organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Flunarizinium hydrogen maleate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cR. L. Fine Chem., Bangalore 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 July 2013; accepted 22 July 2013; online 27 July 2013)

In the cation of the title salt {systematic name: 4-[bis­(4-fluoro­phen­yl)meth­yl]-1-[(2E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium hydrogen maleate}, C26H27F2N2+·C4H3O4, the protonated piperazine ring is in a chair conformation. The dihedral angle between the 4-fluoro­phenyl rings is 68.2 (2)°. An intra­molecular O—H⋯O hydrogen bond occurs in the anion. In the crystal, N—H⋯O, C—H⋯O and C—H⋯F inter­actions are observed, which link the ions into [001] chains.

Related literature

For backgorund to flunarizine, see: Amery (1983[Amery, W. K. (1983). Headache, 23, 70-74.]); Holmes et al. (1984[Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs. 27, 6-44.]). For related structures, see: Jasinski, Butcher et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366-o367.]); Jasinski, Pek et al. (2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012-o2013.]); Kavitha et al. (2013[Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260-o261.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27F2N2+·C4H3O4

  • Mr = 520.56

  • Monoclinic, P 21 /c

  • a = 22.1215 (5) Å

  • b = 10.8620 (2) Å

  • c = 11.3215 (2) Å

  • β = 98.879 (2)°

  • V = 2687.77 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.26 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.871, Tmax = 1.000

  • 17207 measured reflections

  • 5260 independent reflections

  • 4484 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.03

  • 5260 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O4S 0.82 1.63 2.451 (2) 177
N1—H1⋯O3S 0.91 1.83 2.7190 (18) 165
C1—H1B⋯O2Si 0.97 2.51 3.354 (2) 146
C26—H26⋯O3Sii 0.93 2.53 3.278 (2) 138
C2S—H2S⋯O4Siii 0.93 2.46 3.386 (2) 171
C23—H23⋯F1iv 0.93 2.53 3.342 (2) 145
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Flunarizine (chemically, 1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenyl prop-2-en-1-yl]piperazine), a piperazine derivative is a non-selective calcium antagonist (Amery, 1983). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use is published (Holmes et al., 1984).

In addition to the structures of trimipraminium maleate (Jasinski, Butcher et al., 2010) and 4-(4-chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate (Jasinski, Pek et al., 2010), we have recently reported the crystal structure of 4-[bis(4-fluorophenyl) methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium 3-carboxy propanoate (Kavitha et al., 2013). As part of our ongoing studies of molecular salts of bioactvive molecules, the paper reports the crystal and molecular structure of the title salt, (I).

The title compound, [systematic name: 1-[bis(4-fluorophenyl)methyl]-4- [(2E)-3-phenylprop-2-en-1-yl]piperazinium maleate], a maleate salt of Flunarizine crystallizes with one independent cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the protonated piperazine ring is in a chair conformation (puckering parameters Q, θ, and ϕ = 0.5997 (16)Å, 179.21 (15)° and 65 (10)°, respectively). The dihedral angle between the mean planes of the 4-fluorophenyl rings is 68.2 (2)°. The extended phenyl ring is twisted by 15.8 (9)° and 59.8 (5)°, respectively, from these two rings. Bond lengths are in normal ranges (Allen et al., 1987). Strong intramolecular O—H···O and intermolecular N—H···O hydrogen bonds and weak N—H···O, C—H···O, C—H···F intermolecular interactions (Table 1) are observed which link the ions into chains along [001] (Fig. 2).

Related literature top

For backgorund to flunarizine, see: Amery (1983); Holmes et al. (1984). For related structures, see: Jasinski, Butcher et al. (2010); Jasinski, Pek et al. (2010); Kavitha et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Flunarizine (4.05 g, 0.01 mol) and maleic acid (1.16 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide solution and stirred over a heating magnetic stirrer for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Colourless irregular crystals of the title compound (m. p.: 428– 433 K) appeared after a few days.

Refinement top

H1 and H1S were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å, 0.98Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (OH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate N1—H1···O3S intermolecular and O1S—H1S···O4S intramolecular hydrogen bond interactions.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate inter and intra molecular hydrogen bonds and weak C—H···O interactions linking the ions into [100] chains.
4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium hydrogen maleate top
Crystal data top
C26H27F2N2+·C4H3O4F(000) = 1096
Mr = 520.56Dx = 1.286 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 22.1215 (5) ÅCell parameters from 6479 reflections
b = 10.8620 (2) Åθ = 4.0–72.3°
c = 11.3215 (2) ŵ = 0.79 mm1
β = 98.879 (2)°T = 173 K
V = 2687.77 (9) Å3Irregular, colourless
Z = 40.42 × 0.38 × 0.26 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5260 independent reflections
Radiation source: Enhance (Cu) X-ray Source4484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 4.1°
ω scansh = 2427
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.871, Tmax = 1.000l = 138
17207 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.7817P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.52 e Å3
5260 reflectionsΔρmin = 0.22 e Å3
344 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0021 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H27F2N2+·C4H3O4V = 2687.77 (9) Å3
Mr = 520.56Z = 4
Monoclinic, P21/cCu Kα radiation
a = 22.1215 (5) ŵ = 0.79 mm1
b = 10.8620 (2) ÅT = 173 K
c = 11.3215 (2) Å0.42 × 0.38 × 0.26 mm
β = 98.879 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
5260 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
4484 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 1.000Rint = 0.040
17207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
5260 reflectionsΔρmin = 0.22 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.87928 (7)0.24891 (14)0.47740 (13)0.0848 (5)
F20.98166 (6)0.06251 (14)1.26090 (10)0.0727 (4)
N10.68788 (6)0.32014 (12)0.73573 (11)0.0319 (3)
H10.70390.37910.69260.038*
N20.79790 (5)0.17520 (11)0.79037 (10)0.0280 (3)
C10.72463 (8)0.31929 (15)0.85715 (13)0.0363 (4)
H1A0.70930.25630.90550.044*
H1B0.72110.39830.89540.044*
C20.79108 (7)0.29391 (14)0.84796 (13)0.0332 (3)
H2A0.80660.35880.80210.040*
H2B0.81500.29380.92740.040*
C30.76221 (7)0.17749 (14)0.67002 (12)0.0306 (3)
H3A0.76690.09970.63030.037*
H3B0.77730.24250.62360.037*
C40.69533 (7)0.19923 (14)0.67663 (13)0.0330 (3)
H4A0.67200.19920.59670.040*
H4B0.67990.13360.72180.040*
C50.62138 (8)0.35276 (17)0.73677 (15)0.0411 (4)
H5A0.59960.28150.76010.049*
H5B0.61850.41790.79420.049*
C60.59335 (8)0.39422 (18)0.61479 (16)0.0445 (4)
H60.60340.47260.59110.053*
C70.55601 (8)0.32949 (17)0.53891 (18)0.0470 (4)
H70.54350.25350.56450.056*
C80.53185 (8)0.36771 (17)0.41482 (16)0.0433 (4)
C90.47868 (9)0.31385 (18)0.35792 (19)0.0496 (4)
H90.45880.25570.39840.059*
C100.45461 (9)0.3450 (2)0.2417 (2)0.0579 (5)
H100.41860.30830.20510.069*
C110.48338 (10)0.4293 (2)0.18018 (18)0.0564 (5)
H110.46690.45050.10230.068*
C120.53710 (10)0.48277 (19)0.23452 (19)0.0565 (5)
H120.55730.53920.19270.068*
C130.56108 (9)0.45259 (18)0.35134 (18)0.0501 (4)
H130.59710.48960.38760.060*
C140.86369 (7)0.14809 (13)0.79043 (13)0.0287 (3)
H140.88250.22010.75870.034*
C150.87072 (6)0.03898 (14)0.70972 (13)0.0292 (3)
C160.84983 (8)0.07710 (15)0.73468 (15)0.0378 (4)
H160.83350.08960.80460.045*
C170.85290 (9)0.17466 (17)0.65714 (18)0.0486 (4)
H170.83860.25230.67380.058*
C180.87752 (9)0.15360 (19)0.55528 (18)0.0528 (5)
C190.90001 (9)0.0420 (2)0.52802 (16)0.0502 (5)
H190.91730.03130.45890.060*
C200.89645 (7)0.05539 (16)0.60644 (14)0.0377 (4)
H200.91150.13230.58950.045*
C210.89532 (7)0.12623 (13)0.91779 (13)0.0298 (3)
C220.95568 (7)0.16234 (15)0.95284 (15)0.0384 (4)
H220.97650.20170.89830.046*
C230.98534 (8)0.14033 (19)1.06856 (17)0.0490 (5)
H231.02580.16441.09190.059*
C240.95369 (9)0.08262 (18)1.14703 (15)0.0468 (4)
C250.89418 (8)0.04536 (16)1.11636 (15)0.0419 (4)
H250.87380.00581.17160.050*
C260.86487 (7)0.06801 (15)1.00075 (13)0.0345 (3)
H260.82440.04390.97860.041*
O1S0.67312 (8)0.83923 (13)0.66302 (12)0.0604 (4)
H1S0.68480.76790.67350.091*
O2S0.65899 (8)0.97228 (12)0.51543 (12)0.0589 (4)
O3S0.72834 (6)0.47153 (13)0.57335 (13)0.0561 (4)
O4S0.70541 (8)0.62367 (13)0.68757 (11)0.0600 (4)
C1S0.67577 (8)0.87144 (16)0.55309 (15)0.0411 (4)
C2S0.70000 (8)0.78300 (16)0.47107 (14)0.0400 (4)
H2S0.70430.81610.39710.048*
C3S0.71654 (8)0.66586 (16)0.48435 (15)0.0406 (4)
H3S0.72980.63030.41820.049*
C4S0.71709 (8)0.58175 (17)0.58972 (16)0.0410 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0965 (11)0.0745 (9)0.0831 (10)0.0137 (8)0.0126 (8)0.0504 (8)
F20.0663 (8)0.1044 (11)0.0390 (6)0.0294 (7)0.0186 (5)0.0032 (6)
N10.0355 (7)0.0320 (7)0.0284 (6)0.0097 (5)0.0059 (5)0.0009 (5)
N20.0315 (6)0.0274 (6)0.0241 (6)0.0060 (5)0.0014 (5)0.0013 (5)
C10.0445 (9)0.0383 (8)0.0256 (7)0.0111 (7)0.0034 (6)0.0052 (6)
C20.0402 (8)0.0310 (8)0.0271 (7)0.0067 (6)0.0008 (6)0.0050 (6)
C30.0352 (8)0.0316 (7)0.0241 (7)0.0072 (6)0.0020 (6)0.0041 (5)
C40.0351 (8)0.0330 (8)0.0297 (8)0.0076 (6)0.0010 (6)0.0045 (6)
C50.0374 (9)0.0461 (9)0.0414 (9)0.0136 (7)0.0108 (7)0.0006 (7)
C60.0380 (9)0.0456 (10)0.0499 (10)0.0139 (7)0.0062 (8)0.0011 (8)
C70.0431 (10)0.0419 (10)0.0575 (11)0.0018 (7)0.0128 (8)0.0039 (8)
C80.0402 (9)0.0437 (9)0.0462 (10)0.0112 (7)0.0071 (7)0.0011 (7)
C90.0452 (10)0.0438 (10)0.0606 (12)0.0033 (8)0.0110 (9)0.0039 (8)
C100.0440 (10)0.0640 (13)0.0622 (12)0.0092 (9)0.0027 (9)0.0222 (10)
C110.0629 (13)0.0612 (13)0.0429 (10)0.0279 (10)0.0016 (9)0.0051 (9)
C120.0714 (14)0.0420 (10)0.0583 (12)0.0101 (9)0.0170 (10)0.0076 (9)
C130.0463 (10)0.0471 (10)0.0557 (11)0.0010 (8)0.0040 (8)0.0049 (8)
C140.0313 (7)0.0256 (7)0.0296 (7)0.0016 (5)0.0058 (6)0.0018 (5)
C150.0284 (7)0.0304 (7)0.0276 (7)0.0068 (6)0.0003 (5)0.0003 (6)
C160.0425 (9)0.0316 (8)0.0394 (8)0.0040 (7)0.0070 (7)0.0025 (6)
C170.0504 (10)0.0337 (9)0.0591 (11)0.0052 (7)0.0007 (9)0.0101 (8)
C180.0516 (11)0.0530 (11)0.0509 (11)0.0156 (9)0.0015 (8)0.0254 (9)
C190.0497 (10)0.0682 (13)0.0337 (9)0.0147 (9)0.0092 (7)0.0096 (8)
C200.0370 (8)0.0439 (9)0.0324 (8)0.0065 (7)0.0054 (6)0.0021 (7)
C210.0318 (7)0.0256 (7)0.0311 (7)0.0045 (6)0.0018 (6)0.0035 (6)
C220.0319 (8)0.0391 (9)0.0434 (9)0.0023 (6)0.0040 (7)0.0071 (7)
C230.0321 (8)0.0586 (11)0.0520 (10)0.0084 (8)0.0072 (8)0.0149 (9)
C240.0474 (10)0.0564 (11)0.0319 (8)0.0223 (8)0.0090 (7)0.0075 (7)
C250.0505 (10)0.0432 (9)0.0310 (8)0.0126 (7)0.0034 (7)0.0023 (7)
C260.0358 (8)0.0350 (8)0.0313 (8)0.0020 (6)0.0003 (6)0.0007 (6)
O1S0.0998 (12)0.0472 (8)0.0383 (7)0.0015 (7)0.0241 (7)0.0015 (6)
O2S0.0891 (11)0.0335 (7)0.0551 (8)0.0014 (7)0.0143 (7)0.0013 (6)
O3S0.0599 (8)0.0490 (8)0.0651 (9)0.0202 (6)0.0275 (7)0.0206 (6)
O4S0.0962 (12)0.0536 (8)0.0317 (6)0.0022 (8)0.0142 (7)0.0111 (6)
C1S0.0502 (10)0.0368 (9)0.0362 (8)0.0123 (7)0.0061 (7)0.0007 (7)
C2S0.0497 (10)0.0432 (9)0.0278 (8)0.0045 (7)0.0084 (7)0.0065 (7)
C3S0.0455 (9)0.0461 (10)0.0323 (8)0.0034 (7)0.0122 (7)0.0056 (7)
C4S0.0361 (8)0.0469 (10)0.0411 (9)0.0041 (7)0.0092 (7)0.0126 (7)
Geometric parameters (Å, º) top
F1—C181.364 (2)C12—C131.386 (3)
F2—C241.3589 (19)C13—H130.9300
N1—H10.9101C14—H140.9800
N1—C11.4851 (19)C14—C151.519 (2)
N1—C41.4945 (18)C14—C211.521 (2)
N1—C51.5150 (19)C15—C161.387 (2)
N2—C21.4632 (18)C15—C201.389 (2)
N2—C31.4657 (17)C16—H160.9300
N2—C141.4848 (18)C16—C171.384 (2)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C17—C181.368 (3)
C1—C21.515 (2)C18—C191.364 (3)
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C19—C201.391 (2)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.390 (2)
C3—C41.512 (2)C21—C261.390 (2)
C4—H4A0.9700C22—H220.9300
C4—H4B0.9700C22—C231.392 (2)
C5—H5A0.9700C23—H230.9300
C5—H5B0.9700C23—C241.365 (3)
C5—C61.493 (2)C24—C251.370 (3)
C6—H60.9300C25—H250.9300
C6—C71.302 (3)C25—C261.390 (2)
C7—H70.9300C26—H260.9300
C7—C81.483 (3)O1S—H1S0.8199
C8—C91.381 (3)O1S—C1S1.303 (2)
C8—C131.389 (3)O2S—C1S1.213 (2)
C9—H90.9300O3S—C4S1.243 (2)
C9—C101.383 (3)O4S—C4S1.261 (2)
C10—H100.9300C1S—C2S1.492 (2)
C10—C111.366 (3)C2S—H2S0.9300
C11—H110.9300C2S—C3S1.326 (2)
C11—C121.379 (3)C3S—H3S0.9300
C12—H120.9300C3S—C4S1.501 (2)
C1—N1—H1107.4C13—C12—H12119.9
C1—N1—C4109.06 (11)C8—C13—H13119.6
C1—N1—C5112.81 (12)C12—C13—C8120.71 (19)
C4—N1—H1107.4C12—C13—H13119.6
C4—N1—C5112.53 (13)N2—C14—H14108.3
C5—N1—H1107.4N2—C14—C15110.23 (12)
C2—N2—C3108.75 (11)N2—C14—C21109.81 (11)
C2—N2—C14110.06 (12)C15—C14—H14108.3
C3—N2—C14113.02 (11)C15—C14—C21111.94 (11)
N1—C1—H1A109.7C21—C14—H14108.3
N1—C1—H1B109.7C16—C15—C14121.22 (13)
N1—C1—C2109.63 (12)C16—C15—C20118.75 (14)
H1A—C1—H1B108.2C20—C15—C14119.98 (14)
C2—C1—H1A109.7C15—C16—H16119.5
C2—C1—H1B109.7C17—C16—C15121.07 (16)
N2—C2—C1111.03 (13)C17—C16—H16119.5
N2—C2—H2A109.4C16—C17—H17120.9
N2—C2—H2B109.4C18—C17—C16118.12 (18)
C1—C2—H2A109.4C18—C17—H17120.9
C1—C2—H2B109.4F1—C18—C17118.2 (2)
H2A—C2—H2B108.0C19—C18—F1118.71 (19)
N2—C3—H3A109.6C19—C18—C17123.09 (16)
N2—C3—H3B109.6C18—C19—H19120.9
N2—C3—C4110.34 (11)C18—C19—C20118.22 (17)
H3A—C3—H3B108.1C20—C19—H19120.9
C4—C3—H3A109.6C15—C20—C19120.71 (17)
C4—C3—H3B109.6C15—C20—H20119.6
N1—C4—C3109.62 (12)C19—C20—H20119.6
N1—C4—H4A109.7C22—C21—C14120.52 (14)
N1—C4—H4B109.7C26—C21—C14120.78 (13)
C3—C4—H4A109.7C26—C21—C22118.69 (14)
C3—C4—H4B109.7C21—C22—H22119.6
H4A—C4—H4B108.2C21—C22—C23120.84 (16)
N1—C5—H5A109.8C23—C22—H22119.6
N1—C5—H5B109.8C22—C23—H23120.8
H5A—C5—H5B108.3C24—C23—C22118.47 (16)
C6—C5—N1109.17 (13)C24—C23—H23120.8
C6—C5—H5A109.8F2—C24—C23119.13 (17)
C6—C5—H5B109.8F2—C24—C25118.18 (18)
C5—C6—H6117.4C23—C24—C25122.68 (16)
C7—C6—C5125.30 (19)C24—C25—H25120.8
C7—C6—H6117.4C24—C25—C26118.47 (17)
C6—C7—H7117.5C26—C25—H25120.8
C6—C7—C8124.96 (18)C21—C26—C25120.85 (15)
C8—C7—H7117.5C21—C26—H26119.6
C9—C8—C7118.67 (18)C25—C26—H26119.6
C9—C8—C13118.10 (18)C1S—O1S—H1S109.4
C13—C8—C7123.21 (17)O1S—C1S—C2S119.68 (16)
C8—C9—H9119.5O2S—C1S—O1S121.46 (17)
C8—C9—C10121.01 (19)O2S—C1S—C2S118.86 (16)
C10—C9—H9119.5C1S—C2S—H2S114.1
C9—C10—H10119.7C3S—C2S—C1S131.80 (15)
C11—C10—C9120.5 (2)C3S—C2S—H2S114.1
C11—C10—H10119.7C2S—C3S—H3S115.0
C10—C11—H11120.3C2S—C3S—C4S129.96 (16)
C10—C11—C12119.48 (19)C4S—C3S—H3S115.0
C12—C11—H11120.3O3S—C4S—O4S123.50 (16)
C11—C12—H12119.9O3S—C4S—C3S116.43 (16)
C11—C12—C13120.2 (2)O4S—C4S—C3S120.06 (16)
F1—C18—C19—C20178.26 (17)C13—C8—C9—C101.1 (3)
F2—C24—C25—C26178.65 (15)C14—N2—C2—C1175.83 (12)
N1—C1—C2—N259.35 (16)C14—N2—C3—C4177.21 (12)
N1—C5—C6—C7104.8 (2)C14—C15—C16—C17175.99 (15)
N2—C3—C4—N160.33 (16)C14—C15—C20—C19176.28 (15)
N2—C14—C15—C1663.63 (17)C14—C21—C22—C23178.65 (14)
N2—C14—C15—C20113.99 (15)C14—C21—C26—C25178.47 (14)
N2—C14—C21—C22145.85 (14)C15—C14—C21—C2291.37 (16)
N2—C14—C21—C2635.24 (18)C15—C14—C21—C2687.53 (17)
C1—N1—C4—C358.52 (16)C15—C16—C17—C180.4 (3)
C1—N1—C5—C6160.42 (14)C16—C15—C20—C191.4 (2)
C2—N2—C3—C460.26 (16)C16—C17—C18—F1178.50 (17)
C2—N2—C14—C15168.65 (11)C16—C17—C18—C191.2 (3)
C2—N2—C14—C2167.58 (14)C17—C18—C19—C201.4 (3)
C3—N2—C2—C159.86 (15)C18—C19—C20—C150.1 (3)
C3—N2—C14—C1546.84 (15)C20—C15—C16—C171.7 (2)
C3—N2—C14—C21170.62 (12)C21—C14—C15—C1658.90 (18)
C4—N1—C1—C257.71 (16)C21—C14—C15—C20123.48 (15)
C4—N1—C5—C675.65 (17)C21—C22—C23—C240.1 (3)
C5—N1—C1—C2176.47 (13)C22—C21—C26—C250.5 (2)
C5—N1—C4—C3175.51 (12)C22—C23—C24—F2178.81 (15)
C5—C6—C7—C8175.39 (15)C22—C23—C24—C250.2 (3)
C6—C7—C8—C9158.61 (19)C23—C24—C25—C260.4 (3)
C6—C7—C8—C1323.4 (3)C24—C25—C26—C210.5 (2)
C7—C8—C9—C10179.18 (17)C26—C21—C22—C230.3 (2)
C7—C8—C13—C12178.51 (17)O1S—C1S—C2S—C3S6.3 (3)
C8—C9—C10—C110.6 (3)O2S—C1S—C2S—C3S173.7 (2)
C9—C8—C13—C120.5 (3)C1S—C2S—C3S—C4S0.9 (3)
C9—C10—C11—C120.5 (3)C2S—C3S—C4S—O3S172.11 (19)
C10—C11—C12—C131.1 (3)C2S—C3S—C4S—O4S6.6 (3)
C11—C12—C13—C80.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O4S0.821.632.451 (2)177
N1—H1···O3S0.911.832.7190 (18)165
C1—H1B···O2Si0.972.513.354 (2)146
C26—H26···O3Sii0.932.533.278 (2)138
C2S—H2S···O4Siii0.932.463.386 (2)171
C23—H23···F1iv0.932.533.342 (2)145
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O4S0.821.632.451 (2)177
N1—H1···O3S0.911.832.7190 (18)165
C1—H1B···O2Si0.972.513.354 (2)146
C26—H26···O3Sii0.932.533.278 (2)138
C2S—H2S···O4Siii0.932.463.386 (2)171
C23—H23···F1iv0.932.533.342 (2)145
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1/2, z+3/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmery, W. K. (1983). Headache, 23, 70–74.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs. 27, 6–44.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366–o367.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012–o2013.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260–o261.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds