metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m433-m434

{2-[2,2-Bis(4,4-di­methyl-4,5-di­hydro-1,3-oxazol-2-yl-κN)prop­yl]pyridine}­di­chlorido­iron(II)

aDipartimento di Ingegneria, Università di Napoli 'Parthenope', Centro Direzionale di Napoli, Isola C4, 80143 Napoli, Italy, bDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and cDipartimento di Chimica e Biologia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Salerno), Italy
*Correspondence e-mail: giuseppina.roviello@uniparthenope.it

(Received 25 June 2013; accepted 30 June 2013; online 6 July 2013)

The title compound,[FeCl2(C18H25N3O2)], has a distorted tetra­hedral Cl2N2 coordination of the FeII atom as a result of the constraints imposed by the 2-[2,2-bis­(4,4-dimethyl-4,5-di­hydro-1,3-oxazol-2-yl)prop­yl]pyridine ligand. The pyridine ring is almost perpendicular to the six-membered chelated ring containing the metal atom [dihedral angle between their mean planes = 88.5 (1)°].

Related literature

For the analogous bis­(oxazoline)iron(II) complex, see: Ferro et al. (2007[Ferro, R., Milione, S., Bertolasi, V., Capacchione, C. & Grassi, A. (2007). Macromolecules, 40, 8544-8546.]). For active catalysts used in atom-transfer radical polymerization (ATRP) reactions, see: Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Kamigaito et al. (2001[Kamigaito, M., Ando, T. & Sawamoto, M. (2001). Chem. Rev. 101, 3689-3745.]); De Roma et al. (2011[De Roma, A., Yang, H.-J., Milione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). Inorg. Chem. Commun. 14, 542-544.]); Ferro et al. (2009[Ferro, R., Milione, S., Caruso, T. & Grassi, A. (2009). J. Mol. Catal. A: Chemical 307, 128-133.]). For similar salicylaldiminato complexes, see: O`Reilly et al. (2003[O`Reilly, R. K., Gibson, V. C., White, A. J. P. & Williams, D. J. (2003). J. Am. Chem. Soc. 125, 8450-8451.]). For structural data on metal complexes, see: Li, Lamberti, Mazzeo et al. (2012[Li, G., Lamberti, M., Mazzeo, M., Pappalardo, D., Roviello, G. & Pellecchia, C. (2012). Organometallics 31, 1180-1188.]); Li, Lamberti, Roviello et al. (2012[Li, G., Lamberti, M., Roviello, G. & Pellecchia, C. (2012). Organometallics 31, 6772-6778.]); Busico et al. (2006[Busico, V., Cipullo, R., Pellecchia, R., Ronca, S., Roviello, G. & Talarico, G. (2006). Proc. Natl. Acad. Sci. USA. 103, 15321-15326.]); D`Auria et al. (2012[D`Auria, I., Lamberti, M., Mazzeo, M., Milione, S., Roviello, G. & Pellecchia, C. (2012). Chem. Eur. J. 18, 2349-2360.]). For N-rich aromatic heterocycles, see: Carella et al. (2012[Carella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116-125.]), Roviello et al. (2012[Roviello, G. N., Roviello, G., Musumeci, D., Bucci, E. M. & Pedone, C. (2012). Amino Acids 43, 1615-1623.]); Milione & Bertolasi (2011[Milione, S. & Bertolasi, V. (2011). Tetrahedron Lett. 52, 3570-3574.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C18H25N3O2)]

  • Mr = 442.16

  • Monoclinic, P 21 /c

  • a = 10.102 (2) Å

  • b = 13.925 (3) Å

  • c = 14.764 (2) Å

  • β = 105.27 (1)°

  • V = 2003.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.903

  • 16483 measured reflections

  • 4578 independent reflections

  • 3033 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.083

  • S = 1.01

  • 4578 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Metal complexes containing bis(oxazoline) ligands have been widely investigated in the field of homogeneous and asymmetric catalysis. This type of ligands could stabilize the pseudotetrahedral coordination environment of iron(II) affording to efficient ATRP catalyst. The complex Fe(box-py)Cl2 is analogous to Fe(box)Cl2, described in the literature (Ferro et al., 2007) and has been investigated in order to obtaining an improved understanding of the factors influencing efficient ATRP catalysis in iron-based systems. The title compound Fe(box-py)Cl2 (box-py = 2-[2,2-Bis-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-propyl]-pyridine), C18H25Cl2Fe1N3O2, has been used as catalyst in the framework of still not published studies on atom transfer radical polymerization (ATRP) of styrene and methylmethacrylate. The molecular structure of Fe(box-py)Cl2 shows a distorted tetrahedral geometry, due to the constraints imposed by the ligand (N1—Fe1—N3 = 88.85 (7)°; Cl1—Fe1—Cl2 = 113.81 (3)°). The Fe—N and Fe—Cl bond distances are similar to that found for Fe(box)Cl2 and for similar saliclylaldiminato complex (O`Reilly et al., 2003). Finally, the heteroaromatic ring is almost perpendicular to the six-membered chelated ring (angle between their mean planes is equal to 88.5 (1)°) and shows the nitrogen atom pointing towards the coordination environment of the iron.

Related literature top

For the analogous bis(oxazoline)iron(II) complex, see: Ferro et al. (2007). For ATRP active catalyst, see: Matyjaszewski & Xia (2001); Kamigaito et al. (2001); De Roma et al. (2011); Ferro et al. (2009). For similar salicylaldiminato complexes, see: O`Reilly et al. (2003). For structural data on metal complexes, see: Li, Lamberti, Mazzeo et al. (2012); Li, Lamberti, Roviello et al. (2012); Busico et al. (2006); D`Auria et al. (2012). For N-rich aromatic heterocycles, see: Carella et al. (2012), Roviello et al. (2012), Milione & Bertolasi (2011).

Experimental top

Fe(box-py)Cl2 was obtained by the reaction of FeCl2 with the ligand. Details for the synthesis will be reported in forthcoming work. Prismatic yellow crystals of the title complex were obtained by slow evaporation of a methylene chloride solution at room temperature.

Refinement top

All the H atoms were generated stereochemically and refined by the riding model with C–H in the range 0.95 Å–0.99 Å and Uiso(H)=1.2Ueq(C); (1.5 for H atoms of methyl groups).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. Thermal ellipsoids are drawn at 30% probability level.
{2-[2,2-Bis(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl-κN)propyl]pyridine}dichloridoiron(II) top
Crystal data top
[FeCl2(C18H25N3O2)]F(000) = 920
Mr = 442.16Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 186 reflections
a = 10.102 (2) Åθ = 3.3–21.8°
b = 13.925 (3) ŵ = 1.04 mm1
c = 14.764 (2) ÅT = 173 K
β = 105.27 (1)°Prism, yellow
V = 2003.5 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4578 independent reflections
Radiation source: fine-focus sealed tube3033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1717
Tmin = 0.820, Tmax = 0.903l = 1719
16483 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.0658P]
where P = (Fo2 + 2Fc2)/3
4578 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[FeCl2(C18H25N3O2)]V = 2003.5 (6) Å3
Mr = 442.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.102 (2) ŵ = 1.04 mm1
b = 13.925 (3) ÅT = 173 K
c = 14.764 (2) Å0.20 × 0.10 × 0.10 mm
β = 105.27 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3033 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.903Rint = 0.054
16483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
4578 reflectionsΔρmin = 0.30 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.89069 (4)0.34069 (2)0.30170 (2)0.01876 (10)
Cl10.87074 (7)0.33484 (5)0.14547 (4)0.03170 (17)
Cl21.10937 (7)0.33479 (5)0.39080 (5)0.03539 (17)
O10.58286 (18)0.18564 (11)0.38732 (12)0.0238 (4)
O20.59661 (18)0.52345 (11)0.36945 (12)0.0245 (4)
N10.7675 (2)0.24265 (13)0.34819 (13)0.0172 (4)
N30.7766 (2)0.45103 (13)0.33782 (13)0.0177 (4)
N20.5051 (2)0.35734 (15)0.19970 (14)0.0257 (5)
C10.7779 (3)0.13552 (16)0.34031 (16)0.0193 (5)
C20.6654 (3)0.10073 (17)0.38508 (19)0.0267 (6)
H2A0.60960.04940.34680.027*
H2B0.70590.07590.44930.027*
C30.6578 (3)0.26111 (16)0.37190 (16)0.0177 (5)
C40.6652 (3)0.44283 (16)0.36183 (15)0.0169 (5)
C50.6871 (3)0.60246 (17)0.36051 (19)0.0268 (6)
H5A0.73040.63130.42250.027*
H5B0.63590.65290.31830.027*
C60.7948 (3)0.55571 (17)0.31880 (18)0.0244 (6)
C70.7456 (3)0.11024 (19)0.23679 (17)0.0309 (6)
H7A0.65250.13180.20520.031*
H7B0.75180.04050.22980.031*
H7C0.81160.14210.20860.031*
C80.9184 (3)0.10127 (19)0.3938 (2)0.0331 (7)
H8B0.98810.13170.36800.033*
H8A0.92370.03140.38780.033*
H8C0.93480.11850.46020.033*
C90.7624 (3)0.57103 (19)0.21363 (19)0.0373 (7)
H9B0.82590.53310.18800.037*
H9C0.77260.63920.20050.037*
H9A0.66800.55070.18440.037*
C100.9397 (3)0.5868 (2)0.3683 (2)0.0381 (7)
H10C0.95670.57570.43590.038*
H10B0.95060.65530.35680.038*
H10A1.00530.54960.34410.038*
C110.6263 (3)0.36275 (18)0.49971 (16)0.0267 (6)
H11A0.58050.30940.52250.027*
H11B0.59050.42380.51630.027*
H11C0.72530.35940.52870.027*
C120.4431 (3)0.35778 (17)0.34699 (16)0.0213 (5)
H12B0.40090.30280.37150.021*
H12A0.40520.41740.36670.021*
C130.5987 (2)0.35583 (16)0.39150 (15)0.0177 (5)
C140.4740 (3)0.35449 (17)0.10478 (16)0.0253 (6)
H140.54600.35880.07450.025*
C150.3403 (3)0.34549 (18)0.05079 (18)0.0332 (7)
H150.32060.34240.01570.033*
C160.2350 (3)0.34100 (19)0.09531 (19)0.0355 (7)
H160.14240.33490.05930.035*
C170.2649 (3)0.34528 (18)0.18914 (18)0.0263 (6)
H170.19370.34300.22020.026*
C180.4028 (3)0.35314 (16)0.24126 (16)0.0225 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0160 (2)0.02093 (18)0.02094 (18)0.00010 (16)0.00769 (14)0.00049 (15)
Cl10.0378 (4)0.0372 (4)0.0234 (3)0.0015 (3)0.0140 (3)0.0002 (3)
Cl20.0185 (4)0.0517 (4)0.0342 (3)0.0017 (3)0.0038 (3)0.0017 (3)
O10.0232 (11)0.0157 (9)0.0363 (10)0.0017 (7)0.0145 (8)0.0011 (7)
O20.0225 (11)0.0166 (9)0.0380 (10)0.0018 (7)0.0141 (8)0.0010 (8)
N10.0174 (12)0.0160 (10)0.0184 (10)0.0008 (8)0.0048 (9)0.0005 (8)
N30.0167 (12)0.0157 (10)0.0215 (10)0.0015 (8)0.0063 (9)0.0002 (8)
N20.0259 (13)0.0276 (12)0.0242 (11)0.0005 (10)0.0076 (9)0.0008 (9)
C10.0208 (15)0.0156 (12)0.0207 (12)0.0002 (10)0.0045 (10)0.0012 (10)
C20.0315 (17)0.0166 (13)0.0353 (15)0.0001 (11)0.0148 (12)0.0009 (11)
C30.0171 (14)0.0187 (12)0.0166 (12)0.0017 (10)0.0033 (10)0.0024 (10)
C40.0181 (14)0.0161 (12)0.0158 (11)0.0008 (10)0.0033 (10)0.0013 (10)
C50.0275 (17)0.0151 (13)0.0398 (15)0.0049 (11)0.0123 (13)0.0007 (11)
C60.0264 (16)0.0152 (13)0.0338 (14)0.0021 (11)0.0118 (12)0.0006 (11)
C70.0393 (19)0.0257 (14)0.0288 (14)0.0030 (13)0.0112 (13)0.0042 (12)
C80.0264 (17)0.0239 (14)0.0455 (17)0.0023 (12)0.0033 (13)0.0018 (13)
C90.054 (2)0.0259 (15)0.0365 (16)0.0012 (14)0.0201 (15)0.0082 (13)
C100.0278 (18)0.0258 (15)0.062 (2)0.0077 (13)0.0142 (15)0.0048 (14)
C110.0331 (17)0.0281 (15)0.0203 (12)0.0014 (12)0.0098 (11)0.0004 (11)
C120.0181 (14)0.0210 (13)0.0257 (13)0.0014 (10)0.0076 (10)0.0008 (11)
C130.0174 (13)0.0191 (12)0.0186 (11)0.0002 (10)0.0083 (10)0.0001 (10)
C140.0310 (16)0.0229 (13)0.0224 (13)0.0020 (11)0.0078 (11)0.0033 (11)
C150.052 (2)0.0222 (13)0.0200 (13)0.0049 (14)0.0001 (12)0.0018 (12)
C160.0263 (16)0.0253 (14)0.0426 (16)0.0021 (13)0.0124 (13)0.0020 (13)
C170.0216 (15)0.0190 (13)0.0386 (15)0.0014 (11)0.0082 (12)0.0056 (12)
C180.0235 (15)0.0163 (12)0.0268 (13)0.0020 (11)0.0052 (11)0.0004 (10)
Geometric parameters (Å, º) top
Fe1—N12.0821 (19)C7—H7B0.9800
Fe1—N32.073 (2)C7—H7C0.9800
Fe1—Cl12.2633 (7)C8—H8B0.9800
Fe1—Cl22.2552 (9)C8—H8A0.9800
O1—C31.349 (3)C8—H8C0.9800
O1—C21.453 (3)C9—H9B0.9800
O2—C41.340 (3)C9—H9C0.9800
O2—C51.458 (3)C9—H9A0.9800
N1—C31.272 (3)C10—H10C0.9800
N1—C11.502 (3)C10—H10B0.9800
N3—C41.271 (3)C10—H10A0.9800
N3—C61.505 (3)C11—C131.551 (3)
N2—C181.335 (3)C11—H11A0.9800
N2—C141.354 (3)C11—H11B0.9800
C1—C81.508 (4)C11—H11C0.9800
C1—C71.518 (3)C12—C181.507 (3)
C1—C21.536 (3)C12—C131.535 (3)
C2—H2A0.9900C12—H12B0.9900
C2—H2B0.9900C12—H12A0.9900
C3—C131.507 (3)C14—C151.381 (4)
C4—C131.506 (3)C14—H140.9500
C5—C61.530 (3)C15—C161.392 (4)
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—C171.339 (4)
C6—C91.515 (4)C16—H160.9500
C6—C101.517 (4)C17—C181.408 (4)
C7—H7A0.9800C17—H170.9500
N3—Fe1—N188.85 (7)C1—C8—H8B109.5
N3—Fe1—Cl2113.73 (6)C1—C8—H8A109.5
N1—Fe1—Cl2111.27 (6)H8B—C8—H8A109.5
N3—Fe1—Cl1112.50 (6)C1—C8—H8C109.5
N1—Fe1—Cl1114.32 (6)H8B—C8—H8C109.5
Cl2—Fe1—Cl1113.81 (3)H8A—C8—H8C109.5
C3—O1—C2106.19 (18)C6—C9—H9B109.5
C4—O2—C5105.92 (18)C6—C9—H9C109.5
C3—N1—C1107.81 (19)H9B—C9—H9C109.5
C3—N1—Fe1126.70 (16)C6—C9—H9A109.5
C1—N1—Fe1124.42 (15)H9B—C9—H9A109.5
C4—N3—C6107.4 (2)H9C—C9—H9A109.5
C4—N3—Fe1126.74 (16)C6—C10—H10C109.5
C6—N3—Fe1124.51 (15)C6—C10—H10B109.5
C18—N2—C14118.6 (2)H10C—C10—H10B109.5
N1—C1—C8110.4 (2)C6—C10—H10A109.5
N1—C1—C7107.91 (19)H10C—C10—H10A109.5
C8—C1—C7112.1 (2)H10B—C10—H10A109.5
N1—C1—C2101.83 (18)C13—C11—H11A109.5
C8—C1—C2112.1 (2)C13—C11—H11B109.5
C7—C1—C2111.9 (2)H11A—C11—H11B109.5
O1—C2—C1104.33 (18)C13—C11—H11C109.5
O1—C2—H2A110.9H11A—C11—H11C109.5
C1—C2—H2A110.9H11B—C11—H11C109.5
O1—C2—H2B110.9C18—C12—C13114.2 (2)
C1—C2—H2B110.9C18—C12—H12B108.7
H2A—C2—H2B108.9C13—C12—H12B108.7
N1—C3—O1117.2 (2)C18—C12—H12A108.7
N1—C3—C13130.4 (2)C13—C12—H12A108.7
O1—C3—C13112.4 (2)H12B—C12—H12A107.6
N3—C4—O2117.6 (2)C4—C13—C3114.71 (19)
N3—C4—C13130.5 (2)C4—C13—C12110.27 (19)
O2—C4—C13111.7 (2)C3—C13—C12110.26 (19)
O2—C5—C6104.15 (18)C4—C13—C11106.07 (19)
O2—C5—H5A110.9C3—C13—C11106.22 (19)
C6—C5—H5A110.9C12—C13—C11109.02 (19)
O2—C5—H5B110.9N2—C14—C15121.7 (2)
C6—C5—H5B110.9N2—C14—H14119.2
H5A—C5—H5B108.9C15—C14—H14119.2
N3—C6—C9108.9 (2)C14—C15—C16119.0 (2)
N3—C6—C10109.7 (2)C14—C15—H15120.5
C9—C6—C10111.9 (2)C16—C15—H15120.5
N3—C6—C5101.67 (19)C17—C16—C15119.7 (3)
C9—C6—C5111.6 (2)C17—C16—H16120.2
C10—C6—C5112.5 (2)C15—C16—H16120.2
C1—C7—H7A109.5C16—C17—C18119.3 (3)
C1—C7—H7B109.5C16—C17—H17120.3
H7A—C7—H7B109.5C18—C17—H17120.3
C1—C7—H7C109.5N2—C18—C17121.8 (2)
H7A—C7—H7C109.5N2—C18—C12116.3 (2)
H7B—C7—H7C109.5C17—C18—C12121.9 (2)
N3—Fe1—N1—C39.1 (2)C4—N3—C6—C9105.0 (2)
Cl2—Fe1—N1—C3124.2 (2)Fe1—N3—C6—C962.7 (3)
Cl1—Fe1—N1—C3105.2 (2)C4—N3—C6—C10132.2 (2)
N3—Fe1—N1—C1175.79 (18)Fe1—N3—C6—C1060.1 (3)
Cl2—Fe1—N1—C169.11 (18)C4—N3—C6—C512.9 (3)
Cl1—Fe1—N1—C161.53 (18)Fe1—N3—C6—C5179.43 (15)
N1—Fe1—N3—C49.9 (2)O2—C5—C6—N317.1 (3)
Cl2—Fe1—N3—C4122.71 (19)O2—C5—C6—C998.8 (2)
Cl1—Fe1—N3—C4106.0 (2)O2—C5—C6—C10134.4 (2)
N1—Fe1—N3—C6175.18 (19)N3—C4—C13—C313.5 (4)
Cl2—Fe1—N3—C672.03 (19)O2—C4—C13—C3171.6 (2)
Cl1—Fe1—N3—C659.23 (19)N3—C4—C13—C12138.7 (3)
C3—N1—C1—C8130.6 (2)O2—C4—C13—C1246.5 (2)
Fe1—N1—C1—C860.6 (2)N3—C4—C13—C11103.4 (3)
C3—N1—C1—C7106.6 (2)O2—C4—C13—C1171.4 (2)
Fe1—N1—C1—C762.3 (2)N1—C3—C13—C412.4 (4)
C3—N1—C1—C211.4 (3)O1—C3—C13—C4171.2 (2)
Fe1—N1—C1—C2179.80 (15)N1—C3—C13—C12137.6 (3)
C3—O1—C2—C114.9 (2)O1—C3—C13—C1246.0 (2)
N1—C1—C2—O115.6 (2)N1—C3—C13—C11104.4 (3)
C8—C1—C2—O1133.6 (2)O1—C3—C13—C1172.0 (2)
C7—C1—C2—O199.4 (2)C18—C12—C13—C463.0 (2)
C1—N1—C3—O12.4 (3)C18—C12—C13—C364.7 (2)
Fe1—N1—C3—O1170.87 (14)C18—C12—C13—C11179.02 (19)
C1—N1—C3—C13178.6 (2)C18—N2—C14—C151.3 (4)
Fe1—N1—C3—C1312.9 (4)N2—C14—C15—C161.2 (4)
C2—O1—C3—N18.5 (3)C14—C15—C16—C170.1 (4)
C2—O1—C3—C13168.4 (2)C15—C16—C17—C180.7 (4)
C6—N3—C4—O23.3 (3)C14—N2—C18—C170.4 (4)
Fe1—N3—C4—O2170.57 (15)C14—N2—C18—C12179.3 (2)
C6—N3—C4—C13177.9 (2)C16—C17—C18—N20.6 (4)
Fe1—N3—C4—C1314.8 (4)C16—C17—C18—C12179.7 (2)
C5—O2—C4—N38.6 (3)C13—C12—C18—N26.2 (3)
C5—O2—C4—C13166.98 (19)C13—C12—C18—C17174.1 (2)
C4—O2—C5—C616.0 (2)

Experimental details

Crystal data
Chemical formula[FeCl2(C18H25N3O2)]
Mr442.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.102 (2), 13.925 (3), 14.764 (2)
β (°) 105.27 (1)
V3)2003.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.820, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
16483, 4578, 3033
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.083, 1.01
No. of reflections4578
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II" for X-ray facilities.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusico, V., Cipullo, R., Pellecchia, R., Ronca, S., Roviello, G. & Talarico, G. (2006). Proc. Natl. Acad. Sci. USA. 103, 15321–15326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCarella, A., Borbone, F., Roviello, A., Roviello, G., Tuzi, A., Kravinsky, A., Shikler, R., Cantele, G. & Ninno, G. (2012). Dyes Pigments, 95, 116–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationD`Auria, I., Lamberti, M., Mazzeo, M., Milione, S., Roviello, G. & Pellecchia, C. (2012). Chem. Eur. J. 18, 2349–2360.  Google Scholar
First citationDe Roma, A., Yang, H.-J., Milione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). Inorg. Chem. Commun. 14, 542–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerro, R., Milione, S., Bertolasi, V., Capacchione, C. & Grassi, A. (2007). Macromolecules, 40, 8544–8546.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerro, R., Milione, S., Caruso, T. & Grassi, A. (2009). J. Mol. Catal. A: Chemical 307, 128–133.  Google Scholar
First citationKamigaito, M., Ando, T. & Sawamoto, M. (2001). Chem. Rev. 101, 3689–3745.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, G., Lamberti, M., Mazzeo, M., Pappalardo, D., Roviello, G. & Pellecchia, C. (2012). Organometallics 31, 1180–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G., Lamberti, M., Roviello, G. & Pellecchia, C. (2012). Organometallics 31, 6772–6778.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMilione, S. & Bertolasi, V. (2011). Tetrahedron Lett. 52, 3570–3574.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO`Reilly, R. K., Gibson, V. C., White, A. J. P. & Williams, D. J. (2003). J. Am. Chem. Soc. 125, 8450–8451.  Google Scholar
First citationRoviello, G. N., Roviello, G., Musumeci, D., Bucci, E. M. & Pedone, C. (2012). Amino Acids 43, 1615–1623.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m433-m434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds