organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1345-o1346

1′′-Allyl-5′′-(4-meth­­oxy­benzyl­­idene)-7′-(4-meth­oxy­phen­yl)-1′,3′,5′,6′,7′,7a′-hexa­hydro­di­spiro­[ace­naphthyl­ene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bDepartment of Physics, The Madura College, Madurai 625 011, India
*Correspondence e-mail: ambujasureshj@yahoo.com

(Received 10 May 2013; accepted 20 July 2013; online 27 July 2013)

In the title compound, C39H36N2O4S, the piperidine ring adopts a twisted half-chair conformation. In the pyrrolo­thia­zole fused-ring system, the pyrrole ring adopts an envelope conformation (with the C atom bound to the thia­zole ring being the flap atom) and the thia­zole ring also exhibits an envelope conformation (with the N atom bound to the pyrrole ring as the flap). The mol­ecular structure features a weak intra­molecular C—H⋯O inter­action. In the crystal, a C—H⋯O inter­action forms a linear chain along the diagonal of the ac plane, generating a C(14) graph-set motif. A weak C—H⋯π inter­action also occurs.

Related literature

For the importance of hetrocyclic rings, see: Guengerich et al. (1973[Guengerich, F. P., DiMari, S. J. & Broquist, H. P. (1973). J. Am. Chem. Soc. 95, 2055-2056.]); Lalezari & Schwartz (1988[Lalezari, I. & Schwartz, E. L. (1988). J. Med. Chem. 31, 1427-1429.]); Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.]); Puder et al. (2000[Puder, C., Krastel, P. & Zeeck, A. (2000). J. Nat. Prod. 63, 1258-1260.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]). For related ace­naphthyl­ene structures, see: Suresh et al. (2011[Suresh, J., Vishnupriya, R., Kumar, R. R., Sivakumar, S. & Lakshman, P. L. N. (2011). Acta Cryst. E67, o3210.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C39H36N2O4S

  • Mr = 628.76

  • Monoclinic, P 21 /n

  • a = 11.3956 (7) Å

  • b = 20.1346 (12) Å

  • c = 14.3860 (8) Å

  • β = 103.153 (1)°

  • V = 3214.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 26225 measured reflections

  • 5979 independent reflections

  • 4873 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.07

  • 5979 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C52–C57 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O3 0.97 2.45 2.9587 (19) 113
C93—H93⋯O1i 0.93 2.49 3.343 (2) 153
C58—H58BCg1ii 0.96 2.85 3.487 (2) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

[3 + 2]-cycloaddition of azomethine ylides to olefinic dipolarophiles constitutes a facile approach for the construction of five membered heterocyclic rings of biological importance (Tsuge & Kanemasa, 1989; Nair & Suja, 2007). Among these heterocycles, pyrrolo[2,1-b]thiazole is an unusual ring system with a ntineoplastic (Lalezari & Schwartz, 1988) activities. Piperidine ring systems are of immense interest in the pharmaceutical industry as they exhibit a wide range of biological activities (Guengerich et al., 1973; Puder et al., 2000). In view of its medicinal importance and in conjunction with our research interests, we synthesized the title compound and report here its X-ray structure.

In the title compound (Fig.1) C39H36N2O2S, the piperidine ring adopts a twisted half chair conformation with atoms N2 and C2 deviating by -0.1919 (1) Å and -0.5644 (1) Å respectively from the least squares plane defined by other atoms (C1/C3/C4/C5). In the fused system, the thiazole ring adopts an envelope conformation with N1 atom as a flap atom, displaced by a -0.6085 (1) Å from the mean plane through the remaining atoms and the pyrrole ring adopts an envelope conformation with C10 atom as a flap atom, displaced by a 0.6545 (1) Å from the mean plane through the remaining atoms. The methyl group of the methoxy phenyl rings are in equtorial orientations as evidenced from the torsion angles C58—O1—C55—C56 = 172.59 (16) ° and C97—O2—C94—C93 = 172.07 (14) °. The methoxy phenyl rings are oriented at angles of 56.25 (1) ° (C52—C57) and 86.90 (1) ° (C91—C97) with the mean plane of the piperidine ring. The twist of the methoxyphenyl ring attached to C51 may be due to the non-bonded interactions between one of the ortho H atoms of the aryl ring and equtorial H atoms at the 2 position of the piperidine ring. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structure (Suresh et al.,2011).

The structure features a weak intra-molecular interaction. An inter-molecular C—H···O interaction forms a linear chain along the diagonal of the ac plane generating a graph set motif of C11(14) (Bernstein et al.,1995). In addition a weak C—H···π interaction (Table 1) is also observed.

Related literature top

For the importance of hetrocyclic rings, see: Guengerich et al. (1973); Lalezari & Schwartz (1988); Tsuge & Kanemasa (1989); Puder et al. (2000); Nair & Suja (2007). For related acenaphthylene structures, see: Suresh et al. (2011). For additional conformation analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (3E,5E)-3,5-bis(4-methoxyphenylmethylidene)-1-allylpiperidin-4-one (1 mmol), acenaphthenequinone (1 mmol) and 1,3-thiazolane-4-carboxylic acid (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain the product as pale yellow solid. Melting point = 412–414 K; Yield = 94%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å. Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram showing C—H···O interactions.
1''-Allyl-5''-(4-methoxybenzylidene)-7'-(4-methoxyphenyl)-1',3',5',6',7',7a'-hexahydrodispiro[acenaphthylene-1,5'-pyrrolo[1,2-c][1,3]thiazole-6',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C39H36N2O4SF(000) = 1328
Mr = 628.76Dx = 1.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 11.3956 (7) Åθ = 2–31°
b = 20.1346 (12) ŵ = 0.15 mm1
c = 14.3860 (8) ÅT = 293 K
β = 103.153 (1)°Block, yellow
V = 3214.2 (3) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5979 independent reflections
Radiation source: fine-focus sealed tube4873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω and ϕ scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2423
Tmin = 0.967, Tmax = 0.974l = 1717
26225 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.8433P]
where P = (Fo2 + 2Fc2)/3
5979 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C39H36N2O4SV = 3214.2 (3) Å3
Mr = 628.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3956 (7) ŵ = 0.15 mm1
b = 20.1346 (12) ÅT = 293 K
c = 14.3860 (8) Å0.21 × 0.19 × 0.18 mm
β = 103.153 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4873 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.024
26225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
5979 reflectionsΔρmin = 0.27 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R- factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38453 (15)0.24423 (8)0.61103 (12)0.0465 (4)
H1A0.37310.19880.58820.056*
H1B0.42680.24290.67760.056*
C20.27822 (14)0.34635 (7)0.62444 (11)0.0406 (3)
H2A0.33790.35360.68340.049*
H2B0.20180.36400.63200.049*
C30.31686 (13)0.38124 (7)0.54151 (10)0.0376 (3)
C40.44181 (13)0.35396 (7)0.53899 (11)0.0409 (3)
C50.46034 (14)0.28104 (7)0.55445 (11)0.0430 (3)
C60.19271 (16)0.23989 (9)0.65863 (13)0.0536 (4)
H6A0.18540.19400.63770.064*
H6B0.11250.25900.64380.064*
C70.23879 (18)0.24090 (10)0.76404 (14)0.0617 (5)
H70.25690.28230.79220.074*
C80.2563 (2)0.19024 (12)0.82035 (18)0.0892 (7)
H8A0.23960.14770.79570.107*
H8B0.28550.19620.88560.107*
C90.31827 (13)0.45865 (7)0.54978 (10)0.0387 (3)
H90.37820.47480.51600.046*
C100.19504 (14)0.47781 (7)0.48948 (11)0.0417 (3)
H100.13160.46780.52330.050*
C110.17877 (16)0.54723 (8)0.44674 (13)0.0532 (4)
H11A0.25510.56500.43900.064*
H11B0.14560.57700.48720.064*
C120.07720 (16)0.44611 (9)0.33773 (12)0.0545 (4)
H12A0.00760.42900.35820.065*
H12B0.08020.42640.27680.065*
C130.22302 (13)0.36619 (7)0.44231 (10)0.0404 (3)
C140.11388 (14)0.32178 (8)0.45544 (11)0.0449 (4)
C150.11378 (15)0.26054 (8)0.39828 (12)0.0482 (4)
C160.20475 (15)0.26712 (8)0.34768 (11)0.0465 (4)
C170.26952 (15)0.32703 (8)0.36735 (11)0.0438 (3)
C180.35670 (17)0.34039 (9)0.31920 (12)0.0551 (4)
H180.40030.37980.32990.066*
C190.3800 (2)0.29318 (11)0.25234 (13)0.0674 (5)
H190.43950.30250.21940.081*
C200.3185 (2)0.23472 (10)0.23449 (13)0.0688 (6)
H200.33730.20480.19080.083*
C210.22627 (18)0.21948 (8)0.28235 (12)0.0570 (5)
C220.1515 (2)0.16223 (9)0.27252 (14)0.0697 (6)
H220.16200.12870.23070.084*
C230.0649 (2)0.15566 (9)0.32311 (16)0.0711 (6)
H230.01860.11720.31560.085*
C240.04265 (17)0.20495 (9)0.38639 (14)0.0606 (5)
H240.01840.19990.41910.073*
C510.53982 (15)0.25243 (8)0.51160 (12)0.0492 (4)
H510.58010.28120.47900.059*
C520.57272 (15)0.18221 (8)0.50855 (12)0.0484 (4)
C530.58985 (16)0.13945 (9)0.58581 (12)0.0550 (4)
H530.58030.15550.64430.066*
C540.62084 (17)0.07332 (9)0.57851 (12)0.0550 (4)
H540.63280.04570.63170.066*
C550.63385 (15)0.04874 (8)0.49180 (12)0.0510 (4)
C560.61851 (18)0.09096 (10)0.41350 (13)0.0621 (5)
H560.62770.07480.35500.074*
C570.58980 (17)0.15644 (9)0.42261 (13)0.0587 (5)
H570.58150.18440.37010.070*
C580.6933 (2)0.05957 (10)0.55429 (16)0.0698 (5)
H58A0.71010.10270.53210.105*
H58B0.62740.06260.58540.105*
H58C0.76340.04320.59860.105*
C910.35268 (14)0.48671 (7)0.65013 (10)0.0393 (3)
C920.26940 (15)0.49766 (8)0.70580 (12)0.0495 (4)
H920.18900.48660.68170.059*
C930.30398 (16)0.52474 (9)0.79634 (12)0.0536 (4)
H930.24660.53180.83210.064*
C940.42242 (16)0.54125 (8)0.83392 (11)0.0470 (4)
C950.50713 (15)0.53016 (8)0.78109 (11)0.0469 (4)
H950.58770.54050.80620.056*
C960.47143 (14)0.50337 (7)0.68956 (11)0.0436 (3)
H960.52910.49650.65400.052*
C970.56944 (19)0.57887 (11)0.96906 (14)0.0698 (5)
H97A0.57510.59851.03080.105*
H97B0.60630.60780.93090.105*
H97C0.61020.53680.97630.105*
N10.18725 (12)0.43348 (6)0.40858 (9)0.0439 (3)
N20.26677 (11)0.27556 (6)0.60308 (9)0.0431 (3)
O10.66222 (13)0.01537 (6)0.47538 (10)0.0665 (4)
O20.44643 (12)0.56933 (6)0.92363 (9)0.0633 (3)
O30.03616 (10)0.34017 (6)0.49502 (9)0.0554 (3)
O40.52104 (10)0.38980 (6)0.52376 (9)0.0555 (3)
S10.07354 (5)0.53678 (2)0.33048 (4)0.06657 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0554 (9)0.0336 (8)0.0529 (9)0.0000 (7)0.0174 (8)0.0018 (7)
C20.0422 (8)0.0368 (8)0.0434 (8)0.0017 (6)0.0109 (6)0.0005 (6)
C30.0391 (7)0.0334 (7)0.0405 (8)0.0029 (6)0.0096 (6)0.0004 (6)
C40.0429 (8)0.0379 (8)0.0420 (8)0.0020 (6)0.0096 (6)0.0003 (6)
C50.0432 (8)0.0387 (8)0.0466 (8)0.0007 (6)0.0091 (7)0.0008 (6)
C60.0536 (10)0.0450 (9)0.0655 (11)0.0081 (8)0.0202 (8)0.0055 (8)
C70.0734 (12)0.0547 (11)0.0649 (11)0.0112 (9)0.0322 (10)0.0002 (9)
C80.117 (2)0.0724 (15)0.0745 (14)0.0065 (14)0.0144 (14)0.0113 (12)
C90.0414 (8)0.0326 (7)0.0427 (8)0.0038 (6)0.0111 (6)0.0001 (6)
C100.0442 (8)0.0354 (8)0.0453 (8)0.0010 (6)0.0095 (7)0.0015 (6)
C110.0555 (10)0.0388 (9)0.0611 (10)0.0031 (7)0.0045 (8)0.0034 (7)
C120.0596 (10)0.0515 (10)0.0472 (9)0.0011 (8)0.0011 (8)0.0009 (7)
C130.0440 (8)0.0337 (8)0.0430 (8)0.0029 (6)0.0087 (6)0.0014 (6)
C140.0440 (8)0.0407 (8)0.0478 (9)0.0025 (7)0.0055 (7)0.0012 (7)
C150.0509 (9)0.0379 (8)0.0498 (9)0.0026 (7)0.0009 (7)0.0005 (7)
C160.0544 (9)0.0375 (8)0.0423 (8)0.0051 (7)0.0001 (7)0.0001 (6)
C170.0505 (9)0.0399 (8)0.0395 (8)0.0021 (7)0.0072 (7)0.0003 (6)
C180.0643 (11)0.0548 (10)0.0488 (9)0.0009 (8)0.0180 (8)0.0008 (8)
C190.0779 (13)0.0771 (14)0.0520 (10)0.0158 (11)0.0250 (10)0.0028 (10)
C200.0914 (15)0.0627 (12)0.0506 (10)0.0249 (11)0.0125 (10)0.0084 (9)
C210.0739 (12)0.0434 (9)0.0460 (9)0.0142 (8)0.0022 (8)0.0042 (7)
C220.0955 (15)0.0405 (10)0.0593 (11)0.0111 (10)0.0115 (11)0.0112 (8)
C230.0808 (14)0.0382 (10)0.0795 (14)0.0076 (9)0.0122 (12)0.0028 (9)
C240.0613 (11)0.0429 (9)0.0693 (12)0.0098 (8)0.0023 (9)0.0015 (8)
C510.0485 (9)0.0439 (9)0.0577 (10)0.0040 (7)0.0173 (8)0.0070 (7)
C520.0483 (9)0.0452 (9)0.0549 (9)0.0072 (7)0.0186 (7)0.0043 (7)
C530.0671 (11)0.0534 (10)0.0463 (9)0.0131 (8)0.0167 (8)0.0016 (8)
C540.0660 (11)0.0510 (10)0.0508 (9)0.0150 (8)0.0188 (8)0.0104 (8)
C550.0496 (9)0.0465 (9)0.0590 (10)0.0106 (7)0.0165 (8)0.0008 (8)
C560.0767 (13)0.0643 (12)0.0499 (10)0.0217 (10)0.0240 (9)0.0023 (8)
C570.0690 (11)0.0576 (11)0.0558 (10)0.0189 (9)0.0274 (9)0.0145 (8)
C580.0730 (13)0.0476 (10)0.0859 (14)0.0111 (9)0.0122 (11)0.0092 (10)
C910.0463 (8)0.0280 (7)0.0438 (8)0.0020 (6)0.0109 (7)0.0013 (6)
C920.0463 (9)0.0504 (9)0.0530 (9)0.0054 (7)0.0138 (7)0.0041 (7)
C930.0591 (10)0.0536 (10)0.0529 (10)0.0009 (8)0.0227 (8)0.0029 (8)
C940.0625 (10)0.0364 (8)0.0421 (8)0.0023 (7)0.0118 (7)0.0010 (6)
C950.0475 (9)0.0423 (9)0.0483 (9)0.0042 (7)0.0055 (7)0.0010 (7)
C960.0458 (8)0.0398 (8)0.0461 (8)0.0025 (7)0.0124 (7)0.0005 (7)
C970.0783 (14)0.0725 (13)0.0524 (10)0.0001 (10)0.0016 (10)0.0124 (9)
N10.0498 (7)0.0362 (7)0.0430 (7)0.0006 (6)0.0050 (6)0.0005 (5)
N20.0453 (7)0.0360 (7)0.0499 (7)0.0057 (5)0.0146 (6)0.0011 (5)
O10.0837 (9)0.0496 (7)0.0692 (8)0.0176 (6)0.0235 (7)0.0009 (6)
O20.0744 (9)0.0656 (8)0.0487 (7)0.0045 (6)0.0115 (6)0.0123 (6)
O30.0458 (6)0.0555 (7)0.0666 (7)0.0033 (5)0.0162 (6)0.0020 (6)
O40.0468 (6)0.0432 (6)0.0806 (8)0.0049 (5)0.0233 (6)0.0039 (6)
S10.0707 (3)0.0522 (3)0.0670 (3)0.0060 (2)0.0049 (2)0.0126 (2)
Geometric parameters (Å, º) top
C1—N21.464 (2)C18—C191.420 (3)
C1—C51.509 (2)C18—H180.9300
C1—H1A0.9700C19—C201.364 (3)
C1—H1B0.9700C19—H190.9300
C2—N21.4578 (19)C20—C211.415 (3)
C2—C31.533 (2)C20—H200.9300
C2—H2A0.9700C21—C221.421 (3)
C2—H2B0.9700C22—C231.359 (3)
C3—C41.534 (2)C22—H220.9300
C3—C91.5629 (19)C23—C241.408 (3)
C3—C131.605 (2)C23—H230.9300
C4—O41.2141 (18)C24—H240.9300
C4—C51.493 (2)C51—C521.466 (2)
C5—C511.336 (2)C51—H510.9300
C6—N21.474 (2)C52—C531.384 (2)
C6—C71.488 (3)C52—C571.395 (2)
C6—H6A0.9700C53—C541.388 (2)
C6—H6B0.9700C53—H530.9300
C7—C81.290 (3)C54—C551.381 (2)
C7—H70.9300C54—H540.9300
C8—H8A0.9300C55—O11.364 (2)
C8—H8B0.9300C55—C561.390 (2)
C9—C911.516 (2)C56—C571.372 (3)
C9—C101.523 (2)C56—H560.9300
C9—H90.9800C57—H570.9300
C10—N11.4533 (19)C58—O11.422 (2)
C10—C111.521 (2)C58—H58A0.9600
C10—H100.9800C58—H58B0.9600
C11—S11.8349 (18)C58—H58C0.9600
C11—H11A0.9700C91—C961.384 (2)
C11—H11B0.9700C91—C921.392 (2)
C12—N11.447 (2)C92—C931.384 (2)
C12—S11.8285 (18)C92—H920.9300
C12—H12A0.9700C93—C941.376 (2)
C12—H12B0.9700C93—H930.9300
C13—N11.4654 (19)C94—C951.376 (2)
C13—C171.525 (2)C94—O21.3782 (19)
C13—C141.578 (2)C95—C961.395 (2)
C14—O31.2145 (19)C95—H950.9300
C14—C151.482 (2)C96—H960.9300
C15—C241.370 (2)C97—O21.418 (2)
C15—C161.402 (2)C97—H97A0.9600
C16—C211.403 (2)C97—H97B0.9600
C16—C171.409 (2)C97—H97C0.9600
C17—C181.361 (2)
N2—C1—C5111.93 (12)C19—C18—H18120.6
N2—C1—H1A109.2C20—C19—C18122.58 (19)
C5—C1—H1A109.2C20—C19—H19118.7
N2—C1—H1B109.2C18—C19—H19118.7
C5—C1—H1B109.2C19—C20—C21120.13 (17)
H1A—C1—H1B107.9C19—C20—H20119.9
N2—C2—C3108.17 (12)C21—C20—H20119.9
N2—C2—H2A110.1C16—C21—C20116.11 (17)
C3—C2—H2A110.1C16—C21—C22115.39 (19)
N2—C2—H2B110.1C20—C21—C22128.50 (18)
C3—C2—H2B110.1C23—C22—C21121.18 (18)
H2A—C2—H2B108.4C23—C22—H22119.4
C2—C3—C4106.66 (12)C21—C22—H22119.4
C2—C3—C9113.43 (12)C22—C23—C24122.47 (18)
C4—C3—C9111.42 (12)C22—C23—H23118.8
C2—C3—C13110.74 (11)C24—C23—H23118.8
C4—C3—C13110.21 (11)C15—C24—C23117.92 (19)
C9—C3—C13104.43 (11)C15—C24—H24121.0
O4—C4—C5121.71 (14)C23—C24—H24121.0
O4—C4—C3121.59 (13)C5—C51—C52129.37 (15)
C5—C4—C3116.69 (12)C5—C51—H51115.3
C51—C5—C4116.29 (14)C52—C51—H51115.3
C51—C5—C1124.63 (14)C53—C52—C57117.24 (15)
C4—C5—C1118.97 (13)C53—C52—C51124.48 (15)
N2—C6—C7115.66 (14)C57—C52—C51118.27 (15)
N2—C6—H6A108.4C52—C53—C54121.87 (16)
C7—C6—H6A108.4C52—C53—H53119.1
N2—C6—H6B108.4C54—C53—H53119.1
C7—C6—H6B108.4C55—C54—C53119.58 (16)
H6A—C6—H6B107.4C55—C54—H54120.2
C8—C7—C6126.7 (2)C53—C54—H54120.2
C8—C7—H7116.6O1—C55—C54125.01 (16)
C6—C7—H7116.6O1—C55—C56115.43 (15)
C7—C8—H8A120.0C54—C55—C56119.55 (16)
C7—C8—H8B120.0C57—C56—C55119.94 (16)
H8A—C8—H8B120.0C57—C56—H56120.0
C91—C9—C10116.94 (12)C55—C56—H56120.0
C91—C9—C3116.10 (12)C56—C57—C52121.78 (16)
C10—C9—C3102.54 (11)C56—C57—H57119.1
C91—C9—H9106.9C52—C57—H57119.1
C10—C9—H9106.9O1—C58—H58A109.5
C3—C9—H9106.9O1—C58—H58B109.5
N1—C10—C11105.13 (12)H58A—C58—H58B109.5
N1—C10—C9100.42 (12)O1—C58—H58C109.5
C11—C10—C9118.34 (13)H58A—C58—H58C109.5
N1—C10—H10110.7H58B—C58—H58C109.5
C11—C10—H10110.7C96—C91—C92117.19 (14)
C9—C10—H10110.7C96—C91—C9119.82 (13)
C10—C11—S1104.91 (11)C92—C91—C9122.99 (14)
C10—C11—H11A110.8C93—C92—C91121.24 (16)
S1—C11—H11A110.8C93—C92—H92119.4
C10—C11—H11B110.8C91—C92—H92119.4
S1—C11—H11B110.8C94—C93—C92120.59 (16)
H11A—C11—H11B108.8C94—C93—H93119.7
N1—C12—S1102.73 (11)C92—C93—H93119.7
N1—C12—H12A111.2C93—C94—C95119.52 (15)
S1—C12—H12A111.2C93—C94—O2115.79 (15)
N1—C12—H12B111.2C95—C94—O2124.68 (16)
S1—C12—H12B111.2C94—C95—C96119.57 (15)
H12A—C12—H12B109.1C94—C95—H95120.2
N1—C13—C17111.04 (12)C96—C95—H95120.2
N1—C13—C14113.34 (12)C91—C96—C95121.90 (15)
C17—C13—C14101.65 (12)C91—C96—H96119.1
N1—C13—C3101.45 (11)C95—C96—H96119.1
C17—C13—C3117.25 (12)O2—C97—H97A109.5
C14—C13—C3112.61 (12)O2—C97—H97B109.5
O3—C14—C15127.24 (15)H97A—C97—H97B109.5
O3—C14—C13124.21 (14)O2—C97—H97C109.5
C15—C14—C13107.82 (13)H97A—C97—H97C109.5
C24—C15—C16119.92 (16)H97B—C97—H97C109.5
C24—C15—C14132.45 (17)C12—N1—C10109.96 (13)
C16—C15—C14107.60 (13)C12—N1—C13121.79 (12)
C15—C16—C21123.09 (16)C10—N1—C13109.94 (12)
C15—C16—C17113.08 (14)C2—N2—C1111.62 (12)
C21—C16—C17123.81 (17)C2—N2—C6113.38 (12)
C18—C17—C16118.48 (15)C1—N2—C6112.06 (12)
C18—C17—C13131.99 (15)C55—O1—C58118.67 (15)
C16—C17—C13109.53 (14)C94—O2—C97116.86 (14)
C17—C18—C19118.88 (17)C12—S1—C1193.49 (7)
C17—C18—H18120.6
N2—C2—C3—C463.55 (14)C15—C16—C21—C20177.70 (15)
N2—C2—C3—C9173.41 (12)C17—C16—C21—C200.5 (2)
N2—C2—C3—C1356.38 (15)C15—C16—C21—C221.9 (2)
C2—C3—C4—O4139.41 (15)C17—C16—C21—C22179.93 (15)
C9—C3—C4—O415.1 (2)C19—C20—C21—C160.6 (3)
C13—C3—C4—O4100.31 (16)C19—C20—C21—C22178.93 (19)
C2—C3—C4—C541.65 (17)C16—C21—C22—C230.6 (3)
C9—C3—C4—C5165.93 (12)C20—C21—C22—C23178.87 (19)
C13—C3—C4—C578.62 (15)C21—C22—C23—C241.1 (3)
O4—C4—C5—C5128.6 (2)C16—C15—C24—C230.4 (2)
C3—C4—C5—C51150.36 (14)C14—C15—C24—C23177.97 (17)
O4—C4—C5—C1155.09 (15)C22—C23—C24—C151.6 (3)
C3—C4—C5—C126.0 (2)C4—C5—C51—C52176.30 (16)
N2—C1—C5—C51147.40 (16)C1—C5—C51—C520.2 (3)
N2—C1—C5—C428.6 (2)C5—C51—C52—C5341.8 (3)
N2—C6—C7—C8127.7 (2)C5—C51—C52—C57139.11 (19)
C2—C3—C9—C9133.48 (17)C57—C52—C53—C541.0 (3)
C4—C3—C9—C9186.90 (15)C51—C52—C53—C54179.92 (17)
C13—C3—C9—C91154.14 (12)C52—C53—C54—C550.8 (3)
C2—C3—C9—C1095.26 (14)C53—C54—C55—O1178.99 (17)
C4—C3—C9—C10144.36 (12)C53—C54—C55—C561.5 (3)
C13—C3—C9—C1025.40 (14)O1—C55—C56—C57179.99 (18)
C91—C9—C10—N1170.48 (12)C54—C55—C56—C570.5 (3)
C3—C9—C10—N142.27 (13)C55—C56—C57—C521.4 (3)
C91—C9—C10—C1175.89 (18)C53—C52—C57—C562.1 (3)
C3—C9—C10—C11155.90 (13)C51—C52—C57—C56178.78 (18)
N1—C10—C11—S133.74 (15)C10—C9—C91—C96145.25 (14)
C9—C10—C11—S1144.77 (12)C3—C9—C91—C9693.40 (16)
C2—C3—C13—N1123.33 (12)C10—C9—C91—C9233.9 (2)
C4—C3—C13—N1118.89 (12)C3—C9—C91—C9287.40 (18)
C9—C3—C13—N10.89 (14)C96—C91—C92—C930.7 (2)
C2—C3—C13—C17115.57 (14)C9—C91—C92—C93178.55 (15)
C4—C3—C13—C172.21 (17)C91—C92—C93—C940.4 (3)
C9—C3—C13—C17121.99 (13)C92—C93—C94—C950.5 (3)
C2—C3—C13—C141.85 (17)C92—C93—C94—O2178.49 (15)
C4—C3—C13—C14119.63 (13)C93—C94—C95—C961.1 (2)
C9—C3—C13—C14120.59 (13)O2—C94—C95—C96177.86 (15)
N1—C13—C14—O346.1 (2)C92—C91—C96—C950.1 (2)
C17—C13—C14—O3165.29 (15)C9—C91—C96—C95179.13 (14)
C3—C13—C14—O368.39 (19)C94—C95—C96—C910.8 (2)
N1—C13—C14—C15124.83 (13)S1—C12—N1—C1045.17 (15)
C17—C13—C14—C155.60 (15)S1—C12—N1—C13175.85 (11)
C3—C13—C14—C15120.72 (13)C11—C10—N1—C1253.36 (16)
O3—C14—C15—C2411.9 (3)C9—C10—N1—C12176.71 (12)
C13—C14—C15—C24177.56 (17)C11—C10—N1—C13169.93 (12)
O3—C14—C15—C16165.89 (16)C9—C10—N1—C1346.58 (14)
C13—C14—C15—C164.64 (17)C17—C13—N1—C1274.54 (18)
C24—C15—C16—C211.4 (2)C14—C13—N1—C1239.15 (19)
C14—C15—C16—C21176.74 (14)C3—C13—N1—C12160.12 (13)
C24—C15—C16—C17179.76 (15)C17—C13—N1—C10154.78 (12)
C14—C15—C16—C171.63 (18)C14—C13—N1—C1091.54 (14)
C15—C16—C17—C18177.11 (15)C3—C13—N1—C1029.43 (15)
C21—C16—C17—C181.2 (2)C3—C2—N2—C171.71 (15)
C15—C16—C17—C132.21 (18)C3—C2—N2—C6160.60 (13)
C21—C16—C17—C13179.43 (14)C5—C1—N2—C251.34 (17)
N1—C13—C17—C1853.6 (2)C5—C1—N2—C6179.74 (13)
C14—C13—C17—C18174.48 (17)C7—C6—N2—C261.56 (19)
C3—C13—C17—C1862.3 (2)C7—C6—N2—C165.90 (19)
N1—C13—C17—C16125.56 (13)C54—C55—O1—C586.9 (3)
C14—C13—C17—C164.72 (16)C56—C55—O1—C58172.63 (17)
C3—C13—C17—C16118.49 (14)C93—C94—O2—C97172.07 (16)
C16—C17—C18—C190.9 (2)C95—C94—O2—C979.0 (2)
C13—C17—C18—C19179.97 (16)N1—C12—S1—C1119.62 (13)
C17—C18—C19—C200.2 (3)C10—C11—S1—C128.01 (13)
C18—C19—C20—C210.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C52–C57 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O30.972.452.9587 (19)113
C93—H93···O1i0.932.493.343 (2)153
C58—H58B···Cg1ii0.962.853.487 (2)125
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C52–C57 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O30.972.452.9587 (19)112.7
C93—H93···O1i0.932.493.343 (2)153.0
C58—H58B···Cg1ii0.962.853.487 (2)125
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This project was supported by the Research Center, Deanship of Scientific Research, College of Science, King Saud University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGuengerich, F. P., DiMari, S. J. & Broquist, H. P. (1973). J. Am. Chem. Soc. 95, 2055–2056.  CrossRef CAS Web of Science Google Scholar
First citationLalezari, I. & Schwartz, E. L. (1988). J. Med. Chem. 31, 1427–1429.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationPuder, C., Krastel, P. & Zeeck, A. (2000). J. Nat. Prod. 63, 1258–1260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Vishnupriya, R., Kumar, R. R., Sivakumar, S. & Lakshman, P. L. N. (2011). Acta Cryst. E67, o3210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, edited by A. R. Katritzky, Vol. 45, p. 231. San Diego: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1345-o1346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds