organic compounds
2-(Diphenylmethylidene)-2,3-dihydro-1H-inden-1-one
aDrug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland, and bSchool of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: hsheridn@tcd.ie
In the title molecule, C22H16O, the indanone ring system is approximately planar with a dihedral angle between the fused rings of 5.13 (14)°. Two benzene rings are linked together at one side of a double bond, sitting on either side of the indanone ring system and making dihedral angles of 70.30 (12) and 44.74 (13)° with it. In the crystal, hydrogen bonding is not present, but weak C—H⋯π or π–π interactions occur and molecules form a sheet-like structure in the bc plane.
Related literature
For background to the indanone pharmacophore, its use as an organic intermediate and its biological activity, see: Buckle et al. (1973); Sheridan et al. (1990, 1999a,b, 2008, 2009a,b); Vacca et al. (1994); Schumann et al. (2001); Herzog et al. (2002); Frankish et al. (2004); Frankish & Sheridan (2012); Dinges et al. (2006); Kou et al. (2012); Ito et al. (2004); Jaki et al. (1999); Chanda et al. (2012); Chen et al. (2008); Rukachaisirikul et al. (2013); Farrell et al. (1996); Borbone et al. (2011); Fu & Wang (2008). For bond lengths and angles in related compounds, see: Ali et al. (2010a,b, 2011); Chen et al. (2011a 2011b); Li et al. (2012); Lin et al. (2012).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2006); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2006).
Supporting information
10.1107/S1600536813018990/gg2117sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018990/gg2117Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813018990/gg2117Isup3.cml
To a stirred solution of 2-((2-hydroxyethoxy)diphenylmethyl)-2,3-dihydroinden-1-one (2.23 mmol) in methanol/DCM (12 ml, v:v, 3:1) was added trifluoromethanesulfonic acid (0.2 ml). The reaction was stirred at reflux for one hour, after which time the reaction was quenched by the addition of 2M NaOH aq. solution (20 ml) and the product was extracted with DCM (3 x 25 ml). The combined organic extracts were dried over magnesium sulfate, filtered and concentrated in vacuo, and the residue was purified by flash
on silica gel 230–400mesh (eluent: hexane: ethyl acetate, 10:1). All homogenous fractions were collected and the solvent removed in vacuo to afford titled crossed aldol condensed compound (94%) as yellow solid. Crystals suitable for X-ray diffraction were obtained after 7 days of slow evaporation of an ethyl acetate solution.All H atoms were placed in geometrically idealized positions and treated using the riding model, with C—H = 0.93–0.97 Å for H atoms. Uiso(H) values were set at 1.2–1.5 times Ueq(C) for the H atoms in the molecule.
Data collection: CrystalClear (Rigaku, 2006); cell
CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).Fig. 1. The molecule structure of the titled compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. a. The molecular packing, viewed along the a axis. | |
Fig. 3. b. The molecular packing, viewed along the b axis. |
C22H16O | F(000) = 624 |
Mr = 296.35 | Dx = 1.291 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5979 reflections |
a = 9.1634 (18) Å | θ = 2.4–31.1° |
b = 17.570 (3) Å | µ = 0.08 mm−1 |
c = 10.717 (4) Å | T = 150 K |
β = 117.89 (2)° | Prism, colourless |
V = 1525.0 (7) Å3 | 0.50 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku Saturn 724 diffractometer | 2587 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.058 |
Graphite monochromator | θmax = 25.0°, θmin = 2.4° |
ω and ϕ scans | h = −10→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2006) | k = −20→13 |
Tmin = 0.763, Tmax = 1.000 | l = −11→12 |
11746 measured reflections | 4590 standard reflections every 120 reflections |
2680 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.25 | w = 1/[σ2(Fo2) + (0.0358P)2 + 1.5166P] where P = (Fo2 + 2Fc2)/3 |
2680 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C22H16O | V = 1525.0 (7) Å3 |
Mr = 296.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.1634 (18) Å | µ = 0.08 mm−1 |
b = 17.570 (3) Å | T = 150 K |
c = 10.717 (4) Å | 0.50 × 0.20 × 0.20 mm |
β = 117.89 (2)° |
Rigaku Saturn 724 diffractometer | 2587 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2006) | Rint = 0.058 |
Tmin = 0.763, Tmax = 1.000 | 4590 standard reflections every 120 reflections |
11746 measured reflections | intensity decay: none |
2680 independent reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.25 | Δρmax = 0.19 e Å−3 |
2680 reflections | Δρmin = −0.24 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3991 (2) | 0.62562 (11) | 0.58262 (19) | 0.0266 (4) | |
C1 | 0.2609 (3) | 0.69082 (14) | 0.1518 (3) | 0.0216 (6) | |
H1 | 0.1860 | 0.7305 | 0.1127 | 0.026* | |
C2 | 0.3856 (3) | 0.68115 (15) | 0.1133 (3) | 0.0241 (6) | |
H2 | 0.3944 | 0.7148 | 0.0502 | 0.029* | |
C3 | 0.4960 (3) | 0.62161 (15) | 0.1689 (3) | 0.0256 (6) | |
H3 | 0.5790 | 0.6151 | 0.1431 | 0.031* | |
C4 | 0.4829 (3) | 0.57117 (16) | 0.2640 (3) | 0.0253 (6) | |
H4 | 0.5567 | 0.5309 | 0.3009 | 0.030* | |
C5 | 0.3595 (3) | 0.58118 (15) | 0.3035 (3) | 0.0230 (6) | |
H5 | 0.3517 | 0.5475 | 0.3671 | 0.028* | |
C6 | 0.2469 (3) | 0.64149 (14) | 0.2488 (3) | 0.0200 (5) | |
C7 | 0.1051 (3) | 0.65032 (13) | 0.2802 (3) | 0.0192 (5) | |
C8 | −0.0542 (3) | 0.67304 (14) | 0.1560 (3) | 0.0195 (5) | |
C9 | −0.1456 (3) | 0.73524 (15) | 0.1641 (3) | 0.0244 (6) | |
H9 | −0.1056 | 0.7638 | 0.2466 | 0.029* | |
C10 | −0.2959 (3) | 0.75445 (16) | 0.0491 (3) | 0.0306 (7) | |
H10 | −0.3562 | 0.7956 | 0.0551 | 0.037* | |
C11 | −0.3559 (3) | 0.71206 (17) | −0.0747 (3) | 0.0329 (7) | |
H11 | −0.4570 | 0.7245 | −0.1510 | 0.040* | |
C12 | −0.2652 (3) | 0.65121 (17) | −0.0848 (3) | 0.0304 (7) | |
H12 | −0.3054 | 0.6230 | −0.1677 | 0.036* | |
C13 | −0.1145 (3) | 0.63269 (16) | 0.0291 (3) | 0.0255 (6) | |
H13 | −0.0528 | 0.5928 | 0.0209 | 0.031* | |
C14 | 0.1063 (3) | 0.63406 (14) | 0.4049 (3) | 0.0195 (5) | |
C15 | −0.0506 (3) | 0.62441 (15) | 0.4193 (3) | 0.0227 (6) | |
H15A | −0.1067 | 0.6728 | 0.4076 | 0.027* | |
H15B | −0.1256 | 0.5888 | 0.3498 | 0.027* | |
C16 | 0.0094 (3) | 0.59403 (14) | 0.5668 (3) | 0.0208 (6) | |
C17 | −0.0825 (3) | 0.56906 (14) | 0.6321 (3) | 0.0239 (6) | |
H17 | −0.1972 | 0.5682 | 0.5831 | 0.029* | |
C18 | 0.0010 (3) | 0.54542 (15) | 0.7717 (3) | 0.0268 (6) | |
H18 | −0.0591 | 0.5273 | 0.8153 | 0.032* | |
C19 | 0.1738 (4) | 0.54814 (15) | 0.8486 (3) | 0.0278 (6) | |
H19 | 0.2266 | 0.5335 | 0.9429 | 0.033* | |
C20 | 0.2664 (3) | 0.57288 (14) | 0.7835 (3) | 0.0250 (6) | |
H20 | 0.3810 | 0.5750 | 0.8332 | 0.030* | |
C21 | 0.1817 (3) | 0.59445 (14) | 0.6412 (3) | 0.0209 (6) | |
C22 | 0.2509 (3) | 0.61871 (14) | 0.5466 (3) | 0.0206 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0225 (10) | 0.0323 (11) | 0.0230 (10) | −0.0011 (8) | 0.0091 (8) | 0.0002 (8) |
C1 | 0.0214 (13) | 0.0210 (13) | 0.0214 (14) | −0.0001 (10) | 0.0091 (11) | −0.0005 (10) |
C2 | 0.0263 (14) | 0.0235 (14) | 0.0240 (15) | −0.0064 (11) | 0.0130 (12) | −0.0018 (11) |
C3 | 0.0200 (13) | 0.0327 (15) | 0.0256 (15) | −0.0035 (11) | 0.0119 (12) | −0.0076 (12) |
C4 | 0.0204 (13) | 0.0296 (14) | 0.0231 (15) | 0.0028 (11) | 0.0079 (12) | −0.0016 (11) |
C5 | 0.0236 (13) | 0.0230 (13) | 0.0213 (14) | 0.0013 (10) | 0.0095 (12) | 0.0026 (10) |
C6 | 0.0197 (12) | 0.0198 (12) | 0.0184 (13) | −0.0034 (10) | 0.0072 (11) | −0.0041 (10) |
C7 | 0.0197 (13) | 0.0159 (12) | 0.0209 (14) | −0.0008 (10) | 0.0087 (11) | −0.0019 (10) |
C8 | 0.0191 (13) | 0.0194 (12) | 0.0206 (14) | −0.0003 (10) | 0.0099 (11) | 0.0045 (10) |
C9 | 0.0246 (13) | 0.0233 (13) | 0.0289 (15) | 0.0012 (11) | 0.0155 (12) | 0.0057 (11) |
C10 | 0.0228 (14) | 0.0286 (15) | 0.0444 (19) | 0.0074 (12) | 0.0191 (14) | 0.0168 (13) |
C11 | 0.0203 (13) | 0.0411 (17) | 0.0319 (17) | 0.0016 (12) | 0.0077 (13) | 0.0205 (14) |
C12 | 0.0267 (15) | 0.0394 (17) | 0.0192 (15) | −0.0054 (12) | 0.0059 (12) | 0.0053 (12) |
C13 | 0.0236 (14) | 0.0301 (14) | 0.0220 (15) | 0.0011 (11) | 0.0101 (12) | 0.0041 (11) |
C14 | 0.0211 (13) | 0.0175 (12) | 0.0201 (14) | −0.0005 (10) | 0.0099 (11) | −0.0005 (10) |
C15 | 0.0221 (13) | 0.0251 (13) | 0.0220 (14) | 0.0017 (11) | 0.0112 (11) | 0.0021 (11) |
C16 | 0.0280 (14) | 0.0149 (12) | 0.0205 (14) | −0.0005 (10) | 0.0122 (12) | −0.0030 (10) |
C17 | 0.0266 (14) | 0.0209 (13) | 0.0276 (15) | −0.0029 (11) | 0.0156 (12) | −0.0037 (11) |
C18 | 0.0378 (16) | 0.0229 (13) | 0.0257 (15) | −0.0037 (12) | 0.0197 (13) | −0.0021 (11) |
C19 | 0.0378 (16) | 0.0260 (14) | 0.0188 (14) | −0.0049 (12) | 0.0125 (13) | −0.0010 (11) |
C20 | 0.0280 (14) | 0.0224 (13) | 0.0219 (14) | −0.0072 (11) | 0.0094 (12) | −0.0052 (11) |
C21 | 0.0269 (14) | 0.0158 (12) | 0.0219 (14) | −0.0021 (10) | 0.0130 (12) | −0.0033 (10) |
C22 | 0.0233 (14) | 0.0168 (12) | 0.0229 (14) | −0.0011 (10) | 0.0119 (12) | −0.0029 (10) |
O1—C22 | 1.231 (3) | C11—C12 | 1.389 (4) |
C1—C2 | 1.395 (3) | C11—H11 | 0.9300 |
C1—C6 | 1.405 (3) | C12—C13 | 1.388 (4) |
C1—H1 | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.382 (4) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C14—C22 | 1.501 (4) |
C3—C4 | 1.397 (4) | C14—C15 | 1.525 (3) |
C3—H3 | 0.9300 | C15—C16 | 1.508 (3) |
C4—C5 | 1.392 (4) | C15—H15A | 0.9700 |
C4—H4 | 0.9300 | C15—H15B | 0.9700 |
C5—C6 | 1.402 (4) | C16—C17 | 1.393 (4) |
C5—H5 | 0.9300 | C16—C21 | 1.397 (4) |
C6—C7 | 1.495 (3) | C17—C18 | 1.388 (4) |
C7—C14 | 1.362 (4) | C17—H17 | 0.9300 |
C7—C8 | 1.498 (3) | C18—C19 | 1.403 (4) |
C8—C13 | 1.398 (4) | C18—H18 | 0.9300 |
C8—C9 | 1.404 (4) | C19—C20 | 1.396 (4) |
C9—C10 | 1.394 (4) | C19—H19 | 0.9300 |
C9—H9 | 0.9300 | C20—C21 | 1.402 (4) |
C10—C11 | 1.391 (4) | C20—H20 | 0.9300 |
C10—H10 | 0.9300 | C21—C22 | 1.488 (3) |
C2—C1—C6 | 121.0 (2) | C11—C12—H12 | 120.1 |
C2—C1—H1 | 119.5 | C12—C13—C8 | 121.0 (3) |
C6—C1—H1 | 119.5 | C12—C13—H13 | 119.5 |
C3—C2—C1 | 120.0 (2) | C8—C13—H13 | 119.5 |
C3—C2—H2 | 120.0 | C7—C14—C22 | 128.9 (2) |
C1—C2—H2 | 120.0 | C7—C14—C15 | 123.2 (2) |
C2—C3—C4 | 120.0 (2) | C22—C14—C15 | 107.8 (2) |
C2—C3—H3 | 120.0 | C16—C15—C14 | 104.3 (2) |
C4—C3—H3 | 120.0 | C16—C15—H15A | 110.9 |
C5—C4—C3 | 120.1 (2) | C14—C15—H15A | 110.9 |
C5—C4—H4 | 120.0 | C16—C15—H15B | 110.9 |
C3—C4—H4 | 120.0 | C14—C15—H15B | 110.9 |
C4—C5—C6 | 120.8 (2) | H15A—C15—H15B | 108.9 |
C4—C5—H5 | 119.6 | C17—C16—C21 | 120.1 (2) |
C6—C5—H5 | 119.6 | C17—C16—C15 | 128.9 (2) |
C5—C6—C1 | 118.1 (2) | C21—C16—C15 | 110.9 (2) |
C5—C6—C7 | 122.1 (2) | C18—C17—C16 | 118.6 (2) |
C1—C6—C7 | 119.5 (2) | C18—C17—H17 | 120.7 |
C14—C7—C6 | 126.2 (2) | C16—C17—H17 | 120.7 |
C14—C7—C8 | 119.0 (2) | C17—C18—C19 | 121.6 (2) |
C6—C7—C8 | 114.6 (2) | C17—C18—H18 | 119.2 |
C13—C8—C9 | 118.6 (2) | C19—C18—H18 | 119.2 |
C13—C8—C7 | 120.4 (2) | C20—C19—C18 | 120.0 (3) |
C9—C8—C7 | 121.0 (2) | C20—C19—H19 | 120.0 |
C10—C9—C8 | 120.4 (3) | C18—C19—H19 | 120.0 |
C10—C9—H9 | 119.8 | C19—C20—C21 | 118.1 (2) |
C8—C9—H9 | 119.8 | C19—C20—H20 | 120.9 |
C11—C10—C9 | 120.0 (3) | C21—C20—H20 | 120.9 |
C11—C10—H10 | 120.0 | C16—C21—C20 | 121.5 (2) |
C9—C10—H10 | 120.0 | C16—C21—C22 | 109.9 (2) |
C12—C11—C10 | 120.2 (3) | C20—C21—C22 | 128.6 (2) |
C12—C11—H11 | 119.9 | O1—C22—C21 | 125.0 (2) |
C10—C11—H11 | 119.9 | O1—C22—C14 | 128.5 (2) |
C13—C12—C11 | 119.8 (3) | C21—C22—C14 | 106.5 (2) |
C13—C12—H12 | 120.1 | ||
C6—C1—C2—C3 | 1.1 (4) | C6—C7—C14—C15 | −163.5 (2) |
C1—C2—C3—C4 | −0.1 (4) | C8—C7—C14—C15 | 10.9 (4) |
C2—C3—C4—C5 | −0.5 (4) | C7—C14—C15—C16 | 170.5 (2) |
C3—C4—C5—C6 | 0.2 (4) | C22—C14—C15—C16 | −6.8 (3) |
C4—C5—C6—C1 | 0.7 (4) | C14—C15—C16—C17 | −174.2 (2) |
C4—C5—C6—C7 | 175.1 (2) | C14—C15—C16—C21 | 7.2 (3) |
C2—C1—C6—C5 | −1.4 (4) | C21—C16—C17—C18 | 0.5 (4) |
C2—C1—C6—C7 | −175.9 (2) | C15—C16—C17—C18 | −178.1 (2) |
C5—C6—C7—C14 | 36.5 (4) | C16—C17—C18—C19 | 1.8 (4) |
C1—C6—C7—C14 | −149.2 (3) | C17—C18—C19—C20 | −2.0 (4) |
C5—C6—C7—C8 | −138.0 (2) | C18—C19—C20—C21 | 0.0 (4) |
C1—C6—C7—C8 | 36.2 (3) | C17—C16—C21—C20 | −2.5 (4) |
C14—C7—C8—C13 | −123.9 (3) | C15—C16—C21—C20 | 176.3 (2) |
C6—C7—C8—C13 | 51.1 (3) | C17—C16—C21—C22 | 176.4 (2) |
C14—C7—C8—C9 | 56.4 (3) | C15—C16—C21—C22 | −4.8 (3) |
C6—C7—C8—C9 | −128.6 (2) | C19—C20—C21—C16 | 2.2 (4) |
C13—C8—C9—C10 | 2.1 (4) | C19—C20—C21—C22 | −176.5 (2) |
C7—C8—C9—C10 | −178.2 (2) | C16—C21—C22—O1 | 178.9 (2) |
C8—C9—C10—C11 | −0.2 (4) | C20—C21—C22—O1 | −2.2 (4) |
C9—C10—C11—C12 | −0.9 (4) | C16—C21—C22—C14 | 0.2 (3) |
C10—C11—C12—C13 | 0.1 (4) | C20—C21—C22—C14 | 179.1 (2) |
C11—C12—C13—C8 | 1.9 (4) | C7—C14—C22—O1 | 8.6 (4) |
C9—C8—C13—C12 | −2.9 (4) | C15—C14—C22—O1 | −174.4 (2) |
C7—C8—C13—C12 | 177.3 (2) | C7—C14—C22—C21 | −172.8 (2) |
C6—C7—C14—C22 | 13.2 (4) | C15—C14—C22—C21 | 4.2 (3) |
C8—C7—C14—C22 | −172.5 (2) |
Cg1, Cg2 and Cg4 are the centroids of the C14–C16/C21/C22, C1–C6 and C16–C21 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cg1i | 0.93 | 2.91 | 3.763 (3) | 153 |
C11—H11···Cg2ii | 0.93 | 2.99 | 3.712 (3) | 136 |
C15—H15B···Cg4iii | 0.97 | 2.92 | 3.640 (3) | 132 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H16O |
Mr | 296.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 9.1634 (18), 17.570 (3), 10.717 (4) |
β (°) | 117.89 (2) |
V (Å3) | 1525.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku Saturn 724 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2006) |
Tmin, Tmax | 0.763, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11746, 2680, 2587 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.145, 1.25 |
No. of reflections | 2680 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.24 |
Computer programs: CrystalClear (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).
Cg1, Cg2 and Cg4 are the centroids of the C14–C16/C21/C22, C1–C6 and C16–C21 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cg1i | 0.93 | 2.91 | 3.763 (3) | 153 |
C11—H11···Cg2ii | 0.93 | 2.99 | 3.712 (3) | 136 |
C15—H15B···Cg4iii | 0.97 | 2.92 | 3.640 (3) | 132 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x, −y+1, −z+1. |
Acknowledgements
We wish to thank Trinity College Dublin for financial support, Trinity College Postgraduate Research Studentships.
References
Ali, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011). Acta Cryst. E67, o2306–o2307. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o2875. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o2864. Web of Science CSD CrossRef IUCr Journals Google Scholar
Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295. Web of Science CSD CrossRef CAS Google Scholar
Buckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334–1339. CrossRef CAS PubMed Web of Science Google Scholar
Chanda, D., Bhushan, S., Guru, S. K., Shanker, K., Wani, Z. A., Rah, B. A., Luqman, S., Mondhe, D. M., Pal, A. & Negi, A. S. (2012). Eur. J. Pharm. Sci. 47, 988–995. Web of Science CrossRef CAS PubMed Google Scholar
Chen, Y. H., Chang, F. R., Lu, M. C., Hsieh, P. W., Wu, M. J., Du, Y. C. & Wu, Y. C. (2008). Molecules, 13, 255–266. Web of Science CrossRef PubMed CAS Google Scholar
Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dinges, J., Akritopoulou-Zanze, I., Arnold, L. D., Barlozzari, T., Bousquet, P. F., Cunha, G. A., Ericsson, A. M., Iwasaki, N., Michaelides, M. R., Ogawa, N., Phelan, K. M., Rafferty, P., Sowin, T. J., Stewart, K. D., Tokuyama, R., Xia, Z. & Zhang, H. Q. (2006). Bioorg. Med. Chem. Lett. 16, 4371–4375. Web of Science CrossRef PubMed CAS Google Scholar
Farrell, R., Kelleher, F. & Sheridan, H. (1996). J. Nat. Prod. 59, 446–447. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423–1427. Web of Science CrossRef PubMed CAS Google Scholar
Frankish, N. & Sheridan, H. (2012). J. Med. Chem. 55, 5497–5505. Web of Science CrossRef CAS PubMed Google Scholar
Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595. Web of Science CrossRef CAS Google Scholar
Herzog, M. N., Chien, J. C. W. & Rausch, M. D. (2002). J. Organomet. Chem. 654, 29–35. Web of Science CrossRef CAS Google Scholar
Ito, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Murata, J. & Darnaedi, D. (2004). J. Nat. Prod. 67, 932–937. Web of Science CrossRef PubMed CAS Google Scholar
Jaki, B., Orjala, J., Bürgi, H. R. & Sticher, O. (1999). Pharma. Biol. 37, 138–143. Web of Science CrossRef Google Scholar
Kou, X., Shen, K., An, Y., Qi, S., Dai, W.-X. & Yin, Z. (2012). Phytother. Res. 26, 988–994. Web of Science CrossRef CAS PubMed Google Scholar
Li, H., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2756. CSD CrossRef IUCr Journals Google Scholar
Lin, H.-Y., Chang, C.-W., Tsai, H.-Y., Luo, M.-H. & Chen, K.-Y. (2012). Acta Cryst. E68, o3075–o3076. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2006). CrystalClear. Rigaku Corporation. Tokyo. Japan. Google Scholar
Rukachaisirikul, V., Buadam, S., Sukpondma, Y., Phongpaichit, S., Sakayaroj, J. & Hutadilok-Towatana, N. (2013). Phytochem. Lett. 6, 135–138. Web of Science CrossRef CAS Google Scholar
Schumann, H., Stenzel, O., Girgsdies, F. & Halterman, R. L. (2001). Organometallics, 20, 1743–1751. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheridan, H., Butterly, S., Walsh, J. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248–54. Web of Science CrossRef PubMed CAS Google Scholar
Sheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953–966. Web of Science CrossRef PubMed CAS Google Scholar
Sheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271–272. Web of Science CrossRef PubMed CAS Google Scholar
Sheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603–608. CrossRef CAS Web of Science Google Scholar
Sheridan, H., Walsh, J., Cogan, C., Jordan, M., McCabe, T., Passante, E. & Frankish, N. (2009b). Bioorg. Med. Chem. Lett. 19, 5927–5930. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheridan, H., Walsh, J., Jordan, M., Cogan, C. & Frankish, N. (2009a). Eur. J. Med. Chem. 44, 5018–5022. Web of Science CrossRef PubMed CAS Google Scholar
Vacca, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096–4100. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The indanone scaffold has been widely observed in the natural world (Jaki et al., 1999; Ito et al., 2004; Chen et al., 2008; Chanda et al., 2012; Rukachaisirikul et al., 2013). As organic intermediates, many indanone derivatives are used during chemical synthesis (Sheridan et al., 1990; Farrell et al., 1996; Sheridan et al., 1999a,b; Frankish et al., 2004; Borbone et al., 2011; Fu & Wang, 2008). Many studies show indanone pharmacophore is associated with a wide variety of biological properties such as: KDR kinase inhibition, mast cell stabilization, smooth muscle relaxation, antioxidation, and is used to target diseases such as cancer and Alzheimer's disease (Schumann et al., 2001; Herzog et al., 2002; Dinges et al., 2006; Sheridan et al., 2009a,b; Kou et al., 2012).
The asymmetric unit of the title molecule (I) is shown in Figure 1. It crystallizes in the non-chiral, monoclinic space group P21/c. The two benzene rings, C8—C13 and C1—C6 in the molecule lie above and below the C16—C21 plane, with the dihedral angles 70.30 (12)° and 44.74 (13)°, respectively. The torsion angles of these two benzene groups are [C14—C7—C8—C9] = 56.4 (3)° and [C14—C7—C6—C5] = 36.5 (4)°. The rest of the molecule is essentially planar. The indanone fraction shows the normal values for this type of molecules (Ali et al., 2010a,b; Ali et al., 2011; Chen et al., 2011a,b; Li et al., 2012; Lin et al., 2012), with the C20—C21—C16—C15 bond angle being 176.3 (2)° and the bond length of benzylic carbonyl functionality (C22—O1) 1.231 (3) Å. The double bond (C14=C7) is located at alpha position to the carbonyl group of the indanone ring, with the bond length being 1.362 (4) Å. The geometry around quaternary C7 can be considered as a planar triangle: C14—C7—C8 = 119.0 (2)°, C14—C7—C6 = 126.2 (3)° and C6—C7—C8 = 114.6 (2)°. The packing diagrams of the molecular structure are presented in Figure 2. Weak intermolecular C—H···π and π-π interactions are observed in Figure 2a, which seems to be very effective in the stabilization of the crystal structure. Figure 2b shows that the molecules are separated by forming a sheet-like structure in the bc-plane when viewed along the crystallographic b-axis. It is suggested that weak Van der Vaals force or electrostatic interaction could be contributed to the linkage of the sheets.