organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{5-Bromo-2-[(tri­phenyl­phosphanyl­­idene)amino]­phen­yl}-4,5-di­hydro-1,2,3-oxa­diazol-3-ylium-5-olate

aDepartment of Chemistry, Wright State University, Dayton, OH 45435, USA
*Correspondence e-mail: david.grossie@wright.edu

(Received 24 June 2013; accepted 27 June 2013; online 3 July 2013)

In general, sydnone compounds are synthesized with an aromatic substituent at the N-3 position and this feature adds to the stability of the mesoionic five-membered heterocyclic ring. In the title compound, C26H19BrN3O2P, the aromatic substitutent is tri­phenyl­phosphine 4-bromo­phenyl­imide. The dihedral angle between the planes of the sydnone and the attached phenyl ring is 45.98 (7)°. In the crystal, the mol­ecules packed as pairs in which the sydnone rings lie in parallel planes separated by 0.849 Å and sandwiched between two parallel phenyl rings. The mol­ecules inter­act through cyclic C—H⋯O=C hydrogen bonds.

Related literature

For more information on the sydnone family of compounds, see: Ohta & Kato (1969[Ohta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp 117-248. New York: Academic Press.]). For their synthesis and structures, see: Grossie & Turnbull (1992[Grossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377-379.]); Grossie et al. (2001[Grossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985-o987.], 2007[Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042-o2043.]); Hope & Thiessen (1969[Hope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237-1247.]); Hodson & Turnbull (1985[Hodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223-1227.]); Ollis & Ramsden (1976[Ollis, W. D. & Ramsden, C. A. (1976). Adv. Heterocycl. Chem. 19, 1-122.]); Riddle et al. (2004a[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977-o978.],b[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568-o1570.],c[Riddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258-o259.]).

[Scheme 1]

Experimental

Crystal data
  • C26H19BrN3O2P

  • Mr = 516.33

  • Monoclinic, P 21 /n

  • a = 7.5207 (8) Å

  • b = 13.8672 (15) Å

  • c = 21.816 (2) Å

  • β = 95.449 (2)°

  • V = 2264.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 173 K

  • 0.43 × 0.30 × 0.28 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.50, Tmax = 0.58

  • 46513 measured reflections

  • 6964 independent reflections

  • 5914 reflections with I > 2.0σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 0.92

  • 6964 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H41⋯O5i 0.91 2.48 3.344 (2) 159
C72—H721⋯O5i 0.94 2.37 3.297 (2) 173
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

In the title compound the bond distances and angles are within the expected ranges. The sydnone ring (O1– C5) and the phenyl ring (C31 – C36) in the structure are planar, all deviations from the mean plane being less than 0.1 Å. The angle between the planes of the sydnone and the attached phenyl ring is 45.98°. The phenyl ring containing the bromine is stacked through the unit cell in a herringbone pattern in the b direction of the unit cell with slippage in the stack of 4.466 Å. The molecules are oriented in an alternating pattern in these herringbone stacks. The analysis of short ring interactions shows a distance between the sydnone and the phenyl ring (C31 – C36) in a symmetry related molecule as 5.8852 (1) Å. A H - π-ring interaction between C(33) and H(331) has a distance of 2.68 Å. The analysis of the X—Y Cg(Pi-Ring) interactions show that the interaction between the sydnone ring and Br(35) have a X···Cg of 3.9267 Å. The bromine atom shows flattening in the direction of the bond to C(35). The analysis of short intra and inter-molecular forces reveals multiple contacts within the structure, two of which have parameters suggestive of hydrogen bonding.

Related literature top

For more information on the sydnone family of compounds, see: Ohta & Kato (1969). For their synthesis and structures, see: Grossie & Turnbull (1992); Grossie et al. (2001, 2007); Hope & Thiessen (1969); Hodson & Turnbull (1985); Ollis & Ramsden (1976); Riddle et al. (2004a,b,c).

Experimental top

Triphenylphosphine-2-(4-bromo-3-sydnonyl)phenyl imide was prepared from 3-(2-amino-5-bromophenyl)sydnone with an 85% yield via a Mitsunobu process involving treatment with triphenylphosphine (1.1 eq) then diisopropyl azodicarboxylate (1.1 eq) in dry tetrahydrofuran at room temperature for 4 h.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
3-{5-Bromo-2-[(triphenylphosphanylidene)amino]phenyl}-4,5-dihydro-1,2,3-oxadiazol-3-ylium-5-olate top
Crystal data top
C26H19BrN3O2PF(000) = 1048
Mr = 516.33Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8702 reflections
a = 7.5207 (8) Åθ = 5–60°
b = 13.8672 (15) ŵ = 1.92 mm1
c = 21.816 (2) ÅT = 173 K
β = 95.449 (2)°Block, yellow
V = 2264.9 (4) Å30.43 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5914 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 31.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1010
Tmin = 0.50, Tmax = 0.58k = 1919
46513 measured reflectionsl = 3030
6964 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 1.42P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.002
6964 reflectionsΔρmax = 0.86 e Å3
298 parametersΔρmin = 0.48 e Å3
0 restraints
Crystal data top
C26H19BrN3O2PV = 2264.9 (4) Å3
Mr = 516.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5207 (8) ŵ = 1.92 mm1
b = 13.8672 (15) ÅT = 173 K
c = 21.816 (2) Å0.43 × 0.30 × 0.28 mm
β = 95.449 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
6964 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
5914 reflections with I > 2.0σ(I)
Tmin = 0.50, Tmax = 0.58Rint = 0.029
46513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.92Δρmax = 0.86 e Å3
6964 reflectionsΔρmin = 0.48 e Å3
298 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

Sydnone ring

0.7299 (5) x - 0.6166 (6) y + 0.2950 (7) z = -0.190 (11)

* -0.006 (1) O1 * 0.004 (1) N2 * 0.001 (1) N3 * -0.007 (1) C4 * 0.008 (1) C5

Phenyl ring at N(3)

-0.4830 (5) x + 0.7617 (4) y + 0.4318 (5) z = 10.247 (6)

* -0.007 (1) C31 * 0.003 (1) C32 * 0.004 (1) C33 * -0.008 (1) C34 * 0.004 (1) C35 * 0.004 (1) C36 * 0.066 (1) Br35

Angle to previous plane (with approximate e.s.d.) = 45.99 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br350.226245 (18)0.622503 (11)0.439272 (7)0.0272
C350.45423 (17)0.65812 (10)0.47685 (6)0.0192
C360.55726 (17)0.72268 (9)0.44721 (6)0.0179
C310.72208 (16)0.74960 (9)0.47645 (6)0.0159
N30.83407 (14)0.81101 (8)0.44354 (5)0.0172
C40.93052 (19)0.88673 (10)0.46540 (7)0.0209
C51.02656 (19)0.91890 (10)0.41683 (7)0.0233
O51.13573 (15)0.98178 (8)0.41029 (6)0.0315
O10.97050 (15)0.85637 (8)0.36779 (5)0.0261
N20.85054 (17)0.78868 (9)0.38551 (6)0.0231
C320.78948 (17)0.71586 (9)0.53535 (6)0.0165
N370.95384 (15)0.74604 (8)0.55906 (5)0.0194
P381.05534 (4)0.74521 (2)0.625347 (15)0.0158
C811.21291 (17)0.84316 (9)0.62612 (6)0.0177
C821.22728 (19)0.91448 (11)0.67099 (7)0.0248
C831.3422 (2)0.99241 (12)0.66550 (8)0.0301
C841.44642 (19)0.99724 (11)0.61692 (8)0.0290
C851.4353 (2)0.92545 (11)0.57256 (8)0.0280
C861.3175 (2)0.84922 (10)0.57645 (7)0.0238
C611.18310 (17)0.63657 (9)0.64233 (6)0.0180
C621.12610 (18)0.55137 (10)0.61256 (7)0.0223
C631.2185 (2)0.46591 (11)0.62551 (8)0.0264
C641.3693 (2)0.46523 (11)0.66730 (7)0.0265
C651.4274 (2)0.54983 (11)0.69687 (7)0.0263
C661.33492 (19)0.63547 (10)0.68462 (7)0.0227
C710.91867 (17)0.76109 (10)0.68830 (6)0.0179
C720.81337 (19)0.84392 (10)0.68936 (7)0.0225
C730.6995 (2)0.85532 (11)0.73560 (7)0.0260
C740.68674 (19)0.78413 (11)0.77958 (6)0.0247
C750.7890 (2)0.70123 (12)0.77832 (7)0.0272
C760.90552 (19)0.68980 (11)0.73294 (7)0.0244
C330.67735 (17)0.65022 (10)0.56305 (6)0.0190
C340.51400 (18)0.62114 (10)0.53432 (6)0.0196
H3610.51900.74850.40810.0233*
H410.92870.90950.50440.0256*
H8211.16020.90970.70570.0301*
H8311.34741.04160.69530.0364*
H8411.52331.04890.61390.0343*
H8511.50540.92880.53840.0345*
H8611.30780.80160.54610.0291*
H6211.02730.55230.58290.0268*
H6311.18040.40860.60560.0317*
H6411.43080.40730.67540.0314*
H6511.52690.54940.72550.0320*
H6611.37310.69270.70410.0277*
H7210.81870.89180.65930.0263*
H7310.63100.91220.73600.0311*
H7410.61020.79000.81100.0298*
H7510.77800.65290.80820.0338*
H7610.97200.63340.73260.0299*
H3310.71520.62450.60170.0224*
H3410.44310.57850.55320.0248*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br350.01877 (7)0.03313 (9)0.02875 (8)0.00838 (5)0.00334 (5)0.00226 (6)
C350.0152 (5)0.0202 (6)0.0220 (6)0.0033 (5)0.0010 (4)0.0017 (5)
C360.0188 (6)0.0182 (6)0.0167 (5)0.0006 (5)0.0014 (4)0.0003 (4)
C310.0170 (5)0.0150 (5)0.0164 (5)0.0023 (4)0.0045 (4)0.0006 (4)
N30.0173 (5)0.0171 (5)0.0175 (5)0.0011 (4)0.0037 (4)0.0016 (4)
C40.0226 (6)0.0191 (6)0.0212 (6)0.0050 (5)0.0028 (5)0.0023 (5)
C50.0210 (6)0.0209 (6)0.0287 (7)0.0002 (5)0.0049 (5)0.0058 (5)
O50.0266 (5)0.0285 (5)0.0405 (6)0.0077 (4)0.0084 (5)0.0106 (5)
O10.0312 (5)0.0226 (5)0.0267 (5)0.0022 (4)0.0148 (4)0.0027 (4)
N20.0294 (6)0.0205 (5)0.0209 (5)0.0027 (5)0.0105 (5)0.0004 (4)
C320.0162 (5)0.0166 (5)0.0169 (5)0.0007 (4)0.0029 (4)0.0007 (4)
N370.0173 (5)0.0234 (5)0.0171 (5)0.0047 (4)0.0003 (4)0.0017 (4)
P380.01456 (14)0.01639 (14)0.01647 (14)0.00207 (11)0.00152 (11)0.00093 (11)
C810.0151 (5)0.0163 (5)0.0213 (6)0.0010 (4)0.0002 (4)0.0015 (5)
C820.0191 (6)0.0284 (7)0.0265 (7)0.0044 (5)0.0006 (5)0.0063 (6)
C830.0233 (6)0.0269 (7)0.0391 (8)0.0062 (6)0.0033 (6)0.0099 (6)
C840.0191 (6)0.0218 (7)0.0453 (9)0.0060 (5)0.0017 (6)0.0023 (6)
C850.0242 (7)0.0246 (7)0.0365 (8)0.0034 (5)0.0093 (6)0.0052 (6)
C860.0256 (6)0.0196 (6)0.0272 (7)0.0030 (5)0.0082 (5)0.0005 (5)
C610.0169 (5)0.0172 (6)0.0204 (6)0.0010 (4)0.0040 (5)0.0010 (4)
C620.0180 (6)0.0210 (6)0.0281 (7)0.0034 (5)0.0036 (5)0.0023 (5)
C630.0236 (6)0.0191 (6)0.0376 (8)0.0019 (5)0.0079 (6)0.0024 (6)
C640.0262 (7)0.0224 (6)0.0321 (7)0.0054 (5)0.0086 (6)0.0054 (6)
C650.0247 (7)0.0284 (7)0.0254 (7)0.0044 (6)0.0001 (5)0.0036 (5)
C660.0232 (6)0.0219 (6)0.0224 (6)0.0007 (5)0.0008 (5)0.0003 (5)
C710.0159 (5)0.0214 (6)0.0164 (5)0.0024 (4)0.0008 (4)0.0010 (5)
C720.0211 (6)0.0226 (6)0.0243 (6)0.0001 (5)0.0051 (5)0.0038 (5)
C730.0229 (6)0.0262 (7)0.0298 (7)0.0025 (5)0.0076 (6)0.0006 (6)
C740.0209 (6)0.0342 (7)0.0194 (6)0.0022 (5)0.0046 (5)0.0010 (5)
C750.0269 (7)0.0349 (8)0.0202 (6)0.0010 (6)0.0049 (5)0.0086 (6)
C760.0239 (6)0.0266 (7)0.0231 (7)0.0049 (5)0.0046 (5)0.0069 (5)
C330.0180 (6)0.0205 (6)0.0185 (6)0.0013 (5)0.0024 (5)0.0029 (5)
C340.0177 (6)0.0195 (6)0.0221 (6)0.0035 (5)0.0043 (5)0.0013 (5)
Geometric parameters (Å, º) top
Br35—C351.8945 (13)C85—C861.387 (2)
C35—C361.3838 (18)C85—H8510.954
C35—C341.3892 (19)C86—H8610.934
C36—C311.3902 (17)C61—C621.3959 (19)
C36—H3610.945C61—C661.3983 (19)
C31—N31.4371 (16)C62—C631.389 (2)
C31—C321.4154 (17)C62—H6210.938
N3—C41.3381 (17)C63—C641.386 (2)
N3—N21.3206 (16)C63—H6310.938
C4—C51.4101 (19)C64—C651.389 (2)
C4—H410.908C64—H6410.935
C5—O51.2154 (17)C65—C661.389 (2)
C5—O11.4101 (19)C65—H6510.928
O1—N21.3822 (15)C66—H6610.932
C32—N371.3598 (16)C71—C721.3966 (19)
C32—C331.4148 (18)C71—C761.3978 (18)
N37—P381.5698 (12)C72—C731.393 (2)
P38—C811.8016 (13)C72—H7210.936
P38—C611.8062 (13)C73—C741.386 (2)
P38—C711.8053 (13)C73—H7310.943
C81—C821.3885 (19)C74—C751.385 (2)
C81—C861.4006 (19)C74—H7410.939
C82—C831.396 (2)C75—C761.392 (2)
C82—H8210.951C75—H7510.944
C83—C841.378 (2)C76—H7610.929
C83—H8310.941C33—C341.3850 (18)
C84—C851.385 (2)C33—H3310.935
C84—H8410.927C34—H3410.920
Br35—C35—C36119.37 (10)C81—C86—C85120.13 (14)
Br35—C35—C34119.76 (10)C81—C86—H861119.7
C36—C35—C34120.86 (12)C85—C86—H861120.2
C35—C36—C31118.28 (12)P38—C61—C62118.47 (10)
C35—C36—H361122.1P38—C61—C66121.98 (10)
C31—C36—H361119.6C62—C61—C66119.55 (12)
C36—C31—N3117.99 (11)C61—C62—C63120.13 (13)
C36—C31—C32123.69 (11)C61—C62—H621119.9
N3—C31—C32118.24 (11)C63—C62—H621120.0
C31—N3—C4127.63 (11)C62—C63—C64120.12 (14)
C31—N3—N2116.92 (11)C62—C63—H631120.3
C4—N3—N2115.38 (11)C64—C63—H631119.6
N3—C4—C5106.23 (12)C63—C64—C65120.08 (14)
N3—C4—H41123.4C63—C64—H641119.3
C5—C4—H41130.4C65—C64—H641120.6
C4—C5—O5135.64 (15)C64—C65—C66120.20 (14)
C4—C5—O1103.76 (11)C64—C65—H651120.3
O5—C5—O1120.59 (13)C66—C65—H651119.5
C5—O1—N2111.20 (10)C61—C66—C65119.92 (13)
O1—N2—N3103.40 (11)C61—C66—H661119.2
C31—C32—N37118.55 (11)C65—C66—H661120.8
C31—C32—C33115.07 (11)P38—C71—C72118.53 (10)
N37—C32—C33126.35 (12)P38—C71—C76121.79 (10)
C32—N37—P38133.88 (10)C72—C71—C76119.49 (12)
N37—P38—C81105.37 (6)C71—C72—C73119.60 (13)
N37—P38—C61113.44 (6)C71—C72—H721120.7
C81—P38—C61106.88 (6)C73—C72—H721119.7
N37—P38—C71115.95 (6)C72—C73—C74120.53 (14)
C81—P38—C71108.81 (6)C72—C73—H731118.4
C61—P38—C71106.02 (6)C74—C73—H731121.0
P38—C81—C82123.42 (10)C73—C74—C75120.17 (13)
P38—C81—C86117.07 (10)C73—C74—H741122.0
C82—C81—C86119.40 (12)C75—C74—H741117.8
C81—C82—C83119.89 (14)C74—C75—C76119.79 (13)
C81—C82—H821120.0C74—C75—H751119.4
C83—C82—H821120.1C76—C75—H751120.8
C82—C83—C84120.36 (14)C71—C76—C75120.40 (13)
C82—C83—H831119.2C71—C76—H761121.1
C84—C83—H831120.5C75—C76—H761118.5
C83—C84—C85120.07 (14)C32—C33—C34122.22 (12)
C83—C84—H841119.7C32—C33—H331119.2
C85—C84—H841120.2C34—C33—H331118.6
C84—C85—C86120.10 (14)C35—C34—C33119.87 (12)
C84—C85—H851120.6C35—C34—H341119.4
C86—C85—H851119.3C33—C34—H341120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O5i0.912.483.344 (2)159
C72—H721···O5i0.942.373.297 (2)173
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H19BrN3O2P
Mr516.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.5207 (8), 13.8672 (15), 21.816 (2)
β (°) 95.449 (2)
V3)2264.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.43 × 0.30 × 0.28
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.50, 0.58
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
46513, 6964, 5914
Rint0.029
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 0.92
No. of reflections6964
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.48

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O5i0.912.483.344 (2)159
C72—H721···O5i0.942.373.297 (2)173
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors would like to acknowledge the diffractometer time granted by A. Hunter, Youngstown State University

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrossie, D. A. & Turnbull, K. (1992). Acta Cryst. C48, 377–379.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrossie, D. A., Turnbull, K. & Krein, D. M. (2001). Acta Cryst. E57, o985–o987.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHodson, S. J. & Turnbull, K. (1985). J. Heterocycl. Chem. 22, 1223–1227.  CrossRef CAS Google Scholar
First citationHope, H. & Thiessen, W. E. (1969). Acta Cryst. B25, 1237–1247.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOhta, M. & Kato, H. (1969). Nonbenzenoid Aromatics, edited by J. P. Snyder, pp 117–248. New York: Academic Press.  Google Scholar
First citationOllis, W. D. & Ramsden, C. A. (1976). Adv. Heterocycl. Chem. 19, 1–122.  CrossRef CAS Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004a). Acta Cryst. E60, o977–o978.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004b). Acta Cryst. E60, o1568–o1570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddle, G. B., Grossie, D. A. & Turnbull, K. (2004c). Acta Cryst. E60, o258–o259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds