organic compounds
1-(5-Bromo-2-oxoindolin-3-ylidene)-4-phenylthiosemicarbazide
aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-903 Rio Grande, RS, Brazil, bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de
In the title compound, C15H11BrN4OS, the least-squares plane through the 5-bromoisatin fragment forms a dihedral angle of 13.63 (14)° with the phenyl ring. The molecular conformation features intramolecular N—H⋯N and N—H⋯O hydrogen bonds. In the crystal, molecules are connected via pairs of N—H⋯O interactions into centrosymmetric dimers. Additionally, π–π stacking interactions link molecules into chains parallel to the a axis with short C⋯C distances being observed between the phenyl and thiocarbonyl [3.236 (8) Å] groups and between the thiocarbonyl and carbonyl [3.351 (4) Å] groups of stacked molecules.
Related literature
For the pharmacological properties of isatin-thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003). For the synthesis of 5-bromoisatin-3-thiosemicarbazone, see: Campaigne & Archer (1952). For the of 1-(5-bromo-2-oxoindolin-3-ylidene)thiosemicarbazide acetonitrile monosolvate, see: Pederzolli et al. (2011).
Experimental
Crystal data
|
|
Data collection: X-AREA (Stoe & Cie, 2008); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813020497/fy2102sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813020497/fy2102Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813020497/fy2102Isup3.cml
The starting materials were commercially available and were used without further purification. The 5-bromoisatine-3-(4-phenyl)thiosemicarbazone synthesis was adapted from a procedure reported previously (Campaigne & Archer, 1952). The hydrochloric acid catalyzed reaction of 5-bromoisatin (8.83 mmol) and (4-phenyl)thiosemicarbazide (8.83 mmol) in a 1:1 mixture of ethanol and water (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction of the title compound were obtained by the slow evaporation of the solvents.
All C—H and N—H H atoms were located in difference map, but were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C, N) using a riding model with C—H = 0.93 Å for aromatic and N—H = 0.88 Å for N-bound H atoms.
Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C15H11BrN4OS | F(000) = 752 |
Mr = 375.25 | Dx = 1.646 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 13698 reflections |
a = 5.6882 (3) Å | θ = 2.6–26.0° |
b = 18.4086 (9) Å | µ = 2.86 mm−1 |
c = 14.4668 (10) Å | T = 200 K |
β = 91.272 (8)° | Block, yellow |
V = 1514.47 (15) Å3 | 0.12 × 0.10 × 0.08 mm |
Z = 4 |
Stoe IPDS-1 diffractometer | 2903 independent reflections |
Radiation source: fine-focus sealed tube, Stoe IPDS-1 | 2235 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ϕ scans | θmax = 26.0°, θmin = 2.6° |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) | h = −6→6 |
Tmin = 0.633, Tmax = 0.677 | k = −22→22 |
13502 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0517P)2 + 1.4796P] where P = (Fo2 + 2Fc2)/3 |
2903 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
C15H11BrN4OS | V = 1514.47 (15) Å3 |
Mr = 375.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.6882 (3) Å | µ = 2.86 mm−1 |
b = 18.4086 (9) Å | T = 200 K |
c = 14.4668 (10) Å | 0.12 × 0.10 × 0.08 mm |
β = 91.272 (8)° |
Stoe IPDS-1 diffractometer | 2903 independent reflections |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) | 2235 reflections with I > 2σ(I) |
Tmin = 0.633, Tmax = 0.677 | Rint = 0.064 |
13502 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.67 e Å−3 |
2903 reflections | Δρmin = −1.11 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0836 (5) | 0.47322 (14) | 1.38606 (19) | 0.0312 (6) | |
H1 | −0.0271 | 0.4583 | 1.4231 | 0.037* | |
C1 | 0.2595 (5) | 0.51911 (16) | 1.4116 (2) | 0.0283 (7) | |
O1 | 0.2888 (4) | 0.54902 (12) | 1.48762 (15) | 0.0316 (5) | |
C2 | 0.4124 (5) | 0.52739 (15) | 1.3285 (2) | 0.0247 (6) | |
C3 | 0.3024 (5) | 0.48403 (15) | 1.2553 (2) | 0.0261 (6) | |
C4 | 0.3560 (6) | 0.47236 (17) | 1.1638 (2) | 0.0324 (7) | |
H4 | 0.4915 | 0.4934 | 1.1374 | 0.039* | |
C5 | 0.2042 (7) | 0.42873 (18) | 1.1120 (2) | 0.0374 (8) | |
Br1 | 0.28023 (10) | 0.40737 (3) | 0.98769 (3) | 0.0688 (2) | |
C6 | 0.0060 (6) | 0.39716 (18) | 1.1491 (3) | 0.0381 (8) | |
H6 | −0.0934 | 0.3675 | 1.1113 | 0.046* | |
C7 | −0.0482 (6) | 0.40850 (17) | 1.2412 (3) | 0.0351 (8) | |
H7 | −0.1826 | 0.3868 | 1.2675 | 0.042* | |
C8 | 0.1004 (5) | 0.45251 (16) | 1.2930 (2) | 0.0283 (7) | |
N2 | 0.6012 (4) | 0.56591 (13) | 1.32193 (18) | 0.0256 (5) | |
N3 | 0.6730 (5) | 0.60375 (13) | 1.39722 (17) | 0.0260 (5) | |
H3 | 0.6004 | 0.5976 | 1.4497 | 0.031* | |
C9 | 0.8582 (5) | 0.65192 (15) | 1.3933 (2) | 0.0245 (6) | |
S1 | 0.91317 (16) | 0.70212 (5) | 1.48665 (6) | 0.0369 (2) | |
N4 | 0.9676 (4) | 0.65094 (13) | 1.31167 (17) | 0.0260 (5) | |
H4A | 0.9123 | 0.6186 | 1.2721 | 0.031* | |
C10 | 1.1570 (5) | 0.69326 (15) | 1.2785 (2) | 0.0241 (6) | |
C11 | 1.3184 (5) | 0.72936 (16) | 1.3353 (2) | 0.0270 (6) | |
H11 | 1.3035 | 0.7283 | 1.4005 | 0.032* | |
C12 | 1.5030 (6) | 0.76727 (17) | 1.2954 (3) | 0.0348 (7) | |
H12 | 1.6135 | 0.7922 | 1.3340 | 0.042* | |
C13 | 1.5277 (6) | 0.76906 (19) | 1.2009 (3) | 0.0373 (8) | |
H13 | 1.6537 | 0.7952 | 1.1745 | 0.045* | |
C14 | 1.3681 (6) | 0.7327 (2) | 1.1451 (2) | 0.0410 (8) | |
H14 | 1.3847 | 0.7335 | 1.0799 | 0.049* | |
C15 | 1.1830 (6) | 0.6949 (2) | 1.1832 (2) | 0.0355 (8) | |
H15 | 1.0736 | 0.6700 | 1.1440 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0231 (15) | 0.0324 (14) | 0.0385 (15) | −0.0034 (10) | 0.0124 (11) | 0.0030 (11) |
C1 | 0.0216 (17) | 0.0269 (15) | 0.0367 (18) | 0.0058 (11) | 0.0065 (13) | 0.0074 (12) |
O1 | 0.0272 (13) | 0.0369 (12) | 0.0312 (12) | 0.0018 (9) | 0.0096 (9) | 0.0014 (9) |
C2 | 0.0189 (16) | 0.0248 (14) | 0.0307 (16) | 0.0013 (11) | 0.0065 (12) | 0.0032 (11) |
C3 | 0.0218 (17) | 0.0222 (14) | 0.0344 (17) | −0.0003 (11) | 0.0059 (12) | 0.0043 (12) |
C4 | 0.0320 (19) | 0.0305 (16) | 0.0350 (18) | −0.0055 (13) | 0.0058 (14) | 0.0036 (13) |
C5 | 0.047 (2) | 0.0325 (17) | 0.0329 (18) | −0.0087 (15) | 0.0038 (15) | 0.0041 (13) |
Br1 | 0.1019 (4) | 0.0700 (3) | 0.0350 (2) | −0.0476 (3) | 0.0120 (2) | −0.00818 (19) |
C6 | 0.036 (2) | 0.0311 (17) | 0.046 (2) | −0.0080 (14) | −0.0056 (15) | 0.0015 (14) |
C7 | 0.0242 (18) | 0.0318 (16) | 0.050 (2) | −0.0061 (13) | 0.0075 (14) | 0.0040 (14) |
C8 | 0.0219 (17) | 0.0252 (14) | 0.0380 (18) | 0.0012 (11) | 0.0067 (13) | 0.0059 (12) |
N2 | 0.0233 (14) | 0.0235 (12) | 0.0300 (14) | 0.0007 (10) | 0.0042 (10) | 0.0025 (10) |
N3 | 0.0251 (14) | 0.0289 (13) | 0.0245 (13) | −0.0019 (10) | 0.0072 (10) | 0.0029 (10) |
C9 | 0.0223 (16) | 0.0254 (14) | 0.0259 (15) | 0.0028 (11) | 0.0025 (12) | 0.0038 (11) |
S1 | 0.0411 (5) | 0.0419 (5) | 0.0279 (4) | −0.0053 (4) | 0.0071 (3) | −0.0087 (3) |
N4 | 0.0242 (14) | 0.0281 (12) | 0.0260 (13) | −0.0050 (10) | 0.0048 (10) | −0.0026 (10) |
C10 | 0.0208 (16) | 0.0257 (14) | 0.0258 (15) | 0.0011 (11) | 0.0024 (11) | 0.0032 (11) |
C11 | 0.0240 (17) | 0.0273 (15) | 0.0297 (16) | 0.0001 (12) | −0.0003 (12) | −0.0007 (12) |
C12 | 0.0236 (18) | 0.0298 (16) | 0.051 (2) | −0.0014 (12) | −0.0024 (14) | 0.0018 (14) |
C13 | 0.0224 (18) | 0.0391 (18) | 0.051 (2) | −0.0013 (13) | 0.0071 (15) | 0.0145 (15) |
C14 | 0.031 (2) | 0.062 (2) | 0.0303 (18) | −0.0024 (16) | 0.0070 (14) | 0.0084 (16) |
C15 | 0.0253 (18) | 0.053 (2) | 0.0278 (17) | −0.0086 (15) | 0.0007 (13) | −0.0007 (14) |
N1—C1 | 1.355 (4) | N3—C9 | 1.379 (4) |
N1—C8 | 1.405 (4) | N3—H3 | 0.8800 |
N1—H1 | 0.8800 | C9—N4 | 1.347 (4) |
C1—O1 | 1.238 (4) | C9—S1 | 1.660 (3) |
C1—C2 | 1.507 (4) | N4—C10 | 1.421 (4) |
C2—N2 | 1.292 (4) | N4—H4A | 0.8800 |
C2—C3 | 1.456 (4) | C10—C11 | 1.388 (4) |
C3—C4 | 1.382 (5) | C10—C15 | 1.391 (4) |
C3—C8 | 1.408 (4) | C11—C12 | 1.397 (5) |
C4—C5 | 1.387 (5) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—C13 | 1.378 (5) |
C5—C6 | 1.387 (5) | C12—H12 | 0.9500 |
C5—Br1 | 1.899 (4) | C13—C14 | 1.375 (5) |
C6—C7 | 1.390 (5) | C13—H13 | 0.9500 |
C6—H6 | 0.9500 | C14—C15 | 1.386 (5) |
C7—C8 | 1.380 (5) | C14—H14 | 0.9500 |
C7—H7 | 0.9500 | C15—H15 | 0.9500 |
N2—N3 | 1.349 (4) | ||
C1—N1—C8 | 111.4 (3) | N2—N3—C9 | 121.1 (2) |
C1—N1—H1 | 124.3 | N2—N3—H3 | 119.4 |
C8—N1—H1 | 124.3 | C9—N3—H3 | 119.4 |
O1—C1—N1 | 127.1 (3) | N4—C9—N3 | 113.3 (3) |
O1—C1—C2 | 126.5 (3) | N4—C9—S1 | 129.7 (2) |
N1—C1—C2 | 106.3 (3) | N3—C9—S1 | 117.0 (2) |
N2—C2—C3 | 126.3 (3) | C9—N4—C10 | 131.0 (3) |
N2—C2—C1 | 127.5 (3) | C9—N4—H4A | 114.5 |
C3—C2—C1 | 106.2 (3) | C10—N4—H4A | 114.5 |
C4—C3—C8 | 120.4 (3) | C11—C10—C15 | 119.5 (3) |
C4—C3—C2 | 133.0 (3) | C11—C10—N4 | 124.0 (3) |
C8—C3—C2 | 106.6 (3) | C15—C10—N4 | 116.4 (3) |
C3—C4—C5 | 117.4 (3) | C10—C11—C12 | 119.2 (3) |
C3—C4—H4 | 121.3 | C10—C11—H11 | 120.4 |
C5—C4—H4 | 121.3 | C12—C11—H11 | 120.4 |
C6—C5—C4 | 122.3 (3) | C13—C12—C11 | 121.1 (3) |
C6—C5—Br1 | 118.9 (3) | C13—C12—H12 | 119.5 |
C4—C5—Br1 | 118.6 (3) | C11—C12—H12 | 119.5 |
C5—C6—C7 | 120.5 (3) | C14—C13—C12 | 119.3 (3) |
C5—C6—H6 | 119.7 | C14—C13—H13 | 120.3 |
C7—C6—H6 | 119.7 | C12—C13—H13 | 120.3 |
C8—C7—C6 | 117.5 (3) | C13—C14—C15 | 120.6 (3) |
C8—C7—H7 | 121.2 | C13—C14—H14 | 119.7 |
C6—C7—H7 | 121.2 | C15—C14—H14 | 119.7 |
C7—C8—N1 | 128.8 (3) | C14—C15—C10 | 120.2 (3) |
C7—C8—C3 | 121.8 (3) | C14—C15—H15 | 119.9 |
N1—C8—C3 | 109.4 (3) | C10—C15—H15 | 119.9 |
C2—N2—N3 | 117.5 (3) | ||
C8—N1—C1—O1 | 177.1 (3) | C4—C3—C8—C7 | 1.0 (5) |
C8—N1—C1—C2 | −2.2 (3) | C2—C3—C8—C7 | 179.0 (3) |
O1—C1—C2—N2 | 1.1 (5) | C4—C3—C8—N1 | −179.2 (3) |
N1—C1—C2—N2 | −179.6 (3) | C2—C3—C8—N1 | −1.2 (3) |
O1—C1—C2—C3 | −177.9 (3) | C3—C2—N2—N3 | 178.6 (3) |
N1—C1—C2—C3 | 1.5 (3) | C1—C2—N2—N3 | −0.2 (4) |
N2—C2—C3—C4 | −1.5 (5) | C2—N2—N3—C9 | −173.3 (3) |
C1—C2—C3—C4 | 177.5 (3) | N2—N3—C9—N4 | −6.0 (4) |
N2—C2—C3—C8 | −179.2 (3) | N2—N3—C9—S1 | 173.5 (2) |
C1—C2—C3—C8 | −0.2 (3) | N3—C9—N4—C10 | 177.3 (3) |
C8—C3—C4—C5 | −0.2 (5) | S1—C9—N4—C10 | −2.2 (5) |
C2—C3—C4—C5 | −177.6 (3) | C9—N4—C10—C11 | 21.9 (5) |
C3—C4—C5—C6 | −0.3 (5) | C9—N4—C10—C15 | −161.0 (3) |
C3—C4—C5—Br1 | −176.8 (2) | C15—C10—C11—C12 | 0.6 (4) |
C4—C5—C6—C7 | 0.1 (6) | N4—C10—C11—C12 | 177.7 (3) |
Br1—C5—C6—C7 | 176.6 (3) | C10—C11—C12—C13 | −0.3 (5) |
C5—C6—C7—C8 | 0.6 (5) | C11—C12—C13—C14 | −0.2 (5) |
C6—C7—C8—N1 | 179.0 (3) | C12—C13—C14—C15 | 0.4 (5) |
C6—C7—C8—C3 | −1.2 (5) | C13—C14—C15—C10 | −0.1 (6) |
C1—N1—C8—C7 | −178.0 (3) | C11—C10—C15—C14 | −0.4 (5) |
C1—N1—C8—C3 | 2.2 (3) | N4—C10—C15—C14 | −177.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 2.00 | 2.858 (3) | 166 |
N3—H3···O1 | 0.88 | 2.07 | 2.762 (3) | 135 |
N4—H4A···N2 | 0.88 | 2.16 | 2.613 (4) | 112 |
Symmetry code: (i) −x, −y+1, −z+3. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 2.00 | 2.858 (3) | 165.6 |
N3—H3···O1 | 0.88 | 2.07 | 2.762 (3) | 134.8 |
N4—H4A···N2 | 0.88 | 2.16 | 2.613 (4) | 111.8 |
Symmetry code: (i) −x, −y+1, −z+3. |
Acknowledgements
We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr. Wolfgang Bensch for access to his experimental facilities. We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects. KCTB thanks FAPEAM for the award of a scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801. CrossRef Google Scholar
Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527–3530. Web of Science CrossRef PubMed CAS Google Scholar
Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazone derivatives have a wide range of biological properties. For example, isatin-based synthetic thiosemicarbazones show pharmacological activity against cruzain, falcipain-2 and rhodesain (Chiyanzu et al., 2003). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of 5-bromoisatin-3-(4-phenyl)thiosemicarbazone. In the title compound, in which the molecular structure matches the asymmetric unit, the maximal deviation from the least squares plane through all non-hydrogen atoms amounts to 0.2917 (33) Å for C14. The molecule shows an E conformation for the atoms about the N2—N3 bond (Fig. 1). The E conformation for the thiosemicarbazone fragment is also observed in the crystal structure of the 5-bromoisatin-3-thiosemicarbazone acetonitrile monosolvate (Pederzolli et al., 2011) and is related with the intramolecular N—H···N and N—H···O hydrogen-bonding interactions (Fig. 1; Table 1). The mean deviations from the least squares planes for the 5-bromoisatin, C1—C8/Br1/O1 and the terminal aromatic ring, C10—C15, fragments amounts to 0.0459 (19) Å for O1 and 0.0032 (22) Å for C10, respectively, and the dihedral angle between the two planes is 13.63 (14)°. The molecules are connected via centrosymmetric pairs of N—H···O interactions (Fig. 2; Table 1). Additionally, π–π-interactions are observed, with C···C distances of 3.236 (8), 3.351 (4), 3.451 (5) and 3.471 (7) Å. The molecules are arranged in layers and are stacked into the direction of the crystallographic a-axis (Fig. 3).