organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(6-Chloro-2-meth­­oxy­quinolin-3-yl)-1-(2,4-di­methyl­quinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 July 2013; accepted 13 July 2013; online 20 July 2013)

The mol­ecule of the title compound, C24H19ClN2O2, is bent, with the dihedral angle between the terminal quinoline ring systems being 63.30 (5)°. The quinolinyl residues are connected by an almost planar prop-2-en-1-one bridge (r.m.s. deviation = 0.022 Å), with the dihedral angles between this plane and the appended quinolinyl residues being 75.86 (7) and 38.54 (7)°. The C atom of the meth­oxy group is close to coplanar with its attached ring [deviation = 0.116 (2) Å]. In the crystal, a three-dimensional architecture is constructed by meth­yl–carbonyl C—H⋯O inter­actions and ππ inter­actions between centrosymmetrically related quinolinyl residues [centroid-to-centroid separations 3.5341 (10) and 3.8719 (9) Å].

Related literature

For background to the biological activities and photophysical properties of quinolines, and their utility as inter­mediates in organic synthesis, see: Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroatom Chem. 23, 525-530.]); Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]). For background to the bio-activities of quinolinyl chalcones, see: Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19ClN2O2

  • Mr = 402.86

  • Monoclinic, P 21 /n

  • a = 13.1605 (3) Å

  • b = 10.4876 (2) Å

  • c = 14.8786 (3) Å

  • β = 106.354 (2)°

  • V = 1970.49 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.711, Tmax = 1.000

  • 8189 measured reflections

  • 4053 independent reflections

  • 3580 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.07

  • 4053 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.98 2.52 3.221 (2) 129
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoline derivatives are an important class of natural and synthetic products, which possess a number of interesting biological activities, are valuable intermediates in organic synthesis, and exhibit a multitude of photo-physical properties (Prasath & Bhavana, 2012; Joshi et al., 2011). Also, quinolinyl chalcones have gained much attention due to their bio-activity, such as anti-bacterial, anti-fungal, anti-malarial and anti-cancer activities (Prasath et al., 2013a). It was in this connection that the title compound, (I), was investigated.

The molecular structure of (I), Fig. 1, comprises two quinolinyl rings connected by the ends of a prop-2-en-1-one bridge. The dihedral angle between the quinolinyl rings is 63.30 (5)°. The methoxy group is coplanar with the quinolinyl ring to which it is attached, as seen in the value of the C24—O2—C16—N2 torsion angle of 3.1 (2)°. The conformation about the ethylene bond [C13C14 = 1.335 (2) Å] is E. The central C5O plane comprising the O1, C8 and C12–C15 atoms, is almost planar, with an r.m.s. deviation of 0.022 Å. The N1- and N2-containing quinolinyl rings form dihedral angles of 75.86 (7) and 38.54 (7)°, respectively, with the central plane.

In the most closely related structure, (II), namely (2E)-3-(2-chloro-8-methylquinolin-3-yl)-1-(5,7-dimethylquinolin-6-yl)prop-2-en-1-one (Prasath et al., 2013b), the dihedral angle between the quinolinyl residues is 83.72 (4)°, indicating a more open configuration than that in (I). Also, when the structures are viewed normal to the ethylene bond, the pyridyl-N atoms in (I) can be described as syn, whereas they are closer to anti in (II).

In the crystal, supramolecular helical chains are formed by methyl-C—H···O(carbonyl) interactions, Table 1. These are connected into a three-dimensional architecture by ππ interactions between the rings of centrosymmetrically related N1-quinolinyl residues [3.5341 (10) Å; angle of inclination = 2.48 (9)° for symmetry operation 1 - x, 1 - y, -z] and between the rings of centrosymmetrically related N2-quinolinyl residues [3.8719 (9) Å; angle of inclination = 2.52 (8)° for symmetry operation 1 - x, 2 - y, -z], Fig. 2.

Related literature top

For background to the biological activities and photophysical properties of quinolines, and their utility as intermediates in organic synthesis, see: Prasath & Bhavana (2012); Joshi et al. (2011). For background to the bio-activities of quinolinyl chalcones, see: Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 2,4-dimethyl-3-acetylquinoline (200 mg, 0.001 M) and 2,6-dichloroquinoline-3-carbaldehyde (230 mg, 0.001 M) in methanol (20 ml) containing 0.2 g of potassium hydroxide was stirred at room temperature for 12 h. At the end of the period, the reaction mixture was neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate–hexane (2:1) mixture to afford (I). Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded pale-yellow blocks in 61% yield; M.pt: 423–425 K.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view, in projection down the a axis, of the unit-cell contents of (I). The C—H···O and ππ interactions are shown as orange and purple blue dashed lines, respectively.
(2E)-3-(6-Chloro-2-methoxyquinolin-3-yl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C24H19ClN2O2F(000) = 840
Mr = 402.86Dx = 1.358 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 4094 reflections
a = 13.1605 (3) Åθ = 3.1–76.4°
b = 10.4876 (2) ŵ = 1.90 mm1
c = 14.8786 (3) ÅT = 100 K
β = 106.354 (2)°Block, pale-yellow
V = 1970.49 (7) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4053 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3580 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1213
Tmin = 0.711, Tmax = 1.000l = 1818
8189 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.8422P]
where P = (Fo2 + 2Fc2)/3
4053 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C24H19ClN2O2V = 1970.49 (7) Å3
Mr = 402.86Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.1605 (3) ŵ = 1.90 mm1
b = 10.4876 (2) ÅT = 100 K
c = 14.8786 (3) Å0.35 × 0.30 × 0.25 mm
β = 106.354 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4053 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3580 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 1.000Rint = 0.019
8189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.61 e Å3
4053 reflectionsΔρmin = 0.49 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69700 (4)1.15984 (5)0.82007 (3)0.03903 (15)
O10.74055 (11)0.52819 (14)0.32665 (9)0.0379 (3)
O20.34467 (11)0.69372 (12)0.42578 (8)0.0324 (3)
N10.40195 (12)0.49117 (14)0.14020 (10)0.0271 (3)
N20.39020 (11)0.82891 (14)0.55617 (10)0.0249 (3)
C10.40917 (13)0.56639 (17)0.06701 (12)0.0252 (3)
C20.32879 (14)0.55356 (17)0.01880 (12)0.0284 (4)
H20.27280.49450.02370.034*
C30.33138 (15)0.62559 (19)0.09439 (12)0.0319 (4)
H30.27760.61550.15190.038*
C40.41310 (15)0.7150 (2)0.08803 (13)0.0338 (4)
H40.41300.76640.14060.041*
C50.49274 (15)0.72798 (18)0.00624 (13)0.0302 (4)
H50.54790.78780.00260.036*
C60.49323 (13)0.65264 (16)0.07298 (12)0.0247 (3)
C70.57710 (13)0.65747 (16)0.15858 (12)0.0256 (4)
C80.56830 (13)0.58072 (16)0.23097 (11)0.0250 (3)
C90.47856 (14)0.49875 (17)0.21924 (12)0.0271 (4)
C100.67212 (14)0.74029 (19)0.16571 (13)0.0323 (4)
H10A0.71890.73740.22990.048*
H10B0.64910.82830.14960.048*
H10C0.71040.70920.12230.048*
C110.46915 (18)0.4122 (2)0.29718 (14)0.0394 (5)
H11A0.41950.34300.27120.059*
H11B0.44310.46100.34230.059*
H11C0.53880.37620.32880.059*
C120.65569 (14)0.57938 (17)0.32225 (12)0.0269 (4)
C130.63785 (14)0.64480 (17)0.40412 (12)0.0270 (4)
H130.69350.64660.46090.032*
C140.54619 (13)0.70161 (16)0.40128 (11)0.0242 (3)
H140.49090.69600.34440.029*
C150.52396 (13)0.77189 (16)0.47882 (11)0.0231 (3)
C160.41937 (13)0.76998 (16)0.49044 (11)0.0247 (3)
C170.46563 (13)0.90084 (16)0.61874 (11)0.0237 (3)
C180.43667 (14)0.96369 (17)0.69184 (12)0.0278 (4)
H180.36740.95320.69830.033*
C190.50854 (15)1.04000 (17)0.75364 (12)0.0293 (4)
H190.48911.08190.80290.035*
C200.61116 (14)1.05587 (17)0.74370 (12)0.0282 (4)
C210.64352 (14)0.99357 (16)0.67556 (12)0.0259 (3)
H210.71351.00420.67070.031*
C220.57067 (13)0.91316 (15)0.61268 (11)0.0226 (3)
C230.59830 (13)0.84460 (15)0.54060 (11)0.0235 (3)
H230.66840.84920.53520.028*
C240.24358 (17)0.6907 (2)0.43289 (16)0.0437 (5)
H24A0.20030.63470.38430.066*
H24B0.21380.77700.42470.066*
H24C0.24400.65830.49470.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (3)0.0398 (3)0.0358 (3)0.00176 (19)0.00367 (19)0.01474 (18)
O10.0302 (7)0.0444 (8)0.0365 (7)0.0107 (6)0.0051 (5)0.0085 (6)
O20.0458 (8)0.0284 (6)0.0201 (6)0.0077 (6)0.0046 (5)0.0081 (5)
N10.0278 (7)0.0249 (7)0.0285 (7)0.0001 (6)0.0077 (6)0.0012 (6)
N20.0247 (7)0.0242 (7)0.0260 (7)0.0009 (5)0.0076 (6)0.0004 (5)
C10.0258 (8)0.0247 (8)0.0267 (8)0.0034 (6)0.0101 (6)0.0030 (6)
C20.0261 (8)0.0287 (9)0.0300 (8)0.0027 (7)0.0075 (7)0.0039 (7)
C30.0277 (9)0.0392 (10)0.0263 (8)0.0069 (8)0.0037 (7)0.0012 (7)
C40.0333 (9)0.0398 (10)0.0297 (9)0.0066 (8)0.0110 (7)0.0076 (8)
C50.0288 (9)0.0330 (9)0.0315 (9)0.0008 (7)0.0127 (7)0.0033 (7)
C60.0262 (8)0.0242 (8)0.0256 (8)0.0043 (6)0.0102 (7)0.0016 (6)
C70.0258 (8)0.0258 (8)0.0269 (8)0.0028 (7)0.0104 (7)0.0041 (6)
C80.0268 (8)0.0244 (8)0.0239 (8)0.0045 (7)0.0070 (6)0.0046 (6)
C90.0297 (9)0.0240 (8)0.0272 (8)0.0016 (7)0.0074 (7)0.0012 (6)
C100.0298 (9)0.0374 (10)0.0311 (9)0.0024 (8)0.0109 (7)0.0028 (7)
C110.0462 (11)0.0334 (10)0.0354 (10)0.0083 (9)0.0065 (8)0.0062 (8)
C120.0267 (8)0.0255 (8)0.0277 (8)0.0029 (7)0.0064 (7)0.0019 (7)
C130.0291 (8)0.0275 (9)0.0222 (8)0.0022 (7)0.0036 (6)0.0009 (6)
C140.0275 (8)0.0240 (8)0.0209 (7)0.0005 (6)0.0066 (6)0.0008 (6)
C150.0263 (8)0.0221 (8)0.0206 (7)0.0032 (6)0.0061 (6)0.0033 (6)
C160.0252 (8)0.0226 (8)0.0248 (8)0.0004 (6)0.0048 (6)0.0014 (6)
C170.0253 (8)0.0222 (8)0.0235 (7)0.0033 (6)0.0067 (6)0.0035 (6)
C180.0283 (8)0.0278 (8)0.0288 (8)0.0044 (7)0.0107 (7)0.0007 (7)
C190.0332 (9)0.0292 (9)0.0263 (8)0.0061 (7)0.0097 (7)0.0025 (7)
C200.0315 (9)0.0253 (8)0.0248 (8)0.0030 (7)0.0030 (7)0.0017 (6)
C210.0254 (8)0.0250 (8)0.0261 (8)0.0024 (7)0.0054 (6)0.0015 (6)
C220.0252 (8)0.0207 (7)0.0214 (7)0.0038 (6)0.0055 (6)0.0035 (6)
C230.0247 (8)0.0226 (8)0.0236 (8)0.0024 (6)0.0074 (6)0.0026 (6)
C240.0387 (11)0.0444 (12)0.0467 (12)0.0044 (9)0.0101 (9)0.0109 (10)
Geometric parameters (Å, º) top
Cl1—C201.7417 (18)C10—H10C0.9800
O1—C121.224 (2)C11—H11A0.9800
O2—C241.364 (3)C11—H11B0.9800
O2—C161.414 (2)C11—H11C0.9800
N1—C91.318 (2)C12—C131.473 (2)
N1—C11.369 (2)C13—C141.335 (2)
N2—C161.303 (2)C13—H130.9500
N2—C171.379 (2)C14—C151.466 (2)
C1—C61.412 (2)C14—H140.9500
C1—C21.416 (2)C15—C231.370 (2)
C2—C31.363 (3)C15—C161.435 (2)
C2—H20.9500C17—C181.413 (2)
C3—C41.409 (3)C17—C221.416 (2)
C3—H30.9500C18—C191.375 (3)
C4—C51.371 (3)C18—H180.9500
C4—H40.9500C19—C201.409 (3)
C5—C61.417 (2)C19—H190.9500
C5—H50.9500C20—C211.371 (2)
C6—C71.432 (2)C21—C221.414 (2)
C7—C81.375 (2)C21—H210.9500
C7—C101.502 (2)C22—C231.421 (2)
C8—C91.431 (2)C23—H230.9500
C8—C121.513 (2)C24—H24A0.9800
C9—C111.505 (2)C24—H24B0.9800
C10—H10A0.9800C24—H24C0.9800
C10—H10B0.9800
C24—O2—C16117.82 (14)O1—C12—C13121.03 (16)
C9—N1—C1117.89 (15)O1—C12—C8120.25 (15)
C16—N2—C17117.27 (15)C13—C12—C8118.69 (14)
N1—C1—C6123.19 (15)C14—C13—C12122.30 (16)
N1—C1—C2117.43 (16)C14—C13—H13118.8
C6—C1—C2119.37 (16)C12—C13—H13118.8
C3—C2—C1120.35 (17)C13—C14—C15125.30 (15)
C3—C2—H2119.8C13—C14—H14117.3
C1—C2—H2119.8C15—C14—H14117.3
C2—C3—C4120.59 (17)C23—C15—C16117.06 (15)
C2—C3—H3119.7C23—C15—C14123.01 (15)
C4—C3—H3119.7C16—C15—C14119.90 (15)
C5—C4—C3120.26 (17)N2—C16—O2118.93 (15)
C5—C4—H4119.9N2—C16—C15125.40 (15)
C3—C4—H4119.9O2—C16—C15115.64 (14)
C4—C5—C6120.40 (17)N2—C17—C18118.43 (15)
C4—C5—H5119.8N2—C17—C22122.48 (15)
C6—C5—H5119.8C18—C17—C22119.09 (16)
C1—C6—C5118.99 (16)C19—C18—C17120.17 (16)
C1—C6—C7118.19 (15)C19—C18—H18119.9
C5—C6—C7122.80 (16)C17—C18—H18119.9
C8—C7—C6117.51 (16)C18—C19—C20119.84 (16)
C8—C7—C10122.36 (16)C18—C19—H19120.1
C6—C7—C10120.09 (15)C20—C19—H19120.1
C7—C8—C9120.31 (15)C21—C20—C19121.85 (16)
C7—C8—C12119.88 (16)C21—C20—Cl1120.09 (14)
C9—C8—C12119.78 (15)C19—C20—Cl1118.05 (13)
N1—C9—C8122.86 (16)C20—C21—C22118.66 (16)
N1—C9—C11116.28 (16)C20—C21—H21120.7
C8—C9—C11120.83 (16)C22—C21—H21120.7
C7—C10—H10A109.5C21—C22—C17120.28 (15)
C7—C10—H10B109.5C21—C22—C23122.08 (15)
H10A—C10—H10B109.5C17—C22—C23117.62 (15)
C7—C10—H10C109.5C15—C23—C22120.13 (15)
H10A—C10—H10C109.5C15—C23—H23119.9
H10B—C10—H10C109.5C22—C23—H23119.9
C9—C11—H11A109.5O2—C24—H24A109.5
C9—C11—H11B109.5O2—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
C9—C11—H11C109.5O2—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
C9—N1—C1—C61.2 (2)C8—C12—C13—C142.2 (3)
C9—N1—C1—C2177.38 (15)C12—C13—C14—C15177.90 (16)
N1—C1—C2—C3179.95 (16)C13—C14—C15—C2335.7 (3)
C6—C1—C2—C31.3 (2)C13—C14—C15—C16146.59 (18)
C1—C2—C3—C40.9 (3)C17—N2—C16—O2179.06 (14)
C2—C3—C4—C51.8 (3)C17—N2—C16—C151.2 (2)
C3—C4—C5—C60.6 (3)C24—O2—C16—N23.1 (2)
N1—C1—C6—C5178.96 (16)C24—O2—C16—C15178.80 (16)
C2—C1—C6—C52.5 (2)C23—C15—C16—N21.9 (2)
N1—C1—C6—C72.7 (2)C14—C15—C16—N2179.71 (16)
C2—C1—C6—C7175.86 (15)C23—C15—C16—O2179.79 (14)
C4—C5—C6—C11.5 (3)C14—C15—C16—O22.4 (2)
C4—C5—C6—C7176.70 (17)C16—N2—C17—C18178.75 (15)
C1—C6—C7—C82.4 (2)C16—N2—C17—C220.8 (2)
C5—C6—C7—C8179.40 (16)N2—C17—C18—C19177.67 (16)
C1—C6—C7—C10175.34 (15)C22—C17—C18—C192.7 (2)
C5—C6—C7—C102.9 (2)C17—C18—C19—C200.3 (3)
C6—C7—C8—C90.7 (2)C18—C19—C20—C212.3 (3)
C10—C7—C8—C9176.92 (16)C18—C19—C20—Cl1176.79 (14)
C6—C7—C8—C12178.51 (14)C19—C20—C21—C221.2 (3)
C10—C7—C8—C120.9 (2)Cl1—C20—C21—C22177.88 (12)
C1—N1—C9—C80.6 (2)C20—C21—C22—C171.9 (2)
C1—N1—C9—C11178.50 (16)C20—C21—C22—C23179.54 (15)
C7—C8—C9—N10.8 (3)N2—C17—C22—C21176.60 (15)
C12—C8—C9—N1176.98 (15)C18—C17—C22—C213.8 (2)
C7—C8—C9—C11178.64 (17)N2—C17—C22—C232.0 (2)
C12—C8—C9—C110.8 (2)C18—C17—C22—C23177.52 (15)
C7—C8—C12—O172.2 (2)C16—C15—C23—C220.5 (2)
C9—C8—C12—O1105.6 (2)C14—C15—C23—C22178.25 (15)
C7—C8—C12—C13105.55 (19)C21—C22—C23—C15177.31 (15)
C9—C8—C12—C1376.6 (2)C17—C22—C23—C151.3 (2)
O1—C12—C13—C14179.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.982.523.221 (2)129
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.982.523.221 (2)129
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship [grant No. 09/919/(0014)/2012 EMR-I]. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R. & Bhavana, P. (2012). Heteroatom Chem. 23, 525–530.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds