stabilized by C(4)—H(4)···O1 intramolecuar interaction generating S(5) motif. The crystal packing is stabilized by N—H···N and C—H···O intermolecular interaction network. Atom N1 acts as a donor to N2 generating chain of C(4) along a axis and atom C1 acts as a donor to O1 generating C(8) chain running along c axis.