organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1306-o1307

2-(Di­phenyl­methyl­­idene)-2,3-di­hydro-1H-inden-1-one

aDrug Discovery Group, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland, and bSchool of Chemistry, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: hsheridn@tcd.ie

(Received 10 June 2013; accepted 9 July 2013; online 24 July 2013)

In the title mol­ecule, C22H16O, the indanone ring system is approximately planar with a dihedral angle between the fused rings of 5.13 (14)°. Two benzene rings are linked together at one side of a double bond, sitting on either side of the indanone ring system and making dihedral angles of 70.30 (12) and 44.74 (13)° with it. In the crystal, hydrogen bonding is not present, but weak C—H⋯π or ππ inter­actions occur and mol­ecules form a sheet-like structure in the bc plane.

Related literature

For background to the indanone pharmacophore, its use as an organic inter­mediate and its biological activity, see: Buckle et al. (1973[Buckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334-1339.]); Sheridan et al. (1990[Sheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603-608.], 1999a[Sheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953-966.],b[Sheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271-272.], 2008[Sheridan, H., Butterly, S., Walsh, J. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248-54.], 2009a[Sheridan, H., Walsh, J., Jordan, M., Cogan, C. & Frankish, N. (2009a). Eur. J. Med. Chem. 44, 5018-5022.],b[Sheridan, H., Walsh, J., Cogan, C., Jordan, M., McCabe, T., Passante, E. & Frankish, N. (2009b). Bioorg. Med. Chem. Lett. 19, 5927-5930.]); Vacca et al. (1994[Vacca, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096-4100.]); Schumann et al. (2001[Schumann, H., Stenzel, O., Girgsdies, F. & Halterman, R. L. (2001). Organometallics, 20, 1743-1751.]); Herzog et al. (2002[Herzog, M. N., Chien, J. C. W. & Rausch, M. D. (2002). J. Organomet. Chem. 654, 29-35.]); Frankish et al. (2004[Frankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423-1427.]); Frankish & Sheridan (2012[Frankish, N. & Sheridan, H. (2012). J. Med. Chem. 55, 5497-5505.]); Dinges et al. (2006[Dinges, J., Akritopoulou-Zanze, I., Arnold, L. D., Barlozzari, T., Bousquet, P. F., Cunha, G. A., Ericsson, A. M., Iwasaki, N., Michaelides, M. R., Ogawa, N., Phelan, K. M., Rafferty, P., Sowin, T. J., Stewart, K. D., Tokuyama, R., Xia, Z. & Zhang, H. Q. (2006). Bioorg. Med. Chem. Lett. 16, 4371-4375.]); Kou et al. (2012[Kou, X., Shen, K., An, Y., Qi, S., Dai, W.-X. & Yin, Z. (2012). Phytother. Res. 26, 988-994.]); Ito et al. (2004[Ito, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Murata, J. & Darnaedi, D. (2004). J. Nat. Prod. 67, 932-937.]); Jaki et al. (1999[Jaki, B., Orjala, J., Bürgi, H. R. & Sticher, O. (1999). Pharma. Biol. 37, 138-143.]); Chanda et al. (2012[Chanda, D., Bhushan, S., Guru, S. K., Shanker, K., Wani, Z. A., Rah, B. A., Luqman, S., Mondhe, D. M., Pal, A. & Negi, A. S. (2012). Eur. J. Pharm. Sci. 47, 988-995.]); Chen et al. (2008[Chen, Y. H., Chang, F. R., Lu, M. C., Hsieh, P. W., Wu, M. J., Du, Y. C. & Wu, Y. C. (2008). Molecules, 13, 255-266.]); Rukachaisirikul et al. (2013[Rukachaisirikul, V., Buadam, S., Sukpondma, Y., Phongpaichit, S., Sakayaroj, J. & Hutadilok-Towatana, N. (2013). Phytochem. Lett. 6, 135-138.]); Farrell et al. (1996[Farrell, R., Kelleher, F. & Sheridan, H. (1996). J. Nat. Prod. 59, 446-447.]); Borbone et al. (2011[Borbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290-295.]); Fu & Wang (2008[Fu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590-595.]). For bond lengths and angles in related compounds, see: Ali et al. (2010a[Ali, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o2875.],b[Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o2864.], 2011[Ali, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011). Acta Cryst. E67, o2306-o2307.]); Chen et al. (2011a[Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.] 2011b[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.]); Li et al. (2012[Li, H., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2756.]); Lin et al. (2012[Lin, H.-Y., Chang, C.-W., Tsai, H.-Y., Luo, M.-H. & Chen, K.-Y. (2012). Acta Cryst. E68, o3075-o3076.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16O

  • Mr = 296.35

  • Monoclinic, P 21 /c

  • a = 9.1634 (18) Å

  • b = 17.570 (3) Å

  • c = 10.717 (4) Å

  • β = 117.89 (2)°

  • V = 1525.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn 724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation. Tokyo. Japan.]) Tmin = 0.763, Tmax = 1.000

  • 11746 measured reflections

  • 2680 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.145

  • S = 1.25

  • 2680 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C14–C16/C21/C22, C1–C6 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.93 2.91 3.763 (3) 153
C11—H11⋯Cg2ii 0.93 2.99 3.712 (3) 136
C15—H15BCg4iii 0.97 2.92 3.640 (3) 132
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation. Tokyo. Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The indanone scaffold has been widely observed in the natural world (Jaki et al., 1999; Ito et al., 2004; Chen et al., 2008; Chanda et al., 2012; Rukachaisirikul et al., 2013). As organic intermediates, many indanone derivatives are used during chemical synthesis (Sheridan et al., 1990; Farrell et al., 1996; Sheridan et al., 1999a,b; Frankish et al., 2004; Borbone et al., 2011; Fu & Wang, 2008). Many studies show indanone pharmacophore is associated with a wide variety of biological properties such as: KDR kinase inhibition, mast cell stabilization, smooth muscle relaxation, antioxidation, and is used to target diseases such as cancer and Alzheimer's disease (Schumann et al., 2001; Herzog et al., 2002; Dinges et al., 2006; Sheridan et al., 2009a,b; Kou et al., 2012).

The asymmetric unit of the title molecule (I) is shown in Figure 1. It crystallizes in the non-chiral, monoclinic space group P21/c. The two benzene rings, C8—C13 and C1—C6 in the molecule lie above and below the C16—C21 plane, with the dihedral angles 70.30 (12)° and 44.74 (13)°, respectively. The torsion angles of these two benzene groups are [C14—C7—C8—C9] = 56.4 (3)° and [C14—C7—C6—C5] = 36.5 (4)°. The rest of the molecule is essentially planar. The indanone fraction shows the normal values for this type of molecules (Ali et al., 2010a,b; Ali et al., 2011; Chen et al., 2011a,b; Li et al., 2012; Lin et al., 2012), with the C20—C21—C16—C15 bond angle being 176.3 (2)° and the bond length of benzylic carbonyl functionality (C22—O1) 1.231 (3) Å. The double bond (C14=C7) is located at alpha position to the carbonyl group of the indanone ring, with the bond length being 1.362 (4) Å. The geometry around quaternary C7 can be considered as a planar triangle: C14—C7—C8 = 119.0 (2)°, C14—C7—C6 = 126.2 (3)° and C6—C7—C8 = 114.6 (2)°. The packing diagrams of the molecular structure are presented in Figure 2. Weak intermolecular C—H···π and π-π interactions are observed in Figure 2a, which seems to be very effective in the stabilization of the crystal structure. Figure 2b shows that the molecules are separated by forming a sheet-like structure in the bc-plane when viewed along the crystallographic b-axis. It is suggested that weak Van der Vaals force or electrostatic interaction could be contributed to the linkage of the sheets.

Related literature top

For background to the indanone pharmacophore, its use as an organic intermediate and its biological activity, see: Buckle et al. (1973); Sheridan et al. (1990, 1999a,b, 2008, 2009a,b); Vacca et al. (1994); Schumann et al. (2001); Herzog et al. (2002); Frankish et al. (2004); Frankish & Sheridan (2012); Dinges et al. (2006); Kou et al. (2012); Ito et al. (2004); Jaki et al. (1999); Chanda et al. (2012); Chen et al. (2008); Rukachaisirikul et al. (2013); Farrell et al. (1996); Borbone et al. (2011); Fu & Wang (2008). For bond lengths and angles in related compounds, see: Ali et al. (2010a,b, 2011); Chen et al. (2011a 2011b); Li et al. (2012); Lin et al. (2012).

Experimental top

To a stirred solution of 2-((2-hydroxyethoxy)diphenylmethyl)-2,3-dihydroinden-1-one (2.23 mmol) in methanol/DCM (12 ml, v:v, 3:1) was added trifluoromethanesulfonic acid (0.2 ml). The reaction was stirred at reflux for one hour, after which time the reaction was quenched by the addition of 2M NaOH aq. solution (20 ml) and the product was extracted with DCM (3 x 25 ml). The combined organic extracts were dried over magnesium sulfate, filtered and concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel 230–400mesh (eluent: hexane: ethyl acetate, 10:1). All homogenous fractions were collected and the solvent removed in vacuo to afford titled crossed aldol condensed compound (94%) as yellow solid. Crystals suitable for X-ray diffraction were obtained after 7 days of slow evaporation of an ethyl acetate solution.

Refinement top

All H atoms were placed in geometrically idealized positions and treated using the riding model, with C—H = 0.93–0.97 Å for H atoms. Uiso(H) values were set at 1.2–1.5 times Ueq(C) for the H atoms in the molecule.

Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecule structure of the titled compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. a. The molecular packing, viewed along the a axis.
[Figure 3] Fig. 3. b. The molecular packing, viewed along the b axis.
2-(Diphenylmethylidene)-2,3-dihydro-1H-inden-1-one top
Crystal data top
C22H16OF(000) = 624
Mr = 296.35Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5979 reflections
a = 9.1634 (18) Åθ = 2.4–31.1°
b = 17.570 (3) ŵ = 0.08 mm1
c = 10.717 (4) ÅT = 150 K
β = 117.89 (2)°Prism, colourless
V = 1525.0 (7) Å30.50 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn 724
diffractometer
2587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2006)
k = 2013
Tmin = 0.763, Tmax = 1.000l = 1112
11746 measured reflections4590 standard reflections every 120 reflections
2680 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.5166P]
where P = (Fo2 + 2Fc2)/3
2680 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H16OV = 1525.0 (7) Å3
Mr = 296.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1634 (18) ŵ = 0.08 mm1
b = 17.570 (3) ÅT = 150 K
c = 10.717 (4) Å0.50 × 0.20 × 0.20 mm
β = 117.89 (2)°
Data collection top
Rigaku Saturn 724
diffractometer
2587 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2006)
Rint = 0.058
Tmin = 0.763, Tmax = 1.0004590 standard reflections every 120 reflections
11746 measured reflections intensity decay: none
2680 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.25Δρmax = 0.19 e Å3
2680 reflectionsΔρmin = 0.24 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3991 (2)0.62562 (11)0.58262 (19)0.0266 (4)
C10.2609 (3)0.69082 (14)0.1518 (3)0.0216 (6)
H10.18600.73050.11270.026*
C20.3856 (3)0.68115 (15)0.1133 (3)0.0241 (6)
H20.39440.71480.05020.029*
C30.4960 (3)0.62161 (15)0.1689 (3)0.0256 (6)
H30.57900.61510.14310.031*
C40.4829 (3)0.57117 (16)0.2640 (3)0.0253 (6)
H40.55670.53090.30090.030*
C50.3595 (3)0.58118 (15)0.3035 (3)0.0230 (6)
H50.35170.54750.36710.028*
C60.2469 (3)0.64149 (14)0.2488 (3)0.0200 (5)
C70.1051 (3)0.65032 (13)0.2802 (3)0.0192 (5)
C80.0542 (3)0.67304 (14)0.1560 (3)0.0195 (5)
C90.1456 (3)0.73524 (15)0.1641 (3)0.0244 (6)
H90.10560.76380.24660.029*
C100.2959 (3)0.75445 (16)0.0491 (3)0.0306 (7)
H100.35620.79560.05510.037*
C110.3559 (3)0.71206 (17)0.0747 (3)0.0329 (7)
H110.45700.72450.15100.040*
C120.2652 (3)0.65121 (17)0.0848 (3)0.0304 (7)
H120.30540.62300.16770.036*
C130.1145 (3)0.63269 (16)0.0291 (3)0.0255 (6)
H130.05280.59280.02090.031*
C140.1063 (3)0.63406 (14)0.4049 (3)0.0195 (5)
C150.0506 (3)0.62441 (15)0.4193 (3)0.0227 (6)
H15A0.10670.67280.40760.027*
H15B0.12560.58880.34980.027*
C160.0094 (3)0.59403 (14)0.5668 (3)0.0208 (6)
C170.0825 (3)0.56906 (14)0.6321 (3)0.0239 (6)
H170.19720.56820.58310.029*
C180.0010 (3)0.54542 (15)0.7717 (3)0.0268 (6)
H180.05910.52730.81530.032*
C190.1738 (4)0.54814 (15)0.8486 (3)0.0278 (6)
H190.22660.53350.94290.033*
C200.2664 (3)0.57288 (14)0.7835 (3)0.0250 (6)
H200.38100.57500.83320.030*
C210.1817 (3)0.59445 (14)0.6412 (3)0.0209 (6)
C220.2509 (3)0.61871 (14)0.5466 (3)0.0206 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (10)0.0323 (11)0.0230 (10)0.0011 (8)0.0091 (8)0.0002 (8)
C10.0214 (13)0.0210 (13)0.0214 (14)0.0001 (10)0.0091 (11)0.0005 (10)
C20.0263 (14)0.0235 (14)0.0240 (15)0.0064 (11)0.0130 (12)0.0018 (11)
C30.0200 (13)0.0327 (15)0.0256 (15)0.0035 (11)0.0119 (12)0.0076 (12)
C40.0204 (13)0.0296 (14)0.0231 (15)0.0028 (11)0.0079 (12)0.0016 (11)
C50.0236 (13)0.0230 (13)0.0213 (14)0.0013 (10)0.0095 (12)0.0026 (10)
C60.0197 (12)0.0198 (12)0.0184 (13)0.0034 (10)0.0072 (11)0.0041 (10)
C70.0197 (13)0.0159 (12)0.0209 (14)0.0008 (10)0.0087 (11)0.0019 (10)
C80.0191 (13)0.0194 (12)0.0206 (14)0.0003 (10)0.0099 (11)0.0045 (10)
C90.0246 (13)0.0233 (13)0.0289 (15)0.0012 (11)0.0155 (12)0.0057 (11)
C100.0228 (14)0.0286 (15)0.0444 (19)0.0074 (12)0.0191 (14)0.0168 (13)
C110.0203 (13)0.0411 (17)0.0319 (17)0.0016 (12)0.0077 (13)0.0205 (14)
C120.0267 (15)0.0394 (17)0.0192 (15)0.0054 (12)0.0059 (12)0.0053 (12)
C130.0236 (14)0.0301 (14)0.0220 (15)0.0011 (11)0.0101 (12)0.0041 (11)
C140.0211 (13)0.0175 (12)0.0201 (14)0.0005 (10)0.0099 (11)0.0005 (10)
C150.0221 (13)0.0251 (13)0.0220 (14)0.0017 (11)0.0112 (11)0.0021 (11)
C160.0280 (14)0.0149 (12)0.0205 (14)0.0005 (10)0.0122 (12)0.0030 (10)
C170.0266 (14)0.0209 (13)0.0276 (15)0.0029 (11)0.0156 (12)0.0037 (11)
C180.0378 (16)0.0229 (13)0.0257 (15)0.0037 (12)0.0197 (13)0.0021 (11)
C190.0378 (16)0.0260 (14)0.0188 (14)0.0049 (12)0.0125 (13)0.0010 (11)
C200.0280 (14)0.0224 (13)0.0219 (14)0.0072 (11)0.0094 (12)0.0052 (11)
C210.0269 (14)0.0158 (12)0.0219 (14)0.0021 (10)0.0130 (12)0.0033 (10)
C220.0233 (14)0.0168 (12)0.0229 (14)0.0011 (10)0.0119 (12)0.0029 (10)
Geometric parameters (Å, º) top
O1—C221.231 (3)C11—C121.389 (4)
C1—C21.395 (3)C11—H110.9300
C1—C61.405 (3)C12—C131.388 (4)
C1—H10.9300C12—H120.9300
C2—C31.382 (4)C13—H130.9300
C2—H20.9300C14—C221.501 (4)
C3—C41.397 (4)C14—C151.525 (3)
C3—H30.9300C15—C161.508 (3)
C4—C51.392 (4)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.402 (4)C16—C171.393 (4)
C5—H50.9300C16—C211.397 (4)
C6—C71.495 (3)C17—C181.388 (4)
C7—C141.362 (4)C17—H170.9300
C7—C81.498 (3)C18—C191.403 (4)
C8—C131.398 (4)C18—H180.9300
C8—C91.404 (4)C19—C201.396 (4)
C9—C101.394 (4)C19—H190.9300
C9—H90.9300C20—C211.402 (4)
C10—C111.391 (4)C20—H200.9300
C10—H100.9300C21—C221.488 (3)
C2—C1—C6121.0 (2)C11—C12—H12120.1
C2—C1—H1119.5C12—C13—C8121.0 (3)
C6—C1—H1119.5C12—C13—H13119.5
C3—C2—C1120.0 (2)C8—C13—H13119.5
C3—C2—H2120.0C7—C14—C22128.9 (2)
C1—C2—H2120.0C7—C14—C15123.2 (2)
C2—C3—C4120.0 (2)C22—C14—C15107.8 (2)
C2—C3—H3120.0C16—C15—C14104.3 (2)
C4—C3—H3120.0C16—C15—H15A110.9
C5—C4—C3120.1 (2)C14—C15—H15A110.9
C5—C4—H4120.0C16—C15—H15B110.9
C3—C4—H4120.0C14—C15—H15B110.9
C4—C5—C6120.8 (2)H15A—C15—H15B108.9
C4—C5—H5119.6C17—C16—C21120.1 (2)
C6—C5—H5119.6C17—C16—C15128.9 (2)
C5—C6—C1118.1 (2)C21—C16—C15110.9 (2)
C5—C6—C7122.1 (2)C18—C17—C16118.6 (2)
C1—C6—C7119.5 (2)C18—C17—H17120.7
C14—C7—C6126.2 (2)C16—C17—H17120.7
C14—C7—C8119.0 (2)C17—C18—C19121.6 (2)
C6—C7—C8114.6 (2)C17—C18—H18119.2
C13—C8—C9118.6 (2)C19—C18—H18119.2
C13—C8—C7120.4 (2)C20—C19—C18120.0 (3)
C9—C8—C7121.0 (2)C20—C19—H19120.0
C10—C9—C8120.4 (3)C18—C19—H19120.0
C10—C9—H9119.8C19—C20—C21118.1 (2)
C8—C9—H9119.8C19—C20—H20120.9
C11—C10—C9120.0 (3)C21—C20—H20120.9
C11—C10—H10120.0C16—C21—C20121.5 (2)
C9—C10—H10120.0C16—C21—C22109.9 (2)
C12—C11—C10120.2 (3)C20—C21—C22128.6 (2)
C12—C11—H11119.9O1—C22—C21125.0 (2)
C10—C11—H11119.9O1—C22—C14128.5 (2)
C13—C12—C11119.8 (3)C21—C22—C14106.5 (2)
C13—C12—H12120.1
C6—C1—C2—C31.1 (4)C6—C7—C14—C15163.5 (2)
C1—C2—C3—C40.1 (4)C8—C7—C14—C1510.9 (4)
C2—C3—C4—C50.5 (4)C7—C14—C15—C16170.5 (2)
C3—C4—C5—C60.2 (4)C22—C14—C15—C166.8 (3)
C4—C5—C6—C10.7 (4)C14—C15—C16—C17174.2 (2)
C4—C5—C6—C7175.1 (2)C14—C15—C16—C217.2 (3)
C2—C1—C6—C51.4 (4)C21—C16—C17—C180.5 (4)
C2—C1—C6—C7175.9 (2)C15—C16—C17—C18178.1 (2)
C5—C6—C7—C1436.5 (4)C16—C17—C18—C191.8 (4)
C1—C6—C7—C14149.2 (3)C17—C18—C19—C202.0 (4)
C5—C6—C7—C8138.0 (2)C18—C19—C20—C210.0 (4)
C1—C6—C7—C836.2 (3)C17—C16—C21—C202.5 (4)
C14—C7—C8—C13123.9 (3)C15—C16—C21—C20176.3 (2)
C6—C7—C8—C1351.1 (3)C17—C16—C21—C22176.4 (2)
C14—C7—C8—C956.4 (3)C15—C16—C21—C224.8 (3)
C6—C7—C8—C9128.6 (2)C19—C20—C21—C162.2 (4)
C13—C8—C9—C102.1 (4)C19—C20—C21—C22176.5 (2)
C7—C8—C9—C10178.2 (2)C16—C21—C22—O1178.9 (2)
C8—C9—C10—C110.2 (4)C20—C21—C22—O12.2 (4)
C9—C10—C11—C120.9 (4)C16—C21—C22—C140.2 (3)
C10—C11—C12—C130.1 (4)C20—C21—C22—C14179.1 (2)
C11—C12—C13—C81.9 (4)C7—C14—C22—O18.6 (4)
C9—C8—C13—C122.9 (4)C15—C14—C22—O1174.4 (2)
C7—C8—C13—C12177.3 (2)C7—C14—C22—C21172.8 (2)
C6—C7—C14—C2213.2 (4)C15—C14—C22—C214.2 (3)
C8—C7—C14—C22172.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C14–C16/C21/C22, C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.932.913.763 (3)153
C11—H11···Cg2ii0.932.993.712 (3)136
C15—H15B···Cg4iii0.972.923.640 (3)132
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y+3/2, z1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H16O
Mr296.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.1634 (18), 17.570 (3), 10.717 (4)
β (°) 117.89 (2)
V3)1525.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn 724
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2006)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11746, 2680, 2587
Rint0.058
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.145, 1.25
No. of reflections2680
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: CrystalClear (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C14–C16/C21/C22, C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.932.913.763 (3)153
C11—H11···Cg2ii0.932.993.712 (3)136
C15—H15B···Cg4iii0.972.923.640 (3)132
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y+3/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

We wish to thank Trinity College Dublin for financial support, Trinity College Postgraduate Research Studentships.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011). Acta Cryst. E67, o2306–o2307.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o2875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBorbone, F., Carella, A., Ricciotti, L., Tuzi, A., Roviello, A. & Barsella, A. (2011). Dyes Pigm. 88, 290–295.  Web of Science CSD CrossRef CAS Google Scholar
First citationBuckle, D., Morgan, N., Ross, J., Smith, H. & Spicer, B. (1973). J. Med. Chem. 16, 1334–1339.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChanda, D., Bhushan, S., Guru, S. K., Shanker, K., Wani, Z. A., Rah, B. A., Luqman, S., Mondhe, D. M., Pal, A. & Negi, A. S. (2012). Eur. J. Pharm. Sci. 47, 988–995.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, Y. H., Chang, F. R., Lu, M. C., Hsieh, P. W., Wu, M. J., Du, Y. C. & Wu, Y. C. (2008). Molecules, 13, 255–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinges, J., Akritopoulou-Zanze, I., Arnold, L. D., Barlozzari, T., Bousquet, P. F., Cunha, G. A., Ericsson, A. M., Iwasaki, N., Michaelides, M. R., Ogawa, N., Phelan, K. M., Rafferty, P., Sowin, T. J., Stewart, K. D., Tokuyama, R., Xia, Z. & Zhang, H. Q. (2006). Bioorg. Med. Chem. Lett. 16, 4371–4375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrell, R., Kelleher, F. & Sheridan, H. (1996). J. Nat. Prod. 59, 446–447.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrankish, N., Farrell, R. & Sheridan, H. (2004). J. Pharm. Pharmacol. 56, 1423–1427.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrankish, N. & Sheridan, H. (2012). J. Med. Chem. 55, 5497–5505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFu, T. L. & Wang, I. J. (2008). Dyes Pigm. 76, 590–595.  Web of Science CrossRef CAS Google Scholar
First citationHerzog, M. N., Chien, J. C. W. & Rausch, M. D. (2002). J. Organomet. Chem. 654, 29–35.  Web of Science CrossRef CAS Google Scholar
First citationIto, T., Tanaka, T., Iinuma, M., Nakaya, K., Takahashi, Y., Sawa, R., Murata, J. & Darnaedi, D. (2004). J. Nat. Prod. 67, 932–937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaki, B., Orjala, J., Bürgi, H. R. & Sticher, O. (1999). Pharma. Biol. 37, 138–143.  Web of Science CrossRef Google Scholar
First citationKou, X., Shen, K., An, Y., Qi, S., Dai, W.-X. & Yin, Z. (2012). Phytother. Res. 26, 988–994.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, H., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2756.  CSD CrossRef IUCr Journals Google Scholar
First citationLin, H.-Y., Chang, C.-W., Tsai, H.-Y., Luo, M.-H. & Chen, K.-Y. (2012). Acta Cryst. E68, o3075–o3076.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). CrystalClear. Rigaku Corporation. Tokyo. Japan.  Google Scholar
First citationRukachaisirikul, V., Buadam, S., Sukpondma, Y., Phongpaichit, S., Sakayaroj, J. & Hutadilok-Towatana, N. (2013). Phytochem. Lett. 6, 135–138.  Web of Science CrossRef CAS Google Scholar
First citationSchumann, H., Stenzel, O., Girgsdies, F. & Halterman, R. L. (2001). Organometallics, 20, 1743–1751.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheridan, H., Butterly, S., Walsh, J. & Frankish, N. (2008). Bioorg. Med. Chem. 16, 248–54.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Frankish, N. & Farrell, R. (1999a). Eur. J. Med. Chem. 34, 953–966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Frankish, N. & Farrell, R. (1999b). Planta Med. 65, 271–272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Lemon, S., Frankish, N., McCardle, P., Higgins, T., James, J. & Bhandari, P. (1990). Eur. J. Med. Chem. 25, 603–608.  CrossRef CAS Web of Science Google Scholar
First citationSheridan, H., Walsh, J., Cogan, C., Jordan, M., McCabe, T., Passante, E. & Frankish, N. (2009b). Bioorg. Med. Chem. Lett. 19, 5927–5930.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheridan, H., Walsh, J., Jordan, M., Cogan, C. & Frankish, N. (2009a). Eur. J. Med. Chem. 44, 5018–5022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVacca, J., Dorsey, B., Schleif, W., Levin, R., McDaniel, S., Darke, P., Zugay, J., Quinterno, J., Blahy, O. & Roth, E. (1994). Proc. Natl Acad. Sci. USA, 91, 4096–4100.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1306-o1307
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds