organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1203-o1204

1-(2,4-Di­nitro­phen­yl)-2-[(E)-2,4,5-tri­meth­­oxy­benzyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 1 July 2013; accepted 2 July 2013; online 6 July 2013)

The title compound, C16H16N4O7, is close to being planar, with a dihedral angle of 3.15 (11)° between the benzene rings. The meth­oxy groups at the ortho- and para-positions of the 2,4,5-tri­meth­oxy­phenyl group are almost coplanar with the ring [deviations of the C atoms = 0.017 (2) and −0.025 (2) Å, respectively], whereas the meta-meth­oxy group deviates slightly [C-atom displacement = 0.162 (2) Å]. Both the ortho- and para-nitro groups are close to being coplanar with their attached ring [dihedral angles = 7.81 (12) and 8.56 (11)°, respectively]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds involving the same H atom as the intra­molecular bond generate R22(12) loops. The dimers are linked by weak C—H⋯O inter­actions into sheets parallel to the (10-4) plane and the sheets are stacked by ππ inter­actions, with a centroid–centroid distance of 3.5974 (14) Å.

Related literature

For related structures, see: Fun et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.], 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144-o2145.]). For background to the biological activity of hydro­zones, see: Angelusiu et al. (2010[Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]); Gokce et al. (2009[Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]); Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]); Török et al. (2013[Török, B., Sood, A., Bag, S., Tulsan, R., Ghosh, S., Borkin, D., Kennedy, A. R., Melanson, M., Madden, R., Zhou, W., LeVine, H. & Török, M. (2013). Biochemistry, 52, 1137-1148.]); Wang et al. (2009[Wang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425-2433.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O7

  • Mr = 376.33

  • Monoclinic, P 21 /c

  • a = 8.0273 (13) Å

  • b = 15.048 (2) Å

  • c = 13.686 (2) Å

  • β = 101.546 (3)°

  • V = 1619.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.33 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.994

  • 14507 measured reflections

  • 4296 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.01

  • 4296 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.89 (3) 2.04 (3) 2.642 (3) 124 (3)
N1—H1N1⋯O1i 0.89 (3) 2.43 (3) 3.295 (3) 164 (3)
C14—H14A⋯O6ii 0.96 2.59 3.180 (3) 120
C16—H16C⋯O2iii 0.96 2.53 3.143 (3) 122
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazones are known to be bioactive compounds with various biological properties such as antibacterial, antifungal, antitumor, anti-inflammatory and antioxidant activities (Angelusiu et al., 2010; Cui et al., 2010; Gokce et al., 2009 and Wang et al., 2009). Diaryl hydrazones were reported to be multifunctional inhibitors of amyloid self-assembly which is related to aging-related diseases such as Alzheimer's disease (Török et al., 2013). With our ongoing research on bioactive diaryl hydrazones, the title compound (I) was synthesized in order to study and compare its biological activity with the other related compounds (Fun et al., 2011; 2012). Our antioxidant activity evaluation of (I) by DPPH scavenging (Molyneux, 2004) found that (I) possesses antioxidant activity with 89.04% inhibition. Furthermore its anti-Alzheimer activity is under investigation and will be reported elsewhere. Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the molecular structure of (I), C16H16N4O7, is essentially planar with the dihedral angle between the two substituted benzene rings being 3.15 (11)°. Both nitro groups are slightly deviated with respect to their attached benzene rings [torsion angles O1–N3–C2–C1 = 5.4 (3)°, O2–N3–C2–C3 = 7.3 (3)°, O3–N4–C4–C3 = -5.7 (4)° and O4–N4–C4–C5 = -5.6 (3)°]. Two substituted methoxy groups at ortho and para positions of the 2,4,5-trimethoxyphenyl unit are co-planar with the bound benzene ring with the torsion angles C14–O5–C9–C10 = 1.0 (4)° and C15–O6–C11–C12 = 179.6 (2)° whereas the one at the meta position is slightly twisted with the torsion angle C16–O7–C12–C13 = 8.0 (4)° to reduce the steric effect. Intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif. Bond distances in (I) are comparable with those observed in related structures (Fun et al., 2011, 2012).

In the crystal packing (Fig. 2), the molecules are linked into inversion dimers by pairs of intermolecular N—H···O hydrogen bonds involving the same H atom as the intramolecular bond, generating R22(12) loops. These dimers are then linked by weak C—H···O interactions (Table 1) into sheets parallel to the (1 0 4) plane. These sheets are further stacked (Fig. 3) by ππ interactions with distances of Cg1···Cg2iv, v = 3.5974 (14) Å [symmetry codes (iv) = -1+x, y, z and (v) = 1+x, y, z].

Related literature top

For related structures, see: Fun et al. (2011, 2012). For background to the biological activity of hydrozones, see: Angelusiu et al. (2010); Cui et al. (2010); Gokce et al. (2009); Molyneux (2004); Török et al. (2013); Wang et al. (2009).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (0.50 ml) was slowly added with stirring. The solution of 2,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) in ethanol (20.00 ml) was then added to the solution with continuous stirring for 1 hr, yielding a red solid which was filtered off and washed with methanol. Red needles of the title compound were recrystalized from ethanol solution by slow evaporation of the solvent at room temperature over several days, Mp. 528-529 K.

Refinement top

The hydrazine H atom was located from a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for CH and aromatic, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 60% probability displacement ellipsoids. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines. Only H atoms involved in hydrogen bonds are shown for clarity.
[Figure 3] Fig. 3. The crystal packing of (I) viewed approximately along the b axis, showing the stacking of sheets. Hydrogen bonds are shown as dashed lines. Only H atoms involved in hydrogen bonds are shown for clarity.
1-(2,4-Dinitrophenyl)-2-[(E)-2,4,5-trimethoxybenzylidene]hydrazine top
Crystal data top
C16H16N4O7F(000) = 784
Mr = 376.33Dx = 1.543 Mg m3
Monoclinic, P21/cMelting point = 528–529 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.0273 (13) ÅCell parameters from 4296 reflections
b = 15.048 (2) Åθ = 2.0–29.0°
c = 13.686 (2) ŵ = 0.12 mm1
β = 101.546 (3)°T = 100 K
V = 1619.7 (4) Å3Needle, red
Z = 40.33 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4296 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.961, Tmax = 0.994k = 1720
14507 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5503P]
where P = (Fo2 + 2Fc2)/3
4296 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H16N4O7V = 1619.7 (4) Å3
Mr = 376.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0273 (13) ŵ = 0.12 mm1
b = 15.048 (2) ÅT = 100 K
c = 13.686 (2) Å0.33 × 0.06 × 0.05 mm
β = 101.546 (3)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2385 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.994Rint = 0.072
14507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
4296 reflectionsΔρmin = 0.33 e Å3
251 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.12652 (19)0.44523 (11)0.52056 (12)0.0210 (4)
O21.38293 (19)0.39446 (11)0.56829 (12)0.0204 (4)
O31.4973 (2)0.08730 (12)0.60481 (14)0.0302 (5)
O41.2974 (2)0.00920 (12)0.55543 (14)0.0292 (5)
O50.33101 (19)0.48609 (11)0.33462 (13)0.0226 (4)
O60.05504 (19)0.24861 (11)0.19418 (12)0.0201 (4)
O70.18289 (19)0.13357 (11)0.24418 (12)0.0187 (4)
N10.8715 (2)0.33762 (14)0.44831 (15)0.0166 (5)
H1N10.891 (4)0.394 (2)0.466 (2)0.041 (9)*
N20.7106 (2)0.30856 (14)0.40437 (14)0.0171 (5)
N31.2304 (2)0.38263 (13)0.53664 (14)0.0164 (5)
N41.3513 (2)0.06807 (14)0.56381 (15)0.0194 (5)
C10.9955 (3)0.27522 (16)0.46967 (16)0.0142 (5)
C21.1676 (3)0.29321 (15)0.51555 (16)0.0149 (5)
C31.2840 (3)0.22554 (16)0.54419 (16)0.0153 (5)
H3A1.39510.23860.57560.018*
C41.2341 (3)0.13928 (16)0.52577 (17)0.0162 (5)
C51.0706 (3)0.11895 (17)0.47365 (17)0.0182 (6)
H5A1.04070.06020.45790.022*
C60.9552 (3)0.18490 (16)0.44595 (16)0.0169 (5)
H6A0.84720.17050.41060.020*
C70.5914 (3)0.36708 (16)0.38720 (16)0.0163 (5)
H7A0.61280.42610.40560.020*
C80.4214 (3)0.33803 (16)0.33783 (16)0.0144 (5)
C90.2900 (3)0.39983 (16)0.31141 (17)0.0157 (5)
C100.1277 (3)0.37208 (16)0.26307 (17)0.0163 (5)
H10A0.04090.41350.24530.020*
C110.0970 (3)0.28289 (16)0.24183 (16)0.0151 (5)
C120.2279 (3)0.21986 (16)0.26910 (16)0.0155 (5)
C130.3866 (3)0.24807 (16)0.31568 (16)0.0158 (5)
H13A0.47330.20650.33300.019*
C140.2019 (3)0.55210 (17)0.3101 (2)0.0251 (6)
H14A0.24730.60900.33330.038*
H14B0.10840.53770.34140.038*
H14C0.16290.55400.23910.038*
C150.1945 (3)0.30917 (17)0.16478 (18)0.0212 (6)
H15A0.29110.27750.12840.032*
H15B0.16230.35490.12320.032*
H15C0.22330.33560.22310.032*
C160.3069 (3)0.06688 (16)0.28081 (18)0.0208 (6)
H16A0.26000.00920.26230.031*
H16B0.33800.07090.35210.031*
H16C0.40580.07590.25250.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (8)0.0103 (9)0.0338 (9)0.0024 (7)0.0009 (7)0.0002 (7)
O20.0122 (8)0.0163 (9)0.0305 (9)0.0031 (7)0.0009 (7)0.0019 (7)
O30.0140 (8)0.0199 (10)0.0520 (11)0.0024 (7)0.0048 (8)0.0026 (9)
O40.0239 (9)0.0111 (9)0.0488 (11)0.0020 (7)0.0020 (8)0.0018 (8)
O50.0148 (8)0.0091 (9)0.0412 (10)0.0022 (7)0.0008 (8)0.0012 (8)
O60.0118 (8)0.0155 (9)0.0305 (9)0.0012 (7)0.0021 (7)0.0011 (7)
O70.0148 (8)0.0106 (9)0.0286 (9)0.0013 (7)0.0007 (7)0.0019 (7)
N10.0112 (9)0.0111 (11)0.0257 (10)0.0010 (8)0.0004 (8)0.0006 (9)
N20.0099 (9)0.0170 (11)0.0232 (9)0.0000 (8)0.0001 (8)0.0001 (8)
N30.0161 (9)0.0110 (10)0.0211 (10)0.0015 (8)0.0017 (8)0.0002 (8)
N40.0156 (10)0.0123 (11)0.0301 (11)0.0019 (8)0.0039 (9)0.0005 (9)
C10.0118 (10)0.0128 (12)0.0180 (10)0.0013 (9)0.0032 (9)0.0007 (9)
C20.0138 (10)0.0102 (12)0.0198 (10)0.0005 (9)0.0016 (9)0.0008 (9)
C30.0110 (10)0.0139 (12)0.0204 (11)0.0008 (9)0.0014 (9)0.0006 (9)
C40.0131 (11)0.0128 (12)0.0216 (11)0.0039 (9)0.0012 (9)0.0010 (10)
C50.0166 (11)0.0157 (13)0.0223 (12)0.0014 (10)0.0035 (10)0.0005 (10)
C60.0107 (10)0.0177 (13)0.0212 (11)0.0006 (9)0.0004 (9)0.0011 (10)
C70.0153 (11)0.0112 (12)0.0215 (11)0.0009 (9)0.0018 (9)0.0002 (9)
C80.0102 (10)0.0125 (12)0.0203 (11)0.0012 (9)0.0027 (9)0.0013 (9)
C90.0153 (11)0.0100 (12)0.0213 (11)0.0011 (9)0.0024 (9)0.0007 (9)
C100.0133 (11)0.0125 (12)0.0222 (11)0.0040 (9)0.0013 (9)0.0017 (10)
C110.0104 (10)0.0148 (13)0.0199 (11)0.0008 (9)0.0025 (9)0.0000 (9)
C120.0160 (11)0.0107 (12)0.0198 (11)0.0001 (9)0.0035 (9)0.0008 (9)
C130.0133 (11)0.0115 (12)0.0220 (11)0.0041 (9)0.0019 (9)0.0005 (9)
C140.0203 (12)0.0119 (13)0.0408 (14)0.0062 (10)0.0006 (11)0.0003 (11)
C150.0122 (11)0.0199 (14)0.0292 (12)0.0048 (10)0.0014 (10)0.0000 (11)
C160.0177 (12)0.0122 (13)0.0312 (12)0.0049 (10)0.0018 (10)0.0015 (10)
Geometric parameters (Å, º) top
O1—N31.248 (2)C5—C61.359 (3)
O2—N31.227 (2)C5—H5A0.9300
O3—N41.228 (2)C6—H6A0.9300
O4—N41.238 (3)C7—C81.463 (3)
O5—C91.361 (3)C7—H7A0.9300
O5—C141.427 (3)C8—C91.398 (3)
O6—C111.364 (2)C8—C131.403 (3)
O6—C151.437 (3)C9—C101.401 (3)
O7—C121.372 (3)C10—C111.385 (3)
O7—C161.432 (3)C10—H10A0.9300
N1—C11.357 (3)C11—C121.410 (3)
N1—N21.382 (2)C12—C131.373 (3)
N1—H1N10.88 (3)C13—H13A0.9300
N2—C71.287 (3)C14—H14A0.9600
N3—C21.446 (3)C14—H14B0.9600
N4—C41.452 (3)C14—H14C0.9600
C1—C61.420 (3)C15—H15A0.9600
C1—C21.424 (3)C15—H15B0.9600
C2—C31.385 (3)C15—H15C0.9600
C3—C41.367 (3)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.396 (3)C16—H16C0.9600
C9—O5—C14118.60 (17)C9—C8—C7120.4 (2)
C11—O6—C15117.78 (18)C13—C8—C7121.0 (2)
C12—O7—C16116.49 (16)O5—C9—C8116.05 (18)
C1—N1—N2117.2 (2)O5—C9—C10123.6 (2)
C1—N1—H1N1121.4 (19)C8—C9—C10120.4 (2)
N2—N1—H1N1121.2 (19)C11—C10—C9119.8 (2)
C7—N2—N1117.3 (2)C11—C10—H10A120.1
O2—N3—O1122.47 (19)C9—C10—H10A120.1
O2—N3—C2119.27 (19)O6—C11—C10124.9 (2)
O1—N3—C2118.25 (17)O6—C11—C12114.9 (2)
O3—N4—O4123.2 (2)C10—C11—C12120.29 (19)
O3—N4—C4118.7 (2)O7—C12—C13125.6 (2)
O4—N4—C4118.03 (17)O7—C12—C11115.18 (18)
N1—C1—C6119.28 (19)C13—C12—C11119.2 (2)
N1—C1—C2124.6 (2)C12—C13—C8121.6 (2)
C6—C1—C2116.1 (2)C12—C13—H13A119.2
C3—C2—C1121.7 (2)C8—C13—H13A119.2
C3—C2—N3116.05 (18)O5—C14—H14A109.5
C1—C2—N3122.3 (2)O5—C14—H14B109.5
C4—C3—C2119.31 (19)H14A—C14—H14B109.5
C4—C3—H3A120.3O5—C14—H14C109.5
C2—C3—H3A120.3H14A—C14—H14C109.5
C3—C4—C5120.9 (2)H14B—C14—H14C109.5
C3—C4—N4119.29 (18)O6—C15—H15A109.5
C5—C4—N4119.8 (2)O6—C15—H15B109.5
C6—C5—C4120.1 (2)H15A—C15—H15B109.5
C6—C5—H5A120.0O6—C15—H15C109.5
C4—C5—H5A120.0H15A—C15—H15C109.5
C5—C6—C1121.61 (19)H15B—C15—H15C109.5
C5—C6—H6A119.2O7—C16—H16A109.5
C1—C6—H6A119.2O7—C16—H16B109.5
N2—C7—C8118.1 (2)H16A—C16—H16B109.5
N2—C7—H7A121.0O7—C16—H16C109.5
C8—C7—H7A121.0H16A—C16—H16C109.5
C9—C8—C13118.60 (19)H16B—C16—H16C109.5
C1—N1—N2—C7177.6 (2)N2—C7—C8—C9175.7 (2)
N2—N1—C1—C60.3 (3)N2—C7—C8—C134.0 (4)
N2—N1—C1—C2179.5 (2)C14—O5—C9—C8179.6 (2)
N1—C1—C2—C3173.6 (2)C14—O5—C9—C101.0 (4)
C6—C1—C2—C36.2 (4)C13—C8—C9—O5179.9 (2)
N1—C1—C2—N35.3 (4)C7—C8—C9—O50.2 (3)
C6—C1—C2—N3174.9 (2)C13—C8—C9—C100.5 (4)
O2—N3—C2—C37.3 (3)C7—C8—C9—C10179.2 (2)
O1—N3—C2—C3173.5 (2)O5—C9—C10—C11179.7 (2)
O2—N3—C2—C1173.7 (2)C8—C9—C10—C110.4 (4)
O1—N3—C2—C15.4 (3)C15—O6—C11—C100.8 (3)
C1—C2—C3—C41.7 (4)C15—O6—C11—C12179.6 (2)
N3—C2—C3—C4179.4 (2)C9—C10—C11—O6179.2 (2)
C2—C3—C4—C53.6 (4)C9—C10—C11—C120.3 (4)
C2—C3—C4—N4174.4 (2)C16—O7—C12—C138.0 (4)
O3—N4—C4—C35.7 (4)C16—O7—C12—C11173.1 (2)
O4—N4—C4—C3172.5 (2)O6—C11—C12—O70.3 (3)
O3—N4—C4—C5176.2 (2)C10—C11—C12—O7179.9 (2)
O4—N4—C4—C55.6 (3)O6—C11—C12—C13178.7 (2)
C3—C4—C5—C64.2 (4)C10—C11—C12—C130.9 (4)
N4—C4—C5—C6173.9 (2)O7—C12—C13—C8179.6 (2)
C4—C5—C6—C10.8 (4)C11—C12—C13—C80.7 (4)
N1—C1—C6—C5174.1 (2)C9—C8—C13—C120.0 (4)
C2—C1—C6—C55.7 (3)C7—C8—C13—C12179.8 (2)
N1—N2—C7—C8178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.89 (3)2.04 (3)2.642 (3)124 (3)
N1—H1N1···O1i0.89 (3)2.43 (3)3.295 (3)164 (3)
C14—H14A···O6ii0.962.593.180 (3)120
C16—H16C···O2iii0.962.533.143 (3)122
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N4O7
Mr376.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0273 (13), 15.048 (2), 13.686 (2)
β (°) 101.546 (3)
V3)1619.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.33 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.961, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14507, 4296, 2385
Rint0.072
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 1.01
No. of reflections4296
No. of parameters251
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.89 (3)2.04 (3)2.642 (3)124 (3)
N1—H1N1···O1i0.89 (3)2.43 (3)3.295 (3)164 (3)
C14—H14A···O6ii0.962.593.180 (3)120
C16—H16C···O2iii0.962.533.143 (3)122
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th, Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for generous support. The authors extend their appreciation to Universiti Sains Malaysia for the APEX DE2012 grant No.1002/PFIZIK/910323.

References

First citationAngelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science CrossRef PubMed Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTörök, B., Sood, A., Bag, S., Tulsan, R., Ghosh, S., Borkin, D., Kennedy, A. R., Melanson, M., Madden, R., Zhou, W., LeVine, H. & Török, M. (2013). Biochemistry, 52, 1137–1148.  Web of Science PubMed Google Scholar
First citationWang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1203-o1204
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds