organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­anilinium iodide

aDepartment of Biological Sciences, Loyola University, New Orleans, LA 70118, USA, bDepartment of Physics, Loyola University, New Orleans, LA 70118, USA, cDepartment of Chemistry, Loyola University, New Orleans, LA 70118, USA, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

(Received 11 July 2013; accepted 12 July 2013; online 20 July 2013)

The solid-state structure of the title salt, C7H7N2+.I, consists of cation–anion sheets lying parallel to (110), with the components linked by N—H⋯I hydrogen bonds.

Related literature

For the structure of 2-cyano-1-methyl­pyridinium iodide, see: Kammer et al. (2013[Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.]). For structures of other 2-cyano­anilinium salts, see: Cui & Chen (2010[Cui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.]); Zhang (2009[Zhang, L. (2009). Acta Cryst. E65, o2407.]); Cui & Wen (2008[Cui, L.-J. & Wen, X.-C. (2008). Acta Cryst. E64, o1620.]); Oueslati et al. (2005[Oueslati, A., Kefi, R., Akriche, S. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 365.]). For the structures of 4-cyanoanilinium halides, see: Mague et al. (2012[Mague, J. T., Vumbaco, D. J., Kammer, M. N. & Koplitz, L. V. (2012). Acta Cryst. E68, o2623.]); Vumbaco et al. (2012[Vumbaco, D. J., Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2012). Acta Cryst. E68, o2884.]); Colapietro et al. (1981[Colapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1981). Acta Cryst. B37, 387-394.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·I

  • Mr = 246.05

  • Orthorhombic, P b c a

  • a = 10.1474 (15) Å

  • b = 8.6979 (13) Å

  • c = 18.073 (3) Å

  • V = 1595.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.94 mm−1

  • T = 100 K

  • 0.20 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.43, Tmax = 0.58

  • 25911 measured reflections

  • 2112 independent reflections

  • 2030 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.10

  • 2112 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1 0.88 2.74 3.6069 (13) 169
N1—H1B⋯I1i 0.88 2.71 3.5501 (14) 160
N1—H1C⋯I1ii 0.88 2.84 3.6615 (13) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXM (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the solid state, salts of the isomeric cyanoanilinium ions exhibit both layer and network structures. Thus, the iodide (Mague et al., 2012) and chloride (Colapietro et al., 1981) salts of the 4-cyanoanilinium ion as well as the chloride (Oueslati, et al., 2005) and nitrate (Cui & Wen, 2008) salts of the 2-cyanoanilinium ion have layer structures in which the –NH3+ and anion moieties form a double layer with the organic portion of the cations protruding perpendicularly from both sides of this double layer. By contrast, the bromide (Zhang, 2009) and perchlorate (Cui & Chen, 2010) salts of the 2-cyanoanilinium ion form network structures while 4-cyanoanilinium bromide (Vumbaco et al., 2012) forms a stepped layer structure. A different structure type is found in the title compound where the basic unit is a zigzag chain of alternating cations and anions running parallel to a assembled by alternating short and long N—H···I hydrogen bonds (Table 1, Fig. 1). These chains are assembled into sheets parallel to (110) by intermediate length N—H···I hydrogen bonds between cations in one chain and anions in the next in which the cations in each chain are arranged in an "umbrella" fashion (Fig. 3) instead of projecting straight out towards the edges of the layer. It is also significantly different from the structure adopted by the isomeric compound 2-cyano-N-methylpyridinium iodide (Kammer et al., 2013), at least in part because the intermolecular C—H···I interactions in this compound are expected to be weaker than the N—H···I interactions in the title compound.

Related literature top

For the structure of 2-cyano-1-methylpyridinium iodide, see: Kammer et al. (2013). For structures of other 2-cyanoanilinium salts, see: Cui & Chen (2010); Zhang (2009); Cui & Wen (2008); Oueslati et al. (2005), Mague et al. (2012). For the structure of 4-cyanoanilinium chloride, see: Colapietro et al. (1981). For the structure of 4-cyanoanilinium bromide, see: Vumbaco et al. (2012).

Experimental top

2-Cyanoaniline (0.55 g) and 1.0 ml of aqueous hydroiodic acid (47% by mass) were combined in 10 ml of ethanol. This solution was slowly evaporated to dryness at room temperature to form colourless blocks of the title compound.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates then adjusted to give N—H = 0.88 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXM (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the cation–anion pair showing the shortest interionic N—H···I hydrogen bonds and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the b axis with N—H···I interactions shown as dotted lines.
[Figure 3] Fig. 3. Packing viewed down the a axis with N—H···I interactions shown as dotted lines.
2-Cyanoanilinium iodide top
Crystal data top
C7H7N2+·IDx = 2.049 Mg m3
Mr = 246.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9853 reflections
a = 10.1474 (15) Åθ = 2.3–29.1°
b = 8.6979 (13) ŵ = 3.94 mm1
c = 18.073 (3) ÅT = 100 K
V = 1595.2 (4) Å3Block, colourless
Z = 80.20 × 0.19 × 0.16 mm
F(000) = 928
Data collection top
Bruker SMART APEX CCD
diffractometer
2112 independent reflections
Radiation source: fine-focus sealed tube2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 2.3°
ϕ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Bruker, 2010)
k = 1111
Tmin = 0.43, Tmax = 0.58l = 2424
25911 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.7585P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2112 reflectionsΔρmax = 0.59 e Å3
92 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00151 (13)
Crystal data top
C7H7N2+·IV = 1595.2 (4) Å3
Mr = 246.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.1474 (15) ŵ = 3.94 mm1
b = 8.6979 (13) ÅT = 100 K
c = 18.073 (3) Å0.20 × 0.19 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2112 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2010)
2030 reflections with I > 2σ(I)
Tmin = 0.43, Tmax = 0.58Rint = 0.039
25911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.10Δρmax = 0.59 e Å3
2112 reflectionsΔρmin = 0.58 e Å3
92 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.58823 (2)0.05477 (2)0.13679 (2)0.01326 (5)
N10.58054 (12)0.44877 (14)0.19889 (8)0.0140 (3)
H1A0.58700.34960.19000.017*
H1B0.55900.47160.24480.017*
H1C0.65930.49090.19730.017*
N20.28338 (14)0.23930 (17)0.21818 (8)0.0246 (3)
C10.49549 (15)0.51204 (18)0.14089 (7)0.0129 (3)
C20.54089 (14)0.63213 (16)0.09804 (8)0.0149 (3)
H20.62520.67580.10710.018*
C30.46120 (15)0.68861 (17)0.04120 (8)0.0170 (3)
H30.49160.77110.01130.020*
C40.33787 (15)0.62516 (17)0.02809 (8)0.0183 (3)
H40.28540.66270.01150.022*
C50.29073 (15)0.50692 (19)0.07257 (8)0.0172 (3)
H50.20540.46540.06430.021*
C60.36974 (17)0.44965 (16)0.12950 (8)0.0141 (3)
C70.32073 (14)0.33165 (17)0.17807 (8)0.0167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01359 (7)0.01201 (7)0.01419 (7)0.00040 (3)0.00112 (3)0.00004 (3)
N10.0147 (6)0.0120 (6)0.0152 (6)0.0004 (4)0.0008 (4)0.0005 (4)
N20.0270 (7)0.0236 (7)0.0233 (7)0.0071 (6)0.0076 (6)0.0023 (6)
C10.0145 (7)0.0117 (7)0.0126 (6)0.0012 (5)0.0003 (5)0.0022 (5)
C20.0153 (6)0.0120 (6)0.0174 (6)0.0003 (5)0.0003 (5)0.0002 (5)
C30.0210 (7)0.0127 (7)0.0174 (7)0.0019 (6)0.0010 (5)0.0009 (5)
C40.0213 (7)0.0163 (7)0.0174 (6)0.0050 (6)0.0035 (5)0.0020 (6)
C50.0150 (6)0.0166 (7)0.0199 (7)0.0020 (6)0.0011 (5)0.0058 (6)
C60.0142 (8)0.0119 (7)0.0161 (7)0.0012 (5)0.0029 (5)0.0033 (5)
C70.0143 (6)0.0174 (7)0.0182 (7)0.0017 (5)0.0023 (5)0.0053 (6)
Geometric parameters (Å, º) top
N1—C11.4651 (19)C2—H20.9500
N1—H1A0.8800C3—C41.388 (2)
N1—H1B0.8800C3—H30.9500
N1—H1C0.8800C4—C51.390 (2)
N2—C71.146 (2)C4—H40.9500
C1—C21.380 (2)C5—C61.396 (2)
C1—C61.402 (2)C5—H50.9500
C2—C31.397 (2)C6—C71.439 (2)
C1—N1—H1A106.4C4—C3—H3119.7
C1—N1—H1B116.3C2—C3—H3119.7
H1A—N1—H1B114.3C3—C4—C5120.37 (14)
C1—N1—H1C110.8C3—C4—H4119.8
H1A—N1—H1C109.6C5—C4—H4119.8
H1B—N1—H1C99.3C4—C5—C6119.51 (14)
C2—C1—C6120.98 (13)C4—C5—H5120.2
C2—C1—N1119.30 (13)C6—C5—H5120.2
C6—C1—N1119.72 (13)C5—C6—C1119.52 (14)
C1—C2—C3119.07 (14)C5—C6—C7120.37 (15)
C1—C2—H2120.5C1—C6—C7120.07 (14)
C3—C2—H2120.5N2—C7—C6178.30 (17)
C4—C3—C2120.51 (14)
C6—C1—C2—C31.9 (2)C4—C5—C6—C7177.45 (14)
N1—C1—C2—C3177.87 (13)C2—C1—C6—C51.9 (2)
C1—C2—C3—C40.2 (2)N1—C1—C6—C5177.89 (13)
C2—C3—C4—C51.6 (2)C2—C1—C6—C7175.70 (13)
C3—C4—C5—C61.6 (2)N1—C1—C6—C74.5 (2)
C4—C5—C6—C10.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.882.743.6069 (13)169
N1—H1B···I1i0.882.713.5501 (14)160
N1—H1C···I1ii0.882.843.6615 (13)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.882.743.6069 (13)169
N1—H1B···I1i0.882.713.5501 (14)160
N1—H1C···I1ii0.882.843.6615 (13)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund (Grant LEQSF (2003–2003)-ENH –TR-67) for the purchase of the APEX diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1981). Acta Cryst. B37, 387–394.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCui, L.-J. & Chen, X.-Y. (2010). Acta Cryst. E66, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, L.-J. & Wen, X.-C. (2008). Acta Cryst. E64, o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKammer, M. N., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o1281.  CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Vumbaco, D. J., Kammer, M. N. & Koplitz, L. V. (2012). Acta Cryst. E68, o2623.  CSD CrossRef IUCr Journals Google Scholar
First citationOueslati, A., Kefi, R., Akriche, S. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 365.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVumbaco, D. J., Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2012). Acta Cryst. E68, o2884.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. (2009). Acta Cryst. E65, o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds