organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1357-o1358

Quinoline-2-sulfonamide

aDepartment of Organic Chemistry, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland, and bInstitute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
*Correspondence e-mail: kmarciniec@sum.edu.pl

(Received 28 May 2013; accepted 24 July 2013; online 31 July 2013)

In the title compound, C9H8N2O2S, the sulfamoyl –NH2 group is involved in inter­molecular hydrogen bonding with the sulfonamide O and quinoline N atoms. In the crystal, mol­ecules are linked into dimers via pairs of N—H⋯N hydrogen bonds, forming an R22(10) motif. The dimers are further assembled into chains parallel to the b axis through N—H⋯O hydrogen bonds, generating a C(4) motif. The crystal packing is additionally stabilized by inter­molecular C—H⋯O inter­actions. The crystal studied was a non-merohedral twin with a domain ratio of 0.938 (2):0.062 (2). Density functional theory (DFT) calculations, at the B3LYP/6–31 G(d,p) level of theory, were used to optimize the mol­ecular structure and to determine inter­action energies for the title compound. The resulting inter­action energy is ∼4.4 kcal mol−1 per bridge for the C(4) chain and ∼5.9 kcal mol−1 per bridge for the R22(10) motif.

Related literature

For the use of the quinoline­sulfamoyl unit in medicinal chemistry, see: Kim et al. (2005[Kim, Y.-H., Shin, K.-J., Lee, T. G., Kim, E., Lee, M.-S., Ryu, S. H. & Suh, P.-G. (2005). Biochem. Pharmacol. 69, 1333-1341.]); Zajdel et al. (2012[Zajdel, P., Marciniec, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Bojarski, A. J., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A. & Pawłowski, M. (2012). Bioorg. Med. Chem. 20, 1545-1556.], 2013[Zajdel, P., Marciniec, K., Grychowska, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A. & Pawłowski, M. (2013). Eur. J. Med. Chem. 60, 42-50.]). For related structures, see: Marciniec et al. (2012[Marciniec, K., Maślankiewicz, A., Nowak, M. & Kusz, J. (2012). Acta Cryst. E68, o2826.]). For the synthesis, see: Maślankiewicz et al. (2007[Maślankiewicz, A., Marciniec, K., Pawłowski, M. & Zajdel, P. (2007). Heterocycles, 71, 1975-1990.]). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For general hydrogen-bond rules, see: Donohue (1952[Donohue, J. (1952). J. Phys. Chem. 56, 502-510.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For details of theoretical calculations, see: Frisch et al. (2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]4); Parr & Yang (1989[Parr, R. G. & Yang, W. (1989). In Density Functional Theory of Atoms and Molecules. New York: Oxford University Press Inc.]). The twin matrix was been determined with ROTAX (Cooper et al., 2002[Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O2S

  • Mr = 208.23

  • Monoclinic, P 21 /c

  • a = 8.5907 (1) Å

  • b = 5.1716 (1) Å

  • c = 20.0375 (3) Å

  • β = 94.230 (1)°

  • V = 887.79 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.27 × 0.23 × 0.05 mm

Data collection
  • Agilent SuperNova diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.919, Tmax = 1.000

  • 27311 measured reflections

  • 1552 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.12

  • 1552 reflections

  • 160 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O1i 0.84 (3) 2.09 (3) 2.922 (2) 171 (2)
N2—H1N2⋯N1ii 0.80 (3) 2.18 (3) 2.962 (2) 165 (2)
C6—H6⋯O1iii 0.93 (2) 2.66 (2) 3.431 (2) 141.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds containing quinolinesulfamoyl moiety have received considerable attention in recent years due to their diverse pharmacological properties including antidepressant (Zajdel et al., 2012; Zajdel et al., 2013) or anticancer activity (Kim et al., 2005).

From a structural point of view, sulfonamides are interesting because of their tendency to form different hydrogen-bond patterns in the solid state. Studies have shown that primary hydrogen-bond connectivity is somewhat predictable. Two general hydrogen-bond rules based on empirical observations of hundreds of crystal structures over the years have been developed that summarize this predictability (Adsmond & Grant, 2001). The first of these rules states "all good donors and acceptors are used in hydrogen bonding" (Donohue, 1952). The second hydrogen-bond rule for crystal structures of small organic molecules states that, after formation of intramolecular hydrogen bonds, the best hydrogen bond donor will bond to the best hydrogen-bond acceptor present (Etter, 1990). The molecule of quinolinesulfonamide has two good hydrogen bond donors (the sulfonamido H atoms) and three the best hydrogen bond acceptors (the sulfonamido O atoms and quinoline nitrogen atom). We have previously reported the X-ray crystal structure of quinoline-8-sulfonamide (Marciniec et al., 2012). The obtained results show, according to the second hydrogen-bond rule, that the sulfamoyl NH2 group is involved in intramolecular N—H···N hydrogen bond resulting in the graph-set motif of S(6) (Bernstein et al. 1995). After formation of intramolecular hydrogen bond, the sulfamoyl NH2 group is involved in intermolecular N—H···O hydrogen bond resulting in the graph-set motif of R22(8). The key feature of the molecular structure of 2-quinolinesulfonamide (I) (Fig.1) is the N1—C2—S1—N2 torsion angle of -95.88 (14)°. The geometry of the sulfonamide group does not allow for intramolecular hydrogen-bond ring formation. In the crystal structure, the molecules form dimers through N2—H1···N1 intermolecular hydrogen bonds [graph set R22(10)] which are extended into one-dimensional chains [graph set C(4)] along the b axis, through the sulfonamide N2—H2···O1 hydrogen bonds (Table 1; Fig. 2). Thus the first-level graph set is N1= C(4) R22(10).

The second-level graph-set notation (for combinations of two hydrogen bonds: N2—H2···O1 and N2—H1···N1) was determined to be as follows N2= R44(14)C44(16) R44(16) R44(18) R66(22) R66(24) R66(26).

The crystal packing is further stabilized by week intermolecular hydrogen bonds C3—H3···O2 and C4—H4···O2 which generate R21(5) ring and C6—H6···O1 hydrogen bond which generates D motif.

The molecular structure of (I) in the gas phase was optimized by the density-functional theory at the B3LYP/6–31 G(d,p) level, using the computer program GAUSSIAN09 (Parr & Yang, 1989; Frisch et al., 2009). Calculations were performed using the X-ray coordinates as the input structure. The calculated geometry of the sulfonamide group allows for intramolecular hydrogen-bond five-membered ring formation (H1···N1 = 2.618 Å; N2—H1···N1 = 100.3°; N1—C2—S1—N2 = -35.2°) (Fig. 3). In the crystal structure of quinoline-2-sulfonamide (I) an intermolecular hydrogen bond is more difficult to break than comparable intramolecular hydrogen bond formed between the the sulfamoyl NH2 group and endocyclic nitrogen

The minimum-energy structure of sulfonamides in the gas phase might not be identical to that observed in the solid state. Intermolecular interactions, and hydrogen bonding in particular, might strongly influence the conformations adopted in the solid state, whereas intramolacular interactions and and hydrogen bonding will dominate the gas-phase conformation.

The interaction energies for 2-quinolinesulfonamide (I) were investigated by adding successive units, in their crystallographic positions, once for the chain [graph set C(4)], once for the centrosymmetric dimer [graph set R22(10)]. These energies were then compared with the energy for the same number of independent asymmetric units to determine the stabilization energy for the interaction between units. The results are presented in table 2.

The energy difference as a function of the number of bridging interactions is nearly linear and independent of choice of generated cavity. The resulting interaction energy is ~4.4 kcal/mol/bridge for C(4) chain and ~5.9 kcal/mol/bridge for R22(10) dimer. The small increase in stabilization energy per unit as the number of formula units suggests that there are negligible contributions from extended molecular orbitals, supporting the original assumption that the significant interactions result from hydrogen bonding contributions.

Related literature top

For the use of the quinolinesulfamoyl unit in medicinal chemistry, see: Kim et al. (2005); Zajdel et al. (2012, 2013). For related structures, see: Marciniec et al. (2012). For the synthesis, see: Maślankiewicz et al. (2007). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995). For general hydrogen-bond rules, see: Donohue (1952); Etter (1990). For details of theoretical calculations, see: Frisch et al. (20094); Parr & Yang (1989). The twin matrix was been determined with ROTAX (Cooper et al., 2002).

Experimental top

The title compound was prepared by the reaction of hydrochloric acid solution of quinoline-2-sulfochloride with an excess ammonia at -10 °C according to the procedure reported by Maślankiewicz et al. (2007). Single crystals of the title compound suitable for X-ray structure determination were obtained by recrystallization from an ethanolic solution.

Refinement top

The hydrogen atoms participating in hydrogen bonding were located in a difference Fourier map and freely refined. The twin matrix, 1 0 0 0 - 1 0 - 0.344 0 - 1, has been determined with the ROTAX program (Cooper et al., 2002). For the further refinement, the reflection data file in HKLF 5 format was prepared using "Make HKLF5" function of the WinGX program (Farrugia, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular N-H···N and N-H···O hydrogen bonds (dashed lines) in the title compound
[Figure 3] Fig. 3. Intramolecular hydrogen bond in 2-quinolinesulfonamide (I) (calculated) and 8-quinolinesulfonamide (II) (experimentally determined).
(I) top
Crystal data top
C9H8N2O2SF(000) = 432
Mr = 208.23Dx = 1.558 Mg m3
Monoclinic, P21/cMelting point: 441.2 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.5907 (1) ÅCell parameters from 14635 reflections
b = 5.1716 (1) Åθ = 2.0–37.3°
c = 20.0375 (3) ŵ = 0.34 mm1
β = 94.230 (1)°T = 100 K
V = 887.79 (2) Å3Plate, colorless
Z = 40.27 × 0.23 × 0.05 mm
Data collection top
Agilent SuperNova
diffractometer with an Atlas detector
1552 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1530 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4498 pixels mm-1θmax = 25.1°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 66
Tmin = 0.919, Tmax = 1.000l = 2323
27311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.9337P]
where P = (Fo2 + 2Fc2)/3
1552 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H8N2O2SV = 887.79 (2) Å3
Mr = 208.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5907 (1) ŵ = 0.34 mm1
b = 5.1716 (1) ÅT = 100 K
c = 20.0375 (3) Å0.27 × 0.23 × 0.05 mm
β = 94.230 (1)°
Data collection top
Agilent SuperNova
diffractometer with an Atlas detector
1552 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1530 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.024
27311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072All H-atom parameters refined
S = 1.12Δρmax = 0.35 e Å3
1552 reflectionsΔρmin = 0.32 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24131 (5)0.61370 (8)0.04453 (2)0.01307 (14)
O10.18557 (15)0.3614 (2)0.06117 (6)0.0193 (3)
O20.38294 (14)0.7120 (3)0.07708 (6)0.0188 (3)
N10.19733 (16)0.4337 (3)0.07942 (7)0.0132 (3)
N20.10504 (19)0.8125 (3)0.05580 (8)0.0164 (3)
C20.26951 (19)0.6149 (3)0.04339 (8)0.0129 (4)
C30.3627 (2)0.8112 (4)0.06810 (9)0.0153 (4)
C40.3835 (2)0.8125 (4)0.13486 (9)0.0156 (4)
C4A0.31105 (19)0.6202 (4)0.17656 (9)0.0147 (4)
C50.3263 (2)0.6090 (4)0.24669 (9)0.0169 (4)
C60.2521 (2)0.4209 (4)0.28441 (9)0.0180 (4)
C70.1578 (2)0.2367 (4)0.25488 (9)0.0175 (4)
C80.1389 (2)0.2425 (4)0.18758 (9)0.0159 (4)
C8A0.21642 (19)0.4342 (3)0.14675 (8)0.0129 (4)
H2N20.126 (3)0.971 (5)0.0528 (11)0.027 (6)*
H1N20.019 (3)0.751 (5)0.0549 (12)0.035 (7)*
H30.409 (2)0.940 (4)0.0389 (11)0.020 (5)*
H40.444 (2)0.945 (4)0.1538 (10)0.021 (5)*
H50.391 (2)0.744 (4)0.2674 (9)0.012 (5)*
H60.265 (3)0.415 (4)0.3299 (12)0.026 (6)*
H70.107 (2)0.103 (4)0.2823 (11)0.023 (6)*
H80.073 (2)0.117 (4)0.1661 (11)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0168 (2)0.0096 (2)0.0124 (2)0.00169 (17)0.00137 (16)0.00008 (16)
O10.0290 (7)0.0112 (6)0.0172 (6)0.0037 (6)0.0005 (5)0.0013 (5)
O20.0188 (6)0.0195 (7)0.0172 (6)0.0019 (6)0.0046 (5)0.0012 (5)
N10.0128 (7)0.0115 (7)0.0152 (7)0.0013 (6)0.0002 (6)0.0011 (6)
N20.0166 (8)0.0106 (8)0.0223 (8)0.0043 (7)0.0030 (6)0.0020 (6)
C20.0114 (8)0.0123 (9)0.0146 (8)0.0028 (7)0.0011 (6)0.0010 (7)
C30.0142 (8)0.0135 (9)0.0176 (9)0.0015 (7)0.0023 (7)0.0015 (7)
C40.0119 (8)0.0144 (9)0.0203 (9)0.0007 (7)0.0007 (7)0.0014 (7)
C4A0.0116 (8)0.0149 (9)0.0176 (9)0.0023 (7)0.0002 (7)0.0005 (7)
C50.0153 (8)0.0187 (9)0.0169 (9)0.0017 (8)0.0029 (7)0.0015 (7)
C60.0164 (9)0.0225 (10)0.0149 (9)0.0048 (8)0.0006 (7)0.0015 (8)
C70.0167 (9)0.0177 (9)0.0173 (9)0.0031 (8)0.0032 (7)0.0046 (7)
C80.0138 (8)0.0146 (9)0.0192 (9)0.0006 (7)0.0005 (7)0.0010 (7)
C8A0.0112 (8)0.0116 (8)0.0157 (9)0.0033 (7)0.0010 (6)0.0004 (7)
Geometric parameters (Å, º) top
S1—O21.4308 (13)C4—H40.95 (2)
S1—O11.4376 (13)C4A—C8A1.419 (2)
S1—N21.5866 (16)C4A—C51.422 (2)
S1—C21.7959 (18)C5—C61.361 (3)
N1—C21.311 (2)C5—H51.00 (2)
N1—C8A1.371 (2)C6—C71.409 (3)
N2—H2N20.84 (3)C6—H60.93 (2)
N2—H1N20.80 (3)C7—C81.370 (3)
C2—C31.406 (3)C7—H70.97 (2)
C3—C41.363 (3)C8—C8A1.419 (2)
C3—H30.96 (2)C8—H80.98 (2)
C4—C4A1.414 (3)
O2—S1—O1120.23 (8)C4—C4A—C8A117.98 (16)
O2—S1—N2108.44 (8)C4—C4A—C5122.96 (17)
O1—S1—N2107.06 (9)C8A—C4A—C5119.05 (16)
O2—S1—C2105.91 (8)C6—C5—C4A120.28 (17)
O1—S1—C2107.59 (8)C6—C5—H5121.3 (11)
N2—S1—C2106.96 (8)C4A—C5—H5118.4 (11)
C2—N1—C8A117.05 (15)C5—C6—C7120.69 (17)
S1—N2—H2N2117.0 (16)C5—C6—H6118.9 (14)
S1—N2—H1N2115.3 (19)C7—C6—H6120.4 (14)
H2N2—N2—H1N2126 (3)C8—C7—C6120.79 (17)
N1—C2—C3125.52 (17)C8—C7—H7119.6 (13)
N1—C2—S1116.44 (13)C6—C7—H7119.6 (13)
C3—C2—S1118.02 (13)C7—C8—C8A119.87 (17)
C4—C3—C2117.95 (17)C7—C8—H8122.0 (13)
C4—C3—H3121.2 (13)C8A—C8—H8118.1 (13)
C2—C3—H3120.9 (13)N1—C8A—C8118.75 (16)
C3—C4—C4A119.54 (17)N1—C8A—C4A121.94 (16)
C3—C4—H4120.5 (13)C8—C8A—C4A119.31 (16)
C4A—C4—H4119.9 (13)
C8A—N1—C2—C31.0 (3)C4—C4A—C5—C6179.17 (17)
C8A—N1—C2—S1179.28 (12)C8A—C4A—C5—C60.5 (3)
O2—S1—C2—N1148.59 (13)C4A—C5—C6—C70.7 (3)
O1—S1—C2—N118.84 (15)C5—C6—C7—C80.1 (3)
N2—S1—C2—N195.88 (14)C6—C7—C8—C8A0.7 (3)
O2—S1—C2—C332.97 (16)C2—N1—C8A—C8179.41 (15)
O1—S1—C2—C3162.72 (13)C2—N1—C8A—C4A0.6 (2)
N2—S1—C2—C382.55 (15)C7—C8—C8A—N1179.13 (16)
N1—C2—C3—C41.5 (3)C7—C8—C8A—C4A0.9 (3)
S1—C2—C3—C4179.75 (13)C4—C4A—C8A—N11.6 (2)
C2—C3—C4—C4A0.4 (3)C5—C4A—C8A—N1179.74 (15)
C3—C4—C4A—C8A1.0 (3)C4—C4A—C8A—C8178.43 (16)
C3—C4—C4A—C5179.67 (17)C5—C4A—C8A—C80.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.84 (3)2.09 (3)2.922 (2)171 (2)
N2—H1N2···N1ii0.80 (3)2.18 (3)2.962 (2)165 (2)
C3—H3···O2iii0.96 (2)2.68 (2)3.308 (2)123.5 (16)
C4—H4···O2iii0.95 (2)2.72 (2)3.327 (2)122.3 (15)
C6—H6···O1iv0.93 (2)2.66 (2)3.431 (2)141.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.84 (3)2.09 (3)2.922 (2)171 (2)
N2—H1N2···N1ii0.80 (3)2.18 (3)2.962 (2)165 (2)
C6—H6···O1iii0.93 (2)2.66 (2)3.431 (2)141.5 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y+1/2, z1/2.
Table 2. Calculation of stabilization energies for quinoline-2-sulfonamide (kcal mol-1) top
B3LYP/6-31G(d,p)
EnergyΔE
Asymmetric unit-631075.7
2 units N1 = C(4)-1262155.9-4.4
2 units N1 = R22(10)-1262163.3-11.8
3 units N1 = C(4)R22(10)-1893243.7-16.6
4 units N2 = R44(14)-2524335.0-32.2

Acknowledgements

This research was supported in part by the Medical University of Silesia, grant No. KNW-1–006/P/2/0, and by PL-Grid Infrastructure, grant ID: plggkrzmarci1.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonohue, J. (1952). J. Phys. Chem. 56, 502–510.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationKim, Y.-H., Shin, K.-J., Lee, T. G., Kim, E., Lee, M.-S., Ryu, S. H. & Suh, P.-G. (2005). Biochem. Pharmacol. 69, 1333–1341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarciniec, K., Maślankiewicz, A., Nowak, M. & Kusz, J. (2012). Acta Cryst. E68, o2826.  CSD CrossRef IUCr Journals Google Scholar
First citationMaślankiewicz, A., Marciniec, K., Pawłowski, M. & Zajdel, P. (2007). Heterocycles, 71, 1975–1990.  Google Scholar
First citationParr, R. G. & Yang, W. (1989). In Density Functional Theory of Atoms and Molecules. New York: Oxford University Press Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZajdel, P., Marciniec, K., Grychowska, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A. & Pawłowski, M. (2013). Eur. J. Med. Chem. 60, 42–50.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZajdel, P., Marciniec, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Bojarski, A. J., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A. & Pawłowski, M. (2012). Bioorg. Med. Chem. 20, 1545–1556.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1357-o1358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds