organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Butanoyl-N-(3-chloro-1,4-dioxonaph­thalen-2-yl)butanamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and bDepartment of Natural Sciences, Bowie State University, Bowie, MD 20715, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 6 June 2013; accepted 12 June 2013; online 10 July 2013)

In the title compound, C18H18ClNO4, the imide group with its two alkyl substituents is approximately perpendicular to the plane of the naphtho­quinone ring system [dihedral angle = 78.5 (1)°]. Further, the imide carbonyl groups are oriented in an anti sense. In the crystal, the substituted naphtho­quinone rings form ππ stacks in the a-axis direction [perpendicular centroid–centroid distance = 3.209 (2) Å and slippage = 4.401 Å].

Related literature

For the synthesis and biological evaluation of some imido-substituted 1,4-naphtho­quinone derivatives, see; Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485-488.]); Brandy et al. (2013[Brandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973-1984.]). For the anti-cancer and anti-trypanosomal activity of the title compound, see; Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485-488.]); Khraiwesh et al. (2012[Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27-33.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18ClNO4

  • Mr = 347.78

  • Triclinic, [P \overline 1]

  • a = 8.1717 (10) Å

  • b = 8.3117 (10) Å

  • c = 14.6841 (15) Å

  • α = 93.119 (9)°

  • β = 98.369 (10)°

  • γ = 118.043 (12)°

  • V = 862.23 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.15 mm−1

  • T = 295 K

  • 0.36 × 0.28 × 0.08 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.530, Tmax = 1.000

  • 5454 measured reflections

  • 3398 independent reflections

  • 2122 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.227

  • S = 1.12

  • 3398 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have been involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives [Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013)]; and previously reported 2-chloro-3-dibutyrylamino-1,4-naphthoquinone (1) to possess inhibitory activities against certain protein kinases (Bakare et al. 2003). Compound 1 has subsequently been shown to possess a some desirable biological activities including anti-cancer [Bakare et al. (2003; Berhe et al. (2008)] and anti-trypanosomal activities [(Khraiwesh, et al., (2012)]. We present here the crystal structure of this anticancer and antiparasitic agent.

The title compound, C18H18ClNO4, was synthesized as previously reported (Bakare et al. (2003)). The crystal structure of the title compound 1 shows that the imide group with its two alkyl substituents is almost perpendicular to the plane of the naphthoquinone ring (dihedral angle between planes of 78.5 (1)°. Further the two imide carbonyls are oriented anti to each other. The naphthoquinone rings form ππ stacks in the a direction (perpendicular Cg···Cg distance of 3.209 Å with slippage of 4.401 Å).

Related literature top

For the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives, see; Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013). For the anti-cancer and anti-trypanosomal activity of the title compound, see; Bakare et al. (2003); Berhe et al. (2008); Khraiwesh et al. (2012).

Experimental top

The title compound 1 was synthesized by refluxing 2-amino-3-chloro-1,4-naphthoquinone in butyryl chloride as previously reported (Bakare et al. (2003)). The compound was crystallized from the crude below 0°C with diethyl ether to obtain yellow crystals.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of C18H18ClNO4 showing atom labeling.
[Figure 2] Fig. 2. The molecular packing for C18H18ClNO4 viewed along the b axis and showing the ππ stacking in the a direction.
N-Butanoyl-N-(3-chloro-1,4-dioxonaphthalen-2-yl)butanamide top
Crystal data top
C18H18ClNO4Z = 2
Mr = 347.78F(000) = 364
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.1717 (10) ÅCell parameters from 1350 reflections
b = 8.3117 (10) Åθ = 3.1–75.5°
c = 14.6841 (15) ŵ = 2.15 mm1
α = 93.119 (9)°T = 295 K
β = 98.369 (10)°Plate, pale yellow
γ = 118.043 (12)°0.36 × 0.28 × 0.08 mm
V = 862.23 (17) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3398 independent reflections
Radiation source: Enhance (Cu) X-ray Source2122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 3.1°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 108
Tmin = 0.530, Tmax = 1.000l = 1818
5454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.4803P]
where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H18ClNO4γ = 118.043 (12)°
Mr = 347.78V = 862.23 (17) Å3
Triclinic, P1Z = 2
a = 8.1717 (10) ÅCu Kα radiation
b = 8.3117 (10) ŵ = 2.15 mm1
c = 14.6841 (15) ÅT = 295 K
α = 93.119 (9)°0.36 × 0.28 × 0.08 mm
β = 98.369 (10)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2122 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 1.000Rint = 0.043
5454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.12Δρmax = 0.39 e Å3
3398 reflectionsΔρmin = 0.24 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.4121 (2)0.34538 (16)0.17915 (8)0.0891 (4)
O10.2762 (5)0.3535 (4)0.0134 (2)0.0844 (9)
O20.4177 (5)0.9507 (4)0.2097 (2)0.0938 (11)
O30.7195 (7)0.7372 (8)0.4060 (3)0.1463 (19)
O40.1712 (5)0.5863 (5)0.3023 (2)0.0968 (11)
N10.4736 (5)0.6864 (5)0.2928 (2)0.0706 (9)
C10.3740 (6)0.5151 (5)0.1381 (3)0.0639 (10)
C20.2990 (6)0.4877 (5)0.0361 (3)0.0662 (10)
C30.2519 (6)0.6265 (5)0.0005 (2)0.0607 (9)
C40.1688 (6)0.6021 (6)0.0927 (3)0.0722 (11)
H4A0.14530.49940.13250.087*
C50.1217 (7)0.7286 (7)0.1261 (3)0.0855 (13)
H5A0.06610.71120.18830.103*
C60.1562 (8)0.8814 (7)0.0680 (3)0.0886 (14)
H6A0.12300.96640.09090.106*
C70.2399 (7)0.9083 (6)0.0240 (3)0.0785 (12)
H7A0.26491.01260.06280.094*
C80.2869 (6)0.7820 (5)0.0590 (2)0.0622 (9)
C90.3728 (6)0.8109 (5)0.1584 (3)0.0680 (10)
C100.4067 (6)0.6633 (5)0.1942 (2)0.0622 (10)
C110.6690 (8)0.7503 (8)0.3266 (3)0.0961 (16)
C120.7987 (8)0.8295 (9)0.2605 (4)0.1059 (18)
H12A0.77380.92130.23310.127*
H12B0.76750.73230.21080.127*
C131.0076 (11)0.9175 (12)0.2999 (6)0.142 (3)
H13A1.03100.83160.33430.171*
H13B1.07470.93850.24870.171*
C141.0836 (12)1.0872 (13)0.3596 (6)0.174 (4)
H14A1.21231.12560.38760.261*
H14B1.01061.07120.40730.261*
H14C1.07911.17920.32410.261*
C150.3333 (8)0.6480 (7)0.3445 (3)0.0796 (12)
C160.3897 (9)0.6902 (10)0.4493 (3)0.1102 (19)
H16A0.43040.60450.47160.132*
H16B0.49760.81290.46560.132*
C170.2496 (10)0.6815 (14)0.4964 (4)0.149 (3)
H17A0.14050.56000.47840.179*
H17B0.21160.76960.47510.179*
C180.2999 (10)0.7179 (11)0.6009 (4)0.131 (2)
H18A0.19240.70520.62540.197*
H18B0.40290.84060.62040.197*
H18C0.33660.63110.62360.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1260 (11)0.0735 (7)0.0734 (7)0.0587 (7)0.0014 (6)0.0018 (5)
O10.118 (3)0.0700 (17)0.0620 (16)0.0477 (18)0.0066 (16)0.0132 (13)
O20.142 (3)0.0725 (18)0.0629 (17)0.061 (2)0.0114 (18)0.0161 (14)
O30.135 (4)0.212 (5)0.079 (3)0.083 (4)0.015 (2)0.023 (3)
O40.100 (3)0.121 (3)0.0619 (18)0.048 (2)0.0175 (18)0.0028 (18)
N10.087 (2)0.074 (2)0.0479 (16)0.0428 (19)0.0014 (16)0.0036 (14)
C10.075 (3)0.058 (2)0.057 (2)0.0337 (19)0.0084 (18)0.0011 (16)
C20.076 (3)0.062 (2)0.052 (2)0.028 (2)0.0118 (18)0.0076 (16)
C30.065 (2)0.062 (2)0.0489 (18)0.0283 (18)0.0065 (16)0.0022 (15)
C40.083 (3)0.077 (3)0.048 (2)0.035 (2)0.0066 (19)0.0033 (18)
C50.098 (3)0.096 (3)0.055 (2)0.046 (3)0.000 (2)0.008 (2)
C60.111 (4)0.087 (3)0.070 (3)0.053 (3)0.003 (3)0.015 (2)
C70.101 (3)0.069 (2)0.063 (2)0.045 (2)0.001 (2)0.0012 (19)
C80.071 (2)0.061 (2)0.0501 (19)0.0311 (19)0.0041 (17)0.0001 (15)
C90.084 (3)0.061 (2)0.052 (2)0.034 (2)0.0034 (18)0.0068 (16)
C100.073 (3)0.062 (2)0.0454 (18)0.0316 (19)0.0012 (16)0.0035 (15)
C110.109 (4)0.107 (4)0.064 (3)0.057 (3)0.016 (3)0.006 (3)
C120.087 (4)0.125 (5)0.084 (3)0.039 (3)0.005 (3)0.009 (3)
C130.128 (6)0.169 (7)0.131 (6)0.084 (6)0.009 (5)0.007 (5)
C140.145 (7)0.175 (8)0.126 (6)0.035 (6)0.032 (5)0.002 (6)
C150.101 (4)0.087 (3)0.054 (2)0.052 (3)0.003 (2)0.003 (2)
C160.131 (5)0.149 (5)0.056 (3)0.075 (4)0.011 (3)0.001 (3)
C170.131 (5)0.253 (9)0.055 (3)0.090 (6)0.014 (3)0.003 (4)
C180.140 (6)0.185 (7)0.057 (3)0.072 (5)0.015 (3)0.002 (4)
Geometric parameters (Å, º) top
Cl1—C11.703 (4)C9—C101.484 (5)
O1—C21.218 (4)C11—C121.487 (8)
O2—C91.215 (4)C12—C131.508 (8)
O3—C111.207 (6)C12—H12A0.9700
O4—C151.221 (6)C12—H12B0.9700
N1—C151.389 (6)C13—C141.424 (10)
N1—C111.422 (6)C13—H13A0.9700
N1—C101.440 (4)C13—H13B0.9700
C1—C101.335 (5)C14—H14A0.9600
C1—C21.496 (5)C14—H14B0.9600
C2—C31.475 (6)C14—H14C0.9600
C3—C41.395 (5)C15—C161.512 (6)
C3—C81.397 (5)C16—C171.397 (8)
C4—C51.369 (6)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.377 (7)C17—C181.505 (7)
C5—H5A0.9300C17—H17A0.9700
C6—C71.377 (6)C17—H17B0.9700
C6—H6A0.9300C18—H18A0.9600
C7—C81.376 (6)C18—H18B0.9600
C7—H7A0.9300C18—H18C0.9600
C8—C91.479 (5)
C15—N1—C11127.5 (4)C13—C12—H12A108.1
C15—N1—C10113.5 (4)C11—C12—H12B108.1
C11—N1—C10119.0 (4)C13—C12—H12B108.1
C10—C1—C2121.8 (4)H12A—C12—H12B107.3
C10—C1—Cl1121.9 (3)C14—C13—C12114.9 (7)
C2—C1—Cl1116.3 (3)C14—C13—H13A108.5
O1—C2—C3122.9 (4)C12—C13—H13A108.5
O1—C2—C1120.0 (4)C14—C13—H13B108.5
C3—C2—C1117.0 (3)C12—C13—H13B108.5
C4—C3—C8119.0 (4)H13A—C13—H13B107.5
C4—C3—C2119.9 (3)C13—C14—H14A109.5
C8—C3—C2121.1 (3)C13—C14—H14B109.5
C5—C4—C3120.4 (4)H14A—C14—H14B109.5
C5—C4—H4A119.8C13—C14—H14C109.5
C3—C4—H4A119.8H14A—C14—H14C109.5
C4—C5—C6120.4 (4)H14B—C14—H14C109.5
C4—C5—H5A119.8O4—C15—N1117.7 (4)
C6—C5—H5A119.8O4—C15—C16123.7 (5)
C5—C6—C7119.9 (4)N1—C15—C16118.6 (5)
C5—C6—H6A120.0C17—C16—C15115.8 (5)
C7—C6—H6A120.0C17—C16—H16A108.3
C8—C7—C6120.6 (4)C15—C16—H16A108.3
C8—C7—H7A119.7C17—C16—H16B108.3
C6—C7—H7A119.7C15—C16—H16B108.3
C7—C8—C3119.8 (4)H16A—C16—H16B107.4
C7—C8—C9119.9 (3)C16—C17—C18117.0 (6)
C3—C8—C9120.3 (4)C16—C17—H17A108.1
O2—C9—C8122.0 (4)C18—C17—H17A108.1
O2—C9—C10120.3 (4)C16—C17—H17B108.1
C8—C9—C10117.6 (3)C18—C17—H17B108.1
C1—C10—N1121.5 (4)H17A—C17—H17B107.3
C1—C10—C9121.9 (3)C17—C18—H18A109.5
N1—C10—C9116.6 (3)C17—C18—H18B109.5
O3—C11—N1118.8 (6)H18A—C18—H18B109.5
O3—C11—C12124.2 (6)C17—C18—H18C109.5
N1—C11—C12117.0 (4)H18A—C18—H18C109.5
C11—C12—C13116.7 (5)H18B—C18—H18C109.5
C11—C12—H12A108.1
C10—C1—C2—O1177.8 (4)C2—C1—C10—C90.7 (6)
Cl1—C1—C2—O13.1 (6)Cl1—C1—C10—C9179.8 (3)
C10—C1—C2—C33.5 (6)C15—N1—C10—C1102.5 (5)
Cl1—C1—C2—C3175.6 (3)C11—N1—C10—C179.8 (5)
O1—C2—C3—C43.2 (6)C15—N1—C10—C976.4 (5)
C1—C2—C3—C4175.4 (4)C11—N1—C10—C9101.2 (5)
O1—C2—C3—C8177.6 (4)O2—C9—C10—C1174.2 (4)
C1—C2—C3—C83.7 (6)C8—C9—C10—C14.7 (6)
C8—C3—C4—C50.3 (7)O2—C9—C10—N16.8 (6)
C2—C3—C4—C5178.9 (4)C8—C9—C10—N1174.3 (4)
C3—C4—C5—C60.1 (8)C15—N1—C11—O316.4 (8)
C4—C5—C6—C70.5 (8)C10—N1—C11—O3166.3 (5)
C5—C6—C7—C81.1 (8)C15—N1—C11—C12163.7 (5)
C6—C7—C8—C30.9 (7)C10—N1—C11—C1213.6 (7)
C6—C7—C8—C9178.6 (5)O3—C11—C12—C137.2 (10)
C4—C3—C8—C70.3 (6)N1—C11—C12—C13172.9 (5)
C2—C3—C8—C7179.4 (4)C11—C12—C13—C1470.9 (9)
C4—C3—C8—C9179.3 (4)C11—N1—C15—O4176.9 (4)
C2—C3—C8—C90.1 (6)C10—N1—C15—O45.7 (6)
C7—C8—C9—O25.9 (7)C11—N1—C15—C165.1 (7)
C3—C8—C9—O2174.5 (4)C10—N1—C15—C16172.3 (4)
C7—C8—C9—C10175.3 (4)O4—C15—C16—C179.5 (10)
C3—C8—C9—C104.3 (6)N1—C15—C16—C17168.4 (6)
C2—C1—C10—N1178.2 (4)C15—C16—C17—C18178.4 (7)
Cl1—C1—C10—N10.9 (6)

Experimental details

Crystal data
Chemical formulaC18H18ClNO4
Mr347.78
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.1717 (10), 8.3117 (10), 14.6841 (15)
α, β, γ (°)93.119 (9), 98.369 (10), 118.043 (12)
V3)862.23 (17)
Z2
Radiation typeCu Kα
µ (mm1)2.15
Crystal size (mm)0.36 × 0.28 × 0.08
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.530, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5454, 3398, 2122
Rint0.043
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.227, 1.12
No. of reflections3398
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership); in part by grant G12MD007597 from the National Institute On Minority Health and Health Disparities of the National Institutes of Health; and in part by MRI grant No. CHE-1126533 from the NSF. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485–488.  CrossRef CAS Google Scholar
First citationBrandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973–1984.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27–33.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds