organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­iso­quinoline-1,3(2H,4H)-dione

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 21 June 2013; accepted 18 July 2013; online 24 July 2013)

The title mol­ecule, C9H7NO3, exists in the diketo form and the iso­quinoline unit is approximately planar (r.m.s. deviation = 0.0158 Å). In the crystal, mol­ecules are linked into inversion dimers through pairs of O—H⋯O hydrogen bonds and are further assembled into the (100) layers via stacking inter­actions [centroid–centroid distances = 3.460 (3) and 3.635 (4) Å].

Related literature

For the biological properties of the title compound, see: Parkes et al. (2003[Parkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). J. Med. Chem. 46, 1153-1164.]); Hang et al. (2004[Hang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). Biochem. Biophys. Res. Commun. 317, 321-329.]); Billamboz et al. (2008[Billamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717-7730.]). For a related structure, see: Miao et al. (1995[Miao, F.-M., Wang, J.-L. & Miao, X.-S. (1995). Acta Cryst. C51, 712-713.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7NO3

  • Mr = 177.16

  • Monoclinic, P 21 /n

  • a = 12.336 (5) Å

  • b = 8.666 (4) Å

  • c = 7.052 (7) Å

  • β = 104.19 (5)°

  • V = 730.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.45 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 3873 measured reflections

  • 1650 independent reflections

  • 1484 reflections with F2 > 2σ(F2)

  • Rint = 0.016

  • 3 standard reflections every 150 reflections intensity decay: −0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.04

  • 1650 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.84 1.91 2.7056 (17) 158
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound is known to inhibit metalloenzymes such as influenza endonuclease (Parkes et al., 2003), HIV-1 reverse transcriptase RNase H (Hang et al., 2004), and HIV-1 integrase (Billamboz et al., 2008). Here we report the crystal structure of the title compound, which was obtained from the deprotection of 2-benzyloxyisoquinoline-1,3(2H,4H)-dione by the use of boron tribromide. The compound exists in keto form and the isoquinoline ring is almost planar (r.m.s. deviation = 0.0158 Å). In the crystal, the molecules link through intermolecular O–H···O hydrogen bonds and stack along the c axis, as shown in Figure 2. The distance from plane1 (C7/C8/C9/C11/C12/C13) to plane2 [C4/C6/C7/C8/C10/N3, (1 - x, 2 - y, 1 - z)] is 3.460 (3) Å.

Related literature top

For the biological properties of the title compound, see: Parkes et al. (2003); Hang et al. (2004); Billamboz et al. (2008). For a related structures, see: Miao et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Billamboz et al., 2008). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution of the compound at room temperature.

Refinement top

The hydrogen atoms of the benzene ring were placed geometrically [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. The hydrogen atoms of the methylene and N–OH groups were found in a difference Fourier map, and refined with distance constraints [C–H 0.99 Å, Uiso(H) = 1.2Ueq(C), O–H 0.84 Å, Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Hydrogen bonds are represented as dashed lines.
2-Hydroxyisoquinoline-1,3(2H,4H)-dione top
Crystal data top
C9H7NO3F(000) = 368.00
Mr = 177.16Dx = 1.610 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.336 (5) Åθ = 14.9–17.0°
b = 8.666 (4) ŵ = 0.12 mm1
c = 7.052 (7) ÅT = 100 K
β = 104.19 (5)°Block, orange
V = 730.8 (9) Å30.50 × 0.50 × 0.45 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 1615
3873 measured reflectionsk = 1111
1650 independent reflectionsl = 59
1484 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.016 intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2377P]
where P = (Fo2 + 2Fc2)/3
1650 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H7NO3V = 730.8 (9) Å3
Mr = 177.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.336 (5) ŵ = 0.12 mm1
b = 8.666 (4) ÅT = 100 K
c = 7.052 (7) Å0.50 × 0.50 × 0.45 mm
β = 104.19 (5)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.016
3873 measured reflections3 standard reflections every 150 reflections
1650 independent reflections intensity decay: 0.5%
1484 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
1650 reflectionsΔρmin = 0.25 e Å3
119 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41291 (6)0.60097 (8)0.84881 (11)0.01900 (19)
O20.71902 (6)0.89780 (9)0.89569 (11)0.01901 (19)
O50.63125 (6)0.62843 (8)0.92088 (12)0.01860 (19)
N30.56130 (7)0.75393 (9)0.86013 (12)0.0136 (2)
C40.37267 (8)0.86193 (11)0.74485 (15)0.0132 (2)
C60.61776 (8)0.89219 (11)0.84438 (14)0.0133 (2)
C70.54474 (8)1.02389 (11)0.76248 (13)0.0124 (2)
C80.42836 (8)1.01072 (11)0.71477 (13)0.0124 (2)
C90.59616 (8)1.16334 (12)0.73257 (14)0.0149 (3)
C100.44805 (8)0.72873 (11)0.82056 (14)0.0134 (2)
C110.53109 (9)1.28959 (12)0.65699 (15)0.0164 (3)
C120.36371 (8)1.13890 (12)0.63746 (15)0.0151 (3)
C130.41430 (9)1.27737 (12)0.60954 (15)0.0165 (3)
H4A0.32530.88130.83720.0158*
H4B0.32240.83120.61840.0158*
H50.60040.56660.98290.0223*
H90.67541.17100.76410.0179*
H110.56551.38430.63730.0197*
H120.28451.13120.60370.0182*
H130.36961.36410.55810.0198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0159 (4)0.0140 (4)0.0257 (4)0.0012 (3)0.0025 (3)0.0038 (3)
O20.0111 (4)0.0193 (4)0.0255 (4)0.0003 (3)0.0023 (3)0.0022 (3)
O50.0134 (4)0.0132 (4)0.0283 (5)0.0044 (3)0.0034 (3)0.0058 (3)
N30.0114 (4)0.0112 (4)0.0173 (4)0.0027 (3)0.0014 (3)0.0018 (3)
C40.0104 (5)0.0130 (5)0.0158 (5)0.0001 (4)0.0028 (4)0.0006 (4)
C60.0126 (5)0.0142 (5)0.0132 (5)0.0007 (4)0.0032 (4)0.0011 (4)
C70.0133 (5)0.0128 (5)0.0112 (5)0.0003 (4)0.0030 (4)0.0012 (4)
C80.0132 (5)0.0127 (5)0.0116 (5)0.0001 (4)0.0039 (4)0.0012 (4)
C90.0140 (5)0.0162 (5)0.0146 (5)0.0028 (4)0.0036 (4)0.0015 (4)
C100.0131 (5)0.0144 (5)0.0124 (5)0.0007 (4)0.0027 (4)0.0011 (4)
C110.0198 (5)0.0125 (5)0.0176 (5)0.0029 (4)0.0059 (4)0.0012 (4)
C120.0135 (5)0.0154 (5)0.0168 (5)0.0019 (4)0.0040 (4)0.0006 (4)
C130.0187 (5)0.0129 (5)0.0180 (5)0.0030 (4)0.0045 (4)0.0004 (4)
Geometric parameters (Å, º) top
O1—C101.2230 (13)C9—C111.3841 (15)
O2—C61.2133 (13)C11—C131.4009 (17)
O5—N31.3891 (12)C12—C131.3887 (16)
N3—C61.4039 (14)O5—H50.840
N3—C101.3734 (14)C4—H4A0.990
C4—C81.5003 (15)C4—H4B0.990
C4—C101.4962 (15)C9—H90.950
C6—C71.4807 (14)C11—H110.950
C7—C81.3966 (15)C12—H120.950
C7—C91.4046 (16)C13—H130.950
C8—C121.3978 (15)
O5—N3—C6114.20 (9)C9—C11—C13119.84 (10)
O5—N3—C10117.53 (8)C8—C12—C13120.58 (10)
C6—N3—C10128.27 (8)C11—C13—C12120.20 (10)
C8—C4—C10116.58 (9)N3—O5—H5109.471
O2—C6—N3120.34 (9)C8—C4—H4A108.149
O2—C6—C7124.67 (10)C8—C4—H4B108.145
N3—C6—C7114.99 (9)C10—C4—H4A108.149
C6—C7—C8121.47 (9)C10—C4—H4B108.153
C6—C7—C9117.89 (9)H4A—C4—H4B107.318
C8—C7—C9120.63 (9)C7—C9—H9120.087
C4—C8—C7121.03 (9)C11—C9—H9120.091
C4—C8—C12120.06 (9)C9—C11—H11120.082
C7—C8—C12118.92 (10)C13—C11—H11120.074
C7—C9—C11119.82 (10)C8—C12—H12119.713
O1—C10—N3119.63 (9)C13—C12—H12119.710
O1—C10—C4122.85 (10)C11—C13—H13119.902
N3—C10—C4117.52 (9)C12—C13—H13119.895
H5—O5—N3—C6150.2N3—C6—C7—C9176.51 (8)
H5—O5—N3—C1030.7C6—C7—C8—C40.00 (14)
O5—N3—C6—O25.29 (13)C6—C7—C8—C12179.84 (8)
O5—N3—C6—C7174.61 (7)C6—C7—C9—C11179.76 (8)
O5—N3—C10—O13.59 (14)C6—C7—C9—H90.2
O5—N3—C10—C4176.79 (8)C8—C7—C9—C110.67 (14)
C6—N3—C10—O1177.53 (9)C8—C7—C9—H9179.3
C6—N3—C10—C42.09 (15)C9—C7—C8—C4179.56 (8)
C10—N3—C6—O2175.80 (9)C9—C7—C8—C120.28 (14)
C10—N3—C6—C74.30 (15)C4—C8—C12—C13179.79 (9)
C8—C4—C10—O1179.05 (9)C4—C8—C12—H120.2
C8—C4—C10—N31.35 (13)C7—C8—C12—C130.36 (15)
C10—C4—C8—C72.26 (14)C7—C8—C12—H12179.6
C10—C4—C8—C12177.58 (8)C7—C9—C11—C130.41 (15)
H4A—C4—C8—C7119.8C7—C9—C11—H11179.6
H4A—C4—C8—C1260.4H9—C9—C11—C13179.6
H4B—C4—C8—C7124.3H9—C9—C11—H110.4
H4B—C4—C8—C1255.5C9—C11—C13—C120.23 (16)
H4A—C4—C10—O158.9C9—C11—C13—H13179.8
H4A—C4—C10—N3120.7H11—C11—C13—C12179.8
H4B—C4—C10—O157.0H11—C11—C13—H130.2
H4B—C4—C10—N3123.4C8—C12—C13—C110.62 (16)
O2—C6—C7—C8177.04 (9)C8—C12—C13—H13179.4
O2—C6—C7—C93.39 (15)H12—C12—C13—C11179.4
N3—C6—C7—C83.06 (13)H12—C12—C13—H130.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.841.912.7056 (17)158
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.841.912.7056 (17)158
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the University of Shizuoka for supporting this study.

References

First citationBillamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717–7730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). Biochem. Biophys. Res. Commun. 317, 321–329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiao, F.-M., Wang, J.-L. & Miao, X.-S. (1995). Acta Cryst. C51, 712–713.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). J. Med. Chem. 46, 1153–1164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds