organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1286-o1287

5-(4-Chloro­phen­yl)-7-(4-methyl­phen­yl)-4-(pyrrolidin-1-yl)-7H-pyrrolo­[2,3-d]pyrimidine

aDepartment of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India, and bOrganic Syntheses Laboratory, M. G. Science Institute, Navarangpura, Ahmedabad 380 009, India
*Correspondence e-mail: u_h_patel@yahoo.com

(Received 9 March 2013; accepted 10 July 2013; online 20 July 2013)

The title compound, C23H21ClN4, contains two molecules (A and B) in the asymmetric unit, which are related to one another by a pseudo-inversion center. The non-aromatic pyrrolidine ring in each independent mol­ecule adopts a half-chair conformation; the ring puckering parameters are θ = 0.407 (3) Å and φ = 270.5 (4)°, and the pseudo-rotation parameters are ρ = 72.5 (3)° and τ = 42.2 (2)° for an N—C bond of molecule A, and the corresponding values are 0.415 (3) Å, 271.6 (4)°, 73.6 (3)° and 42.6 (2)° for molecule B. The dihedral angles between the central fused-ring system and the substituted chlorophenyl and methylphenyl rings are 66.35 and 45.59°, respectively, for molecule A, and 64.51 and 41.89° for molecule B. The geometry of all four intramolecular C—H⋯π interactions are of type III. ππ interactions involving the centroids of symmetry-related pyrrole rings of molecule B are 4.390 Å, contributing further to the stability of the molecule.

Related literature

For background to and the biological activity of pyrrolo­[2,3-d]pyrimidines, see: Chadwick (1990[Chadwick, D. J. (1990). The Chemistry of Heterocyclic Compounds, Vol. 48, edited by R. A. Jones, pp. 1-104. New York: Willey & Sons.]); Hulzenlaub et al. (1972[Hulzenlaub, W., Tolman, R. L. & Robins, R. K. (1972). J. Med. Chem. 15, 879-883.]); Ohgi et al. (1979[Ohgi, T., Kondo, T. & Goto, T. (1979). J. Am. Chem. Soc. 101, 3629-3633.]); Smith et al. (1972[Smith, C. W., Sidwell, R. W., Robins, R. K. & Tolman, R. L. (1972). J. Med. Chem. 15, 883-887.]). For our crystallographic investigations of heterocyclic compounds, see: Patel et al. (2007[Patel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337-o339.], 2012[Patel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, o2926-o2927.]). For C—H⋯π inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21ClN4

  • Mr = 388.72

  • Triclinic, [P \overline 1]

  • a = 8.967 (3) Å

  • b = 15.367 (5) Å

  • c = 15.960 (2) Å

  • α = 69.210 (17)°

  • β = 75.653 (16)°

  • γ = 76.52 (3)°

  • V = 1966.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.951, Tmax = 0.959

  • 7458 measured reflections

  • 6864 independent reflections

  • 3569 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections every 1 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.01

  • 6864 reflections

  • 507 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N6/C5/C4/C9/N8/C7, N34/C33/C32/C37/N36/C35, C17–C22 and C45–C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg1i 0.93 2.68 3.483 (3) 144
C46—H46⋯Cg2ii 0.93 2.73 3.549 (3) 147
C25—H251⋯Cg3 0.97 2.79 3.462 (3) 127
C53—H531⋯Cg4 0.97 2.84 3.506 (3) 127
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrrolo[2,3-d]pyrimidine belongs to an important class of biologically active heterocyclic compounds, structurally closely related to nucleosides and some antibiotics (Chadwick, 1990; Ohgi et al., 1979). These group of compounds are very well recognized for their biological activities such as anti-tumor, anti-allergic, anti-viral and anti-inflammatory (Hulzenlaub et al., 1972; Smith et al., 1972). As a part of a continuation of our crystallographic investigations of heterocyclic compounds (Patel et al., 2007; Patel et al., 2012), we now report herein the supra-molecular structure of a fused pyrrolo[2,3-d]pyrimidine derivative.

Two independent molecules A and B of the asymmetric unit [Fig.1] have similar conformations. The fused pyrrolo pyrimidine rings of A and B in the title compound are practically planar with a dihedral angle of 4.11 (16)° in A and 3.00 (17)° in B. The observed bond lengths and bond angles indicate a significant amount of strain arising due to fusion. A close observation of the molecular geometry: bond lengths, bond angles including torsional angles of both molecules A and B reveals that two independent molecules of the asymmetric unit are related to each other by a pseudoinversion center. The aromatic pyrrolodine ring of both molecules is puckered to adopt half chair conformation. The ring puckering parameters for mol A corresponding to the atom sequence N24—C25—C26—C27—C28 (Cremer et al., 1975) are Theta = 0.407 (3)° and Phi = 270.5 (4)° and pseudo rotation parameters are Rho = 72.5 (3)° and t = 42.2 (2)° for N24—C25 bond and those of molecule B are Theta = 0.415 (3)° and Phi = 271.6 (4)° for the atom sequence N52—C53—C54—C55—C56 and the pseudo rotation parameters Rho = 73.6 (3)° and t = 42.6 (2)° for N52—C53 bond confirming a half chair conformation. The conformation of the substituents chlorophenyl, methylphenyl and pyrrolodine of both molecules are very similar. Torsional angles C4—C5—N24—C28 (177.9 (3)°) and C32—C33—N52—C53 (177.9 (3)°) confirm an extended conformation of the pyrrolodine ring with respect to fused ring system where as chlorophenyl ring of both molecules indicates a maximum turn, with dihedral angle of 66.35° (A)and 64.51°(B) between the said ring and fused system. The tolyl ring of both molecules are twisted by 44.59° and 41.89° for A and B, respectively.

In the absence of potential donor-acceptor groups in these heterocyclic compounds, the stability of supra-molecular structure is mainly due to relatively weak but significant C—H···π, ππ interactions. Molecule A and its centro-symmetry related pair gets superimposed centering at 0,0,1. The molecular aggregate so formed are held together by two pairs of C—H···π hydrogen bonds [Fig.2], one intra involving C25—H251 with Cg(3) (the centroid of the ring C17—C18—C19—C20—C21—C22) and the other intermolecular involving C18—H18 with Cg(1) (the centroid of the ring N6—C5—C4—C9—N8—C7) at 1-x, -y, 1-z. The C—H···π interactions involving molecule B and its symmetry related partner is very similar to that of molecule A but this time centered at 0,1,0. The intramolecular hydrogen bond involves C53—H531 to Cg(4) (the centroid of the ring C45—C46—C47—C48—C49—C50) and the intermolecular hydrogen bond is between C46—H46 with Cg(2) (the centroid of the ring N34—C33—C32—C37—N36—C35) at -x, 1 - y, 2 - z. The details of the geometry of these interation is in Table 1. The striking feature of the C—H···π hydrogen bond is that these interactions do not interlink molecules A and B, but it involves only individual molecules. The interactions involve the same group of moieties of the two molecules and is of same length. All of the four C—H···π interactions are of type-III as described by Malone et al., 1997, indicating an exact similarities in the C—H···π interactions. In addition, direction specific ππ interaction involving symmetry related pyrrole ring of molecule B at -1-x, 1-y, 2-z contribute further to the stability of molecular packing along the [100] direction; their centroids are seperated by 4.390 Å [Fig.3]. However,this interaction is absent in molecule A. In the molecule, the closest approach distance between two symmetry (x - 1,-y + 1, Z+1) related chlorines is 3.883 (2) Å.

Related literature top

For background to and the biological activity of pyrrolo[2,3-d]pyrimidines, see: Chadwick (1990); Hulzenlaub et al. (1972); Ohgi et al. (1979); Smith et al. (1972). For our crystallographic investigations of heterocyclic compounds, see: Patel et al. (2007, 2012). For C—H···π interactions, see: Malone et al. (1997). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A uniform mixture of 4-chloro-5-(4-Chlorophenyl)-7-(4-methylphenyl)-7H- pyrrolo[2,3-d]pyrimidine and pyrrolodine was heated in an oil bath at 80–90° C with stirring. The heating was continued till the starting compound was consumed. The pH of reaction mixture was maintained and the final product was separated from a mixture of ethanol and N,N-dimethylformamide.

Refinement top

All the H atoms were placed in geometrically idealized positions with C—H distances of 0.96 Å (methyl) or 0.93 Å (aromatic) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the phenyl H atoms and Uiso(H) = 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing the centrosymmetry related molecule A and molecule B which interlink by two pair of similar C—H···π hydrogen bond interaction, H-atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure Packing view of the molecule B along a axis showing the ππ interactions, H-atoms have been omitted for clarity.
5-(4-Chlorophenyl)-7-(4-methylphenyl)-4-(pyrrolidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine top
Crystal data top
C23H21ClN4Z = 4
Mr = 388.72F(000) = 816
Triclinic, P1Dx = 1.313 Mg m3
Dm = 1.310 Mg m3
Dm measured by floatation method
Hall symbol: -P 1Melting point: 433 K
a = 8.967 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.367 (5) ÅCell parameters from 25 reflections
c = 15.960 (2) Åθ = 10–25°
α = 69.210 (17)°µ = 0.21 mm1
β = 75.653 (16)°T = 293 K
γ = 76.52 (3)°Needle, white
V = 1966.2 (10) Å30.3 × 0.2 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3569 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1718
Tmin = 0.951, Tmax = 0.959l = 1818
7458 measured reflections2 standard reflections every 1 min
6909 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.227P]
where P = (Fo2 + 2Fc2)/3
6864 reflections(Δ/σ)max = 0.001
507 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H21ClN4γ = 76.52 (3)°
Mr = 388.72V = 1966.2 (10) Å3
Triclinic, P1Z = 4
a = 8.967 (3) ÅMo Kα radiation
b = 15.367 (5) ŵ = 0.21 mm1
c = 15.960 (2) ÅT = 293 K
α = 69.210 (17)°0.3 × 0.2 × 0.2 mm
β = 75.653 (16)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3569 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.951, Tmax = 0.9592 standard reflections every 1 min
7458 measured reflections intensity decay: none
6909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
6864 reflectionsΔρmin = 0.25 e Å3
507 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2724 (3)0.05271 (17)0.38941 (16)0.0460 (7)
H20.26530.11140.34480.055*
C30.2482 (3)0.03931 (16)0.48054 (16)0.0411 (6)
C40.2704 (3)0.06207 (16)0.52460 (16)0.0396 (6)
C50.2610 (3)0.12783 (17)0.61396 (17)0.0446 (6)
C70.3092 (3)0.24738 (18)0.55056 (18)0.0528 (7)
H70.32040.31200.56140.063*
C90.3067 (3)0.10308 (17)0.45445 (16)0.0400 (6)
C100.3198 (3)0.04409 (17)0.28547 (16)0.0440 (6)
C110.4300 (3)0.11218 (19)0.25792 (18)0.0569 (8)
H110.49960.15130.29550.068*
C120.4371 (4)0.12247 (19)0.17456 (19)0.0641 (8)
H120.51100.16940.15720.077*
C130.3380 (4)0.0653 (2)0.11640 (18)0.0593 (8)
C140.2295 (4)0.0028 (2)0.14461 (19)0.0673 (9)
H140.16150.04260.10630.081*
C150.2187 (3)0.0137 (2)0.22876 (17)0.0576 (8)
H150.14340.05980.24670.069*
C160.3471 (5)0.0769 (2)0.02497 (19)0.0868 (11)
H1610.40470.13780.02430.130*
H1620.39860.02870.02230.130*
H1630.24370.07160.01490.130*
C170.2019 (3)0.11753 (16)0.52038 (15)0.0385 (6)
C180.3034 (3)0.17926 (17)0.50595 (17)0.0469 (6)
H180.40130.17240.46970.056*
C190.2609 (4)0.25081 (18)0.54483 (18)0.0547 (7)
H190.33040.29110.53570.066*
C200.1156 (4)0.26198 (18)0.59692 (17)0.0526 (7)
C210.0117 (3)0.20315 (19)0.61140 (18)0.0542 (7)
H210.08680.21140.64660.065*
C220.0553 (3)0.13137 (17)0.57289 (17)0.0464 (6)
H220.01510.09150.58240.056*
C250.2933 (3)0.02809 (17)0.70083 (16)0.0502 (7)
H2510.21010.02490.70180.060*
H2520.37760.00730.65100.060*
C260.3500 (3)0.06977 (19)0.79062 (17)0.0575 (8)
H2610.34410.02150.81790.069*
H2620.45650.10250.78320.069*
C270.2377 (4)0.1378 (2)0.84733 (17)0.0616 (8)
H2710.27940.18430.89900.074*
H2720.13750.10480.86900.074*
C280.2244 (4)0.1824 (2)0.78017 (17)0.0687 (9)
H2810.30790.23510.77820.082*
H2820.12510.20460.79590.082*
C300.2721 (3)0.44162 (18)1.08795 (17)0.0534 (7)
H300.26310.38361.13350.064*
C310.2150 (3)0.45403 (17)0.99830 (17)0.0468 (7)
C320.2535 (3)0.55481 (16)0.95198 (16)0.0430 (6)
C330.2305 (3)0.62018 (17)0.86288 (17)0.0458 (6)
C350.3802 (3)0.73629 (19)0.92152 (19)0.0600 (8)
H350.42760.79910.90880.072*
C370.3365 (3)0.59490 (17)1.02000 (16)0.0446 (6)
C380.4294 (3)0.53417 (18)1.18981 (16)0.0468 (7)
C390.4229 (4)0.60878 (19)1.21646 (18)0.0626 (8)
H390.36270.65461.17870.075*
C400.5069 (4)0.6149 (2)1.3000 (2)0.0719 (9)
H400.50410.66641.31700.086*
C410.5943 (4)0.5476 (2)1.35894 (19)0.0617 (8)
C420.5965 (3)0.4730 (2)1.33070 (19)0.0637 (8)
H420.65380.42601.36930.076*
C430.5163 (3)0.4657 (2)1.24665 (17)0.0552 (7)
H430.52110.41511.22890.066*
C440.6872 (4)0.5557 (3)1.4501 (2)0.0919 (11)
H4410.78900.54021.45920.138*
H4420.69710.61911.45060.138*
H4430.63420.51301.49810.138*
C450.1389 (3)0.37392 (16)0.96308 (16)0.0426 (6)
C460.0005 (3)0.32038 (18)0.98691 (17)0.0496 (7)
H460.04620.33501.02510.060*
C470.0700 (3)0.24517 (19)0.95481 (19)0.0592 (8)
H470.16400.20990.97080.071*
C480.0001 (4)0.22310 (19)0.89926 (19)0.0562 (7)
C490.1395 (4)0.27394 (19)0.87578 (18)0.0563 (7)
H490.18710.25810.83880.068*
C500.2080 (3)0.34898 (18)0.90797 (17)0.0508 (7)
H500.30260.38360.89240.061*
C530.0106 (3)0.52431 (18)0.78628 (17)0.0521 (7)
H5310.04380.46880.78580.062*
H5320.03900.50770.83860.062*
C540.0984 (3)0.56544 (19)0.69815 (17)0.0571 (7)
H5410.16550.60140.70710.069*
H5420.16250.51630.67420.069*
C550.0132 (3)0.62861 (19)0.63545 (17)0.0574 (7)
H5510.06030.59220.61330.069*
H5520.03860.67460.58400.069*
C560.1328 (3)0.67548 (19)0.69846 (16)0.0576 (8)
H5610.09870.72990.70080.069*
H5620.23300.69520.67890.069*
Cl230.06434 (12)0.35242 (6)0.64549 (6)0.0915 (3)
Cl510.08881 (13)0.12936 (6)0.85807 (7)0.1017 (4)
N10.3089 (2)0.03272 (14)0.37193 (13)0.0444 (5)
N60.2761 (3)0.22063 (15)0.62491 (14)0.0556 (6)
N80.3286 (2)0.19553 (14)0.46364 (14)0.0461 (5)
N240.2366 (3)0.10608 (14)0.69211 (13)0.0507 (6)
N290.3456 (2)0.52587 (14)1.10356 (13)0.0497 (6)
N340.3012 (3)0.71100 (15)0.84872 (15)0.0586 (6)
N360.4013 (3)0.68604 (15)1.00855 (14)0.0519 (6)
N520.1417 (3)0.60092 (14)0.78740 (13)0.0492 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0559 (17)0.0360 (14)0.0417 (16)0.0042 (12)0.0103 (13)0.0080 (12)
C30.0426 (15)0.0390 (14)0.0401 (15)0.0051 (12)0.0104 (12)0.0096 (12)
C40.0412 (15)0.0386 (14)0.0401 (14)0.0090 (11)0.0088 (11)0.0111 (12)
C50.0488 (17)0.0395 (15)0.0428 (15)0.0103 (12)0.0073 (12)0.0085 (12)
C70.070 (2)0.0363 (15)0.0526 (18)0.0150 (14)0.0114 (15)0.0106 (14)
C90.0386 (15)0.0399 (15)0.0418 (15)0.0072 (12)0.0102 (12)0.0105 (12)
C100.0522 (17)0.0433 (15)0.0341 (14)0.0117 (13)0.0034 (12)0.0099 (12)
C110.068 (2)0.0485 (17)0.0490 (17)0.0010 (15)0.0079 (15)0.0168 (14)
C120.089 (2)0.0490 (18)0.0499 (18)0.0106 (17)0.0008 (17)0.0198 (15)
C130.079 (2)0.0597 (19)0.0394 (16)0.0269 (17)0.0012 (15)0.0146 (15)
C140.075 (2)0.080 (2)0.0440 (17)0.0086 (18)0.0185 (15)0.0135 (16)
C150.0596 (19)0.0644 (19)0.0436 (16)0.0016 (15)0.0096 (14)0.0161 (14)
C160.131 (3)0.093 (3)0.0460 (18)0.041 (2)0.0030 (19)0.0286 (17)
C170.0438 (16)0.0337 (13)0.0340 (13)0.0030 (12)0.0123 (12)0.0044 (11)
C180.0463 (16)0.0452 (15)0.0438 (15)0.0098 (13)0.0031 (12)0.0094 (12)
C190.070 (2)0.0444 (16)0.0549 (17)0.0174 (15)0.0123 (16)0.0162 (14)
C200.068 (2)0.0459 (16)0.0412 (15)0.0020 (15)0.0100 (14)0.0153 (13)
C210.0524 (18)0.0537 (17)0.0496 (16)0.0007 (15)0.0036 (14)0.0178 (14)
C220.0432 (16)0.0434 (15)0.0500 (16)0.0067 (12)0.0097 (13)0.0108 (13)
C250.0644 (19)0.0439 (15)0.0422 (15)0.0078 (13)0.0169 (13)0.0092 (12)
C260.072 (2)0.0575 (17)0.0426 (16)0.0152 (15)0.0180 (14)0.0070 (14)
C270.073 (2)0.0655 (19)0.0402 (16)0.0132 (16)0.0077 (15)0.0105 (14)
C280.104 (3)0.0559 (18)0.0418 (17)0.0307 (18)0.0082 (16)0.0021 (14)
C300.0649 (19)0.0356 (15)0.0475 (17)0.0055 (13)0.0038 (14)0.0043 (12)
C310.0496 (17)0.0414 (15)0.0419 (15)0.0075 (13)0.0030 (13)0.0074 (12)
C320.0404 (15)0.0388 (14)0.0436 (15)0.0018 (12)0.0061 (12)0.0096 (12)
C330.0493 (17)0.0409 (15)0.0430 (15)0.0017 (13)0.0141 (13)0.0081 (12)
C350.064 (2)0.0447 (17)0.0566 (19)0.0113 (14)0.0131 (15)0.0095 (15)
C370.0409 (15)0.0409 (15)0.0438 (15)0.0028 (12)0.0064 (12)0.0068 (13)
C380.0500 (17)0.0459 (16)0.0360 (14)0.0002 (13)0.0080 (13)0.0077 (12)
C390.085 (2)0.0423 (16)0.0510 (18)0.0099 (15)0.0010 (16)0.0106 (14)
C400.100 (3)0.0532 (19)0.061 (2)0.0037 (18)0.0095 (19)0.0247 (16)
C410.067 (2)0.0632 (19)0.0464 (17)0.0006 (16)0.0076 (15)0.0155 (15)
C420.063 (2)0.074 (2)0.0491 (18)0.0220 (17)0.0028 (15)0.0123 (16)
C430.0632 (19)0.0609 (18)0.0430 (16)0.0175 (15)0.0051 (14)0.0165 (14)
C440.103 (3)0.106 (3)0.058 (2)0.001 (2)0.0004 (19)0.036 (2)
C450.0447 (16)0.0350 (14)0.0409 (14)0.0081 (12)0.0021 (12)0.0060 (11)
C460.0507 (17)0.0481 (16)0.0495 (16)0.0067 (14)0.0093 (13)0.0153 (13)
C470.0533 (18)0.0490 (17)0.0660 (19)0.0018 (14)0.0098 (15)0.0140 (15)
C480.067 (2)0.0441 (16)0.0557 (17)0.0085 (15)0.0030 (15)0.0188 (14)
C490.069 (2)0.0515 (17)0.0519 (17)0.0158 (16)0.0115 (15)0.0165 (14)
C500.0498 (17)0.0469 (16)0.0502 (16)0.0064 (13)0.0124 (13)0.0073 (13)
C530.0548 (18)0.0440 (15)0.0471 (16)0.0037 (13)0.0021 (13)0.0097 (13)
C540.0581 (19)0.0569 (17)0.0463 (16)0.0085 (14)0.0030 (14)0.0090 (14)
C550.0619 (19)0.0650 (19)0.0410 (15)0.0142 (15)0.0069 (14)0.0107 (14)
C560.070 (2)0.0535 (17)0.0388 (15)0.0017 (15)0.0145 (14)0.0039 (13)
Cl230.1234 (8)0.0718 (6)0.0892 (6)0.0090 (5)0.0045 (6)0.0513 (5)
Cl510.1162 (8)0.0781 (6)0.1212 (8)0.0104 (6)0.0169 (6)0.0636 (6)
N10.0531 (14)0.0415 (12)0.0384 (12)0.0056 (10)0.0099 (10)0.0124 (10)
N60.0789 (17)0.0413 (13)0.0460 (14)0.0189 (12)0.0083 (12)0.0091 (11)
N80.0534 (14)0.0403 (12)0.0467 (13)0.0121 (10)0.0101 (11)0.0126 (11)
N240.0726 (16)0.0429 (13)0.0360 (12)0.0179 (11)0.0061 (11)0.0087 (10)
N290.0565 (15)0.0397 (12)0.0412 (13)0.0012 (11)0.0010 (11)0.0083 (10)
N340.0714 (17)0.0448 (14)0.0460 (13)0.0102 (12)0.0124 (12)0.0089 (11)
N360.0546 (15)0.0433 (13)0.0450 (14)0.0066 (11)0.0098 (11)0.0075 (11)
N520.0589 (15)0.0413 (12)0.0367 (12)0.0006 (11)0.0073 (11)0.0061 (10)
Geometric parameters (Å, º) top
C2—C31.363 (3)C30—C311.355 (3)
C2—N11.387 (3)C30—N291.387 (3)
C2—H20.9300C30—H300.9300
C3—C41.452 (3)C31—C321.459 (3)
C3—C171.483 (3)C31—C451.485 (3)
C4—C91.407 (3)C32—C371.404 (3)
C4—C51.421 (3)C32—C331.418 (3)
C5—N61.352 (3)C33—N341.355 (3)
C5—N241.357 (3)C33—N521.357 (3)
C7—N81.323 (3)C35—N361.318 (3)
C7—N61.334 (3)C35—N341.337 (3)
C7—H70.9300C35—H350.9300
C9—N81.347 (3)C37—N361.351 (3)
C9—N11.375 (3)C37—N291.376 (3)
C10—C151.375 (4)C38—C391.374 (4)
C10—C111.376 (3)C38—C431.375 (4)
C10—N11.429 (3)C38—N291.430 (3)
C11—C121.379 (4)C39—C401.383 (4)
C11—H110.9300C39—H390.9300
C12—C131.374 (4)C40—C411.375 (4)
C12—H120.9300C40—H400.9300
C13—C141.374 (4)C41—C421.378 (4)
C13—C161.512 (4)C41—C441.519 (4)
C14—C151.389 (4)C42—C431.386 (4)
C14—H140.9300C42—H420.9300
C15—H150.9300C43—H430.9300
C16—H1610.9600C44—H4410.9600
C16—H1620.9600C44—H4420.9600
C16—H1630.9600C44—H4430.9600
C17—C221.387 (3)C45—C461.377 (3)
C17—C181.388 (3)C45—C501.387 (3)
C18—C191.382 (3)C46—C471.385 (4)
C18—H180.9300C46—H460.9300
C19—C201.370 (4)C47—C481.372 (4)
C19—H190.9300C47—H470.9300
C20—C211.370 (4)C48—C491.374 (4)
C20—Cl231.742 (3)C48—Cl511.737 (3)
C21—C221.381 (3)C49—C501.380 (4)
C21—H210.9300C49—H490.9300
C22—H220.9300C50—H500.9300
C25—N241.467 (3)C53—N521.458 (3)
C25—C261.510 (3)C53—C541.520 (3)
C25—H2510.9700C53—H5310.9700
C25—H2520.9700C53—H5320.9700
C26—C271.514 (4)C54—C551.516 (4)
C26—H2610.9700C54—H5410.9700
C26—H2620.9700C54—H5420.9700
C27—C281.503 (4)C55—C561.517 (4)
C27—H2710.9700C55—H5510.9700
C27—H2720.9700C55—H5520.9700
C28—N241.475 (3)C56—N521.472 (3)
C28—H2810.9700C56—H5610.9700
C28—H2820.9700C56—H5620.9700
C3—C2—N1111.1 (2)C33—C32—C31139.3 (2)
C3—C2—H2124.5N34—C33—N52114.8 (2)
N1—C2—H2124.5N34—C33—C32119.2 (2)
C2—C3—C4106.1 (2)N52—C33—C32126.0 (2)
C2—C3—C17123.5 (2)N36—C35—N34130.0 (2)
C4—C3—C17130.3 (2)N36—C35—H35115.0
C9—C4—C5114.5 (2)N34—C35—H35115.0
C9—C4—C3106.3 (2)N36—C37—N29123.3 (2)
C5—C4—C3139.1 (2)N36—C37—C32127.2 (2)
N6—C5—N24115.3 (2)N29—C37—C32109.4 (2)
N6—C5—C4119.1 (2)C39—C38—C43120.1 (2)
N24—C5—C4125.6 (2)C39—C38—N29120.9 (2)
N8—C7—N6129.5 (2)C43—C38—N29119.0 (2)
N8—C7—H7115.3C38—C39—C40119.2 (3)
N6—C7—H7115.3C38—C39—H39120.4
N8—C9—N1123.6 (2)C40—C39—H39120.4
N8—C9—C4127.2 (2)C41—C40—C39122.4 (3)
N1—C9—C4109.1 (2)C41—C40—H40118.8
C15—C10—C11119.3 (2)C39—C40—H40118.8
C15—C10—N1119.6 (2)C40—C41—C42116.9 (3)
C11—C10—N1121.0 (2)C40—C41—C44121.8 (3)
C10—C11—C12120.0 (3)C42—C41—C44121.3 (3)
C10—C11—H11120.0C41—C42—C43122.2 (3)
C12—C11—H11120.0C41—C42—H42118.9
C13—C12—C11121.9 (3)C43—C42—H42118.9
C13—C12—H12119.1C38—C43—C42119.2 (3)
C11—C12—H12119.1C38—C43—H43120.4
C14—C13—C12117.4 (3)C42—C43—H43120.4
C14—C13—C16121.1 (3)C41—C44—H441109.5
C12—C13—C16121.5 (3)C41—C44—H442109.5
C13—C14—C15121.8 (3)H441—C44—H442109.5
C13—C14—H14119.1C41—C44—H443109.5
C15—C14—H14119.1H441—C44—H443109.5
C10—C15—C14119.6 (3)H442—C44—H443109.5
C10—C15—H15120.2C46—C45—C50118.2 (2)
C14—C15—H15120.2C46—C45—C31120.8 (2)
C13—C16—H161109.5C50—C45—C31120.9 (2)
C13—C16—H162109.5C45—C46—C47121.0 (3)
H161—C16—H162109.5C45—C46—H46119.5
C13—C16—H163109.5C47—C46—H46119.5
H161—C16—H163109.5C48—C47—C46119.5 (3)
H162—C16—H163109.5C48—C47—H47120.3
C22—C17—C18118.0 (2)C46—C47—H47120.3
C22—C17—C3120.9 (2)C47—C48—C49121.0 (3)
C18—C17—C3121.0 (2)C47—C48—Cl51119.7 (2)
C19—C18—C17120.8 (2)C49—C48—Cl51119.3 (2)
C19—C18—H18119.6C48—C49—C50118.9 (3)
C17—C18—H18119.6C48—C49—H49120.6
C20—C19—C18119.6 (3)C50—C49—H49120.6
C20—C19—H19120.2C49—C50—C45121.5 (3)
C18—C19—H19120.2C49—C50—H50119.3
C21—C20—C19121.1 (3)C45—C50—H50119.3
C21—C20—Cl23120.0 (2)N52—C53—C54103.2 (2)
C19—C20—Cl23118.9 (2)N52—C53—H531111.1
C20—C21—C22119.1 (3)C54—C53—H531111.1
C20—C21—H21120.5N52—C53—H532111.1
C22—C21—H21120.5C54—C53—H532111.1
C21—C22—C17121.4 (3)H531—C53—H532109.1
C21—C22—H22119.3C55—C54—C53102.9 (2)
C17—C22—H22119.3C55—C54—H541111.2
N24—C25—C26103.9 (2)C53—C54—H541111.2
N24—C25—H251111.0C55—C54—H542111.2
C26—C25—H251111.0C53—C54—H542111.2
N24—C25—H252111.0H541—C54—H542109.1
C26—C25—H252111.0C54—C55—C56101.6 (2)
H251—C25—H252109.0C54—C55—H551111.5
C25—C26—C27102.6 (2)C56—C55—H551111.5
C25—C26—H261111.2C54—C55—H552111.5
C27—C26—H261111.2C56—C55—H552111.5
C25—C26—H262111.2H551—C55—H552109.3
C27—C26—H262111.2N52—C56—C55103.4 (2)
H261—C26—H262109.2N52—C56—H561111.1
C28—C27—C26102.1 (2)C55—C56—H561111.1
C28—C27—H271111.4N52—C56—H562111.1
C26—C27—H271111.4C55—C56—H562111.1
C28—C27—H272111.4H561—C56—H562109.0
C26—C27—H272111.4C9—N1—C2107.42 (19)
H271—C27—H272109.2C9—N1—C10126.5 (2)
N24—C28—C27104.3 (2)C2—N1—C10125.3 (2)
N24—C28—H281110.9C7—N6—C5118.3 (2)
C27—C28—H281110.9C7—N8—C9111.1 (2)
N24—C28—H282110.9C5—N24—C25124.8 (2)
C27—C28—H282110.9C5—N24—C28119.1 (2)
H281—C28—H282108.9C25—N24—C28109.5 (2)
C31—C30—N29111.8 (2)C37—N29—C30106.9 (2)
C31—C30—H30124.1C37—N29—C38128.0 (2)
N29—C30—H30124.1C30—N29—C38124.7 (2)
C30—C31—C32105.8 (2)C35—N34—C33117.7 (2)
C30—C31—C45122.3 (2)C35—N36—C37110.8 (2)
C32—C31—C45131.8 (2)C33—N52—C53125.8 (2)
C37—C32—C33114.6 (2)C33—N52—C56119.9 (2)
C37—C32—C31106.1 (2)C53—N52—C56110.9 (2)
N1—C2—C3—C40.2 (3)C30—C31—C45—C4665.2 (4)
N1—C2—C3—C17177.8 (2)C32—C31—C45—C46118.8 (3)
C2—C3—C4—C90.2 (3)C30—C31—C45—C50112.5 (3)
C17—C3—C4—C9177.2 (2)C32—C31—C45—C5063.5 (4)
C2—C3—C4—C5177.6 (3)C50—C45—C46—C471.7 (4)
C17—C3—C4—C50.2 (5)C31—C45—C46—C47179.5 (2)
C9—C4—C5—N64.5 (3)C45—C46—C47—C480.7 (4)
C3—C4—C5—N6172.7 (3)C46—C47—C48—C490.6 (4)
C9—C4—C5—N24176.0 (2)C46—C47—C48—Cl51179.5 (2)
C3—C4—C5—N246.8 (5)C47—C48—C49—C501.0 (4)
C5—C4—C9—N81.9 (4)Cl51—C48—C49—C50179.2 (2)
C3—C4—C9—N8176.2 (2)C48—C49—C50—C450.1 (4)
C5—C4—C9—N1178.7 (2)C46—C45—C50—C491.4 (4)
C3—C4—C9—N10.6 (3)C31—C45—C50—C49179.1 (2)
C15—C10—C11—C120.6 (4)N52—C53—C54—C5533.6 (3)
N1—C10—C11—C12179.3 (2)C53—C54—C55—C5642.5 (3)
C10—C11—C12—C131.0 (4)C54—C55—C56—N5234.9 (3)
C11—C12—C13—C140.5 (4)N8—C9—N1—C2176.2 (2)
C11—C12—C13—C16179.8 (3)C4—C9—N1—C20.7 (3)
C12—C13—C14—C150.4 (4)N8—C9—N1—C106.1 (4)
C16—C13—C14—C15179.3 (3)C4—C9—N1—C10170.8 (2)
C11—C10—C15—C140.3 (4)C3—C2—N1—C90.6 (3)
N1—C10—C15—C14179.8 (2)C3—C2—N1—C10170.8 (2)
C13—C14—C15—C100.8 (5)C15—C10—N1—C9131.9 (3)
C2—C3—C17—C22112.0 (3)C11—C10—N1—C948.0 (4)
C4—C3—C17—C2265.1 (4)C15—C10—N1—C236.5 (4)
C2—C3—C17—C1867.7 (3)C11—C10—N1—C2143.6 (3)
C4—C3—C17—C18115.2 (3)N8—C7—N6—C51.2 (4)
C22—C17—C18—C191.7 (4)N24—C5—N6—C7176.2 (2)
C3—C17—C18—C19178.6 (2)C4—C5—N6—C74.3 (4)
C17—C18—C19—C201.2 (4)N6—C7—N8—C91.5 (4)
C18—C19—C20—C210.2 (4)N1—C9—N8—C7175.4 (2)
C18—C19—C20—Cl23179.88 (19)C4—C9—N8—C70.9 (4)
C19—C20—C21—C220.3 (4)N6—C5—N24—C25146.9 (2)
Cl23—C20—C21—C22179.42 (19)C4—C5—N24—C2533.6 (4)
C20—C21—C22—C170.3 (4)N6—C5—N24—C281.6 (4)
C18—C17—C22—C211.2 (4)C4—C5—N24—C28177.9 (3)
C3—C17—C22—C21179.1 (2)C26—C25—N24—C5138.3 (3)
N24—C25—C26—C2733.8 (3)C26—C25—N24—C2812.8 (3)
C25—C26—C27—C2842.1 (3)C27—C28—N24—C5166.5 (2)
C26—C27—C28—N2434.2 (3)C27—C28—N24—C2513.6 (3)
N29—C30—C31—C320.5 (3)N36—C37—N29—C30177.5 (2)
N29—C30—C31—C45176.5 (2)C32—C37—N29—C301.7 (3)
C30—C31—C32—C371.4 (3)N36—C37—N29—C384.5 (4)
C45—C31—C32—C37175.1 (3)C32—C37—N29—C38174.7 (2)
C30—C31—C32—C33177.5 (3)C31—C30—N29—C370.7 (3)
C45—C31—C32—C335.9 (5)C31—C30—N29—C38174.0 (2)
C37—C32—C33—N346.7 (4)C39—C38—N29—C3745.6 (4)
C31—C32—C33—N34174.3 (3)C43—C38—N29—C37135.0 (3)
C37—C32—C33—N52173.1 (2)C39—C38—N29—C30142.5 (3)
C31—C32—C33—N525.8 (5)C43—C38—N29—C3036.9 (4)
C33—C32—C37—N363.6 (4)N36—C35—N34—C330.5 (5)
C31—C32—C37—N36177.2 (2)N52—C33—N34—C35174.7 (3)
C33—C32—C37—N29177.4 (2)C32—C33—N34—C355.1 (4)
C31—C32—C37—N291.9 (3)N34—C35—N36—C373.7 (4)
C43—C38—C39—C401.2 (4)N29—C37—N36—C35177.6 (3)
N29—C38—C39—C40179.4 (3)C32—C37—N36—C351.3 (4)
C38—C39—C40—C411.6 (5)N34—C33—N52—C53155.2 (2)
C39—C40—C41—C420.7 (5)C32—C33—N52—C5324.7 (4)
C39—C40—C41—C44179.4 (3)N34—C33—N52—C562.2 (4)
C40—C41—C42—C430.6 (5)C32—C33—N52—C56177.9 (3)
C44—C41—C42—C43178.1 (3)C54—C53—N52—C33147.2 (3)
C39—C38—C43—C420.0 (4)C54—C53—N52—C5611.9 (3)
N29—C38—C43—C42179.4 (2)C55—C56—N52—C33175.1 (2)
C41—C42—C43—C381.0 (4)C55—C56—N52—C5314.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N6/C5/C4/C9/N8/C7, N34/C33/C32/C37/N36/C35, C17–C22 and C45–C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg1i0.932.683.483 (3)144
C46—H46···Cg2ii0.932.733.549 (3)147
C25—H251···Cg30.972.793.462 (3)127
C53—H531···Cg40.972.843.506 (3)127
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N6/C5/C4/C9/N8/C7, N34/C33/C32/C37/N36/C35, C17–C22 and C45–C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg1i0.932.683.483 (3)144
C46—H46···Cg2ii0.932.733.549 (3)147
C25—H251···Cg30.972.793.462 (3)127
C53—H531···Cg40.972.843.506 (3)127
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

The authors are thankful to Department of Physics, SPU, for providing the financial support to carry out this work and to Dr Babu Varghese of RSIC, IIT Madras, for helping us with the data collection. RDM is thankful to the UGC, New Delhi, for the UGC teacher fellowship under the FIP scheme and to Gujarat Arts and Science College, Ahmedabad, for allowing the research work to be carried out under the FIP scheme.

References

First citationChadwick, D. J. (1990). The Chemistry of Heterocyclic Compounds, Vol. 48, edited by R. A. Jones, pp. 1–104. New York: Willey & Sons.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHulzenlaub, W., Tolman, R. L. & Robins, R. K. (1972). J. Med. Chem. 15, 879–883.  PubMed Web of Science Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOhgi, T., Kondo, T. & Goto, T. (1979). J. Am. Chem. Soc. 101, 3629–3633.  CrossRef CAS Web of Science Google Scholar
First citationPatel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, o2926–o2927.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337–o339.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. W., Sidwell, R. W., Robins, R. K. & Tolman, R. L. (1972). J. Med. Chem. 15, 883–887.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1286-o1287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds