organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Oxo-3-phenyl-1,3-thia­zolidin-2-yl­­idene)propanedi­nitrile

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Faculty of Science, Sohag University, 82524-Sohag, Egypt, cSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and dKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 1 July 2013; accepted 2 July 2013; online 24 July 2013)

In the title compound, C12H7N3OS, the five-membered 1,3-thia­zolidine ring is nearly planar [maximum deviation = 0.032 (2) Å] and makes a dihedral angle of 84.14 (9)° with the phenyl ring. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds into infinite chains along [-101]. C—H⋯π inter­actions contribute to the arrangement of the mol­ecules into layers parallel to (101).

Related literature

For the diverse biological applications of thia­zolidinone-containing compounds, see, for example: Bouzroura et al. (2010[Bouzroura, S., Bentarzi, Y., Kaoua, R., Kolli, B. N., Martini, S. P. & Dunach, E. (2010). Org. Commun. 3, 8-14.]); Abhinit et al. (2009[Abhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47-64.]); Naeem et al. (2009[Naeem, M., Chaudhary, M. N., Baloch, F. H. & Amjad, R. (2009). J. Chem. Soc. Pak. 31, 633-637.]); Sharma et al. (2009[Sharma, M. C., Shahu, N. K., Kohli, D. V., Chaturvedi, S. C. & Sharma, S. (2009). Digest J. Nanomater. Biostruct. 4, 223-232.]); Mistry & Desai (2004[Mistry, K. M. & Desai, K. R. (2004). E-J. Chem. 1, 189-193.]); Ramalakshmi et al. (2009[Ramalakshmi, N., Aruloly, L., Arunkumar, S., Ilango, K. & Puratchikody, A. (2009). Malaysian J. Sci. 28, 197-203.]); Turgut et al. (2007[Turgut, Z., Yolacan, C., Aydogan, F. E., Bagdatli, E. & Ocal, N. (2007). Molecules, 12, 2151-2159.]). For the synthesis of similar compounds, see: Farhat et al. (2007[Farhat, M. F., El-Saghier, A. M. M., Makhlouf, M. A., Kreddan, K. M. & Elmezoughi, A. B. (2007). J. Sulfur Chem. 28, 563-572.]). For similar structures, see: Pomés Hernández et al. (1996[Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731-1733.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7N3OS

  • Mr = 241.28

  • Monoclinic, C c

  • a = 16.979 (9) Å

  • b = 9.407 (5) Å

  • c = 7.034 (4) Å

  • β = 103.927 (11)°

  • V = 1090.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.24 × 0.12 × 0.04 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.944, Tmax = 1.000

  • 3632 measured reflections

  • 1986 independent reflections

  • 1955 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.08

  • 1986 reflections

  • 154 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x parameter determined using 718 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Flack parameter: 0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N3i 0.95 2.58 3.479 (4) 157
C8—H8⋯Cg2ii 0.95 2.96 3.610 (3) 127
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containg thiazolidinone ring system have been found to possess a broad spectrum of biological activities (Abhinit et al., 2009). 4-Thiazolidinones is a core structure in various synthetic compounds and an important scaffold known to be associated with several biological activities such as, antitubercular (Naeem et al., 2009), anti bacterial (Sharma et al., 2009), anti-inflammatory (Turgut et al., 2007), anti-mycobacterial (Bouzroura et al., 2010), anti convulsant (Mistry & Desai, 2004), and anti cancer (Ramalakshmi et al., 2009). As such we have synthesized in our lab series of thiazolidinone derivatives and herein we report the crystal structure of the title compound (I).

In (I), (Fig. 1), the five-membered 1,3-thiazolidine ring (S1/N1/C1–C3) is nearly planar with maximum deviations of 0.031 (1) Å for S1 and -0.032 (2) Å for C3. The dihedral angle between the 1,3-thiazolidine ring and phenyl rings (S1/N1/C1–C3 and C7–C12) is 84.14 (9)°. In (I), the C4–C5–N2, C4–C6–N3 and C5–C4–C6 angles are 174.4 (2), 179.4 (2) and 115.80 (18)°, respectively. The N1–C1–C4–C5 and N1–C1–C4–C6 torsion angles are -0.5 (3) and 177.33 (18)°, respectively. The values of the geometric parameters are normal and are comparable to those observed in similar compounds (Pomés Hernández et al., 1996).

In the crystal structure, C—H···N hydrogen bonds (Table 1, Fig. 2) link the molecules to each other into infinite chains along the [-101] direction. The molecules are arranged into layers parallel to (101) through C—H···π interactions between the C(8)H8 atoms and the centroids of the phenyl rings of neighbouring molecules.

Related literature top

For the diverse biological applications of thiazolidinone-containing compounds, see, for example: Bouzroura et al. (2010); Abhinit et al. (2009); Naeem et al. (2009); Sharma et al. (2009); Mistry & Desai (2004); Ramalakshmi et al. (2009); Turgut et al. (2007). For the synthesis of similar compounds, see: Farhat et al. (2007). For similar structures, see: Pomés Hernández et al. (1996).

Experimental top

The title compound has been prepared according to the our reported method (Farhat et al., 2007). Pale brown mono-crystals suitable for X-ray diffractions were grown up by slow evaporation of an ethanol solution of the title compounds at room temperature over 48 h.

Refinement top

All H atoms were placed geometrically with C–H = 0.95 (aromatic H), 0.99 (methylene H) and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the packing diagram of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(4-Oxo-3-phenyl-1,3-thiazolidin-2-ylidene)propanedinitrile top
Crystal data top
C12H7N3OSF(000) = 496
Mr = 241.28Dx = 1.470 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 1540 reflections
a = 16.979 (9) Åθ = 2.5–29.9°
b = 9.407 (5) ŵ = 0.28 mm1
c = 7.034 (4) ÅT = 100 K
β = 103.927 (11)°Blade, pale brown
V = 1090.5 (10) Å30.24 × 0.12 × 0.04 mm
Z = 4
Data collection top
Rigaku AFC12 (Right)
diffractometer
1986 independent reflections
Radiation source: Rotating Anode1955 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.015
profile data from ω–scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 2121
Tmin = 0.944, Tmax = 1.000k = 1211
3632 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 W = 1/[Σ2(Fo2) + (0.0377P)2 + 0.4177P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.19 e Å3
1986 reflectionsΔρmin = 0.18 e Å3
154 parametersAbsolute structure: Flack x parameter determined using 718 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
2 restraintsAbsolute structure parameter: 0.03 (3)
Crystal data top
C12H7N3OSV = 1090.5 (10) Å3
Mr = 241.28Z = 4
Monoclinic, CcMo Kα radiation
a = 16.979 (9) ŵ = 0.28 mm1
b = 9.407 (5) ÅT = 100 K
c = 7.034 (4) Å0.24 × 0.12 × 0.04 mm
β = 103.927 (11)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
1986 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
1955 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.015
3632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.19 e Å3
S = 1.08Δρmin = 0.18 e Å3
1986 reflectionsAbsolute structure: Flack x parameter determined using 718 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
154 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14621 (4)0.73643 (4)0.22599 (6)0.0152 (1)
O10.23305 (9)0.57530 (15)0.1843 (2)0.0179 (4)
N10.27769 (10)0.68589 (17)0.1115 (2)0.0120 (4)
N20.45449 (12)0.8278 (2)0.5329 (3)0.0210 (6)
N30.22781 (12)0.91044 (19)0.6832 (3)0.0209 (5)
C10.25143 (14)0.74325 (18)0.2647 (3)0.0122 (5)
C20.21787 (12)0.6278 (2)0.0407 (3)0.0138 (5)
C30.13519 (12)0.6388 (2)0.0001 (3)0.0162 (6)
C40.29897 (12)0.8016 (2)0.4321 (3)0.0135 (5)
C50.38554 (13)0.8131 (2)0.4803 (3)0.0146 (5)
C60.25922 (12)0.8615 (2)0.5710 (3)0.0149 (5)
C70.36194 (12)0.6787 (2)0.1046 (3)0.0128 (5)
C80.40498 (13)0.5558 (2)0.1676 (3)0.0157 (6)
C90.48583 (13)0.5491 (2)0.1579 (3)0.0205 (6)
C100.52117 (14)0.6634 (3)0.0838 (3)0.0218 (6)
C110.47629 (14)0.7848 (3)0.0200 (3)0.0207 (6)
C120.39603 (13)0.7932 (2)0.0298 (3)0.0159 (6)
H3A0.113200.542700.012900.0190*
H3B0.097500.689000.108400.0190*
H80.380000.477900.216200.0190*
H90.517000.466400.202000.0250*
H100.576300.658100.076800.0260*
H110.500700.862400.030500.0250*
H120.364900.876000.013900.0190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0091 (2)0.0180 (2)0.0189 (2)0.0011 (2)0.0041 (2)0.0031 (2)
O10.0177 (7)0.0190 (7)0.0177 (8)0.0020 (6)0.0058 (6)0.0049 (6)
N10.0093 (8)0.0128 (7)0.0142 (8)0.0004 (6)0.0032 (6)0.0010 (6)
N20.0165 (10)0.0269 (9)0.0201 (10)0.0019 (8)0.0055 (8)0.0041 (7)
N30.0170 (9)0.0251 (9)0.0210 (10)0.0010 (8)0.0052 (8)0.0074 (8)
C10.0116 (9)0.0108 (8)0.0149 (10)0.0013 (7)0.0044 (8)0.0018 (7)
C20.0126 (9)0.0115 (8)0.0166 (9)0.0007 (7)0.0024 (8)0.0016 (7)
C30.0117 (10)0.0203 (9)0.0157 (10)0.0015 (8)0.0018 (8)0.0019 (8)
C40.0113 (10)0.0132 (8)0.0161 (10)0.0013 (7)0.0034 (8)0.0010 (7)
C50.0159 (11)0.0142 (8)0.0143 (9)0.0007 (8)0.0046 (8)0.0016 (7)
C60.0109 (9)0.0150 (9)0.0173 (10)0.0017 (8)0.0002 (8)0.0018 (7)
C70.0097 (9)0.0167 (8)0.0126 (9)0.0010 (7)0.0040 (8)0.0034 (7)
C80.0158 (10)0.0183 (9)0.0136 (10)0.0013 (8)0.0046 (8)0.0003 (7)
C90.0152 (10)0.0284 (10)0.0172 (10)0.0070 (9)0.0026 (8)0.0017 (8)
C100.0108 (9)0.0389 (12)0.0162 (10)0.0003 (9)0.0044 (8)0.0052 (9)
C110.0158 (11)0.0299 (11)0.0175 (11)0.0080 (9)0.0064 (9)0.0001 (9)
C120.0141 (10)0.0176 (9)0.0145 (10)0.0015 (8)0.0008 (9)0.0005 (7)
Geometric parameters (Å, º) top
S1—C11.742 (3)C7—C121.385 (3)
S1—C31.806 (2)C8—C91.392 (3)
O1—C21.207 (3)C9—C101.392 (3)
N1—C11.372 (3)C10—C111.386 (4)
N1—C21.398 (3)C11—C121.383 (3)
N1—C71.445 (3)C3—H3A0.9900
N2—C51.148 (3)C3—H3B0.9900
N3—C61.150 (3)C8—H80.9500
C1—C41.372 (3)C9—H90.9500
C2—C31.503 (3)C10—H100.9500
C4—C51.431 (3)C11—H110.9500
C4—C61.430 (3)C12—H120.9500
C7—C81.382 (3)
C1—S1—C392.38 (10)C8—C9—C10120.15 (19)
C1—N1—C2116.22 (18)C9—C10—C11120.3 (2)
C1—N1—C7123.81 (17)C10—C11—C12120.2 (2)
C2—N1—C7119.93 (16)C7—C12—C11118.8 (2)
S1—C1—N1112.19 (15)S1—C3—H3A110.00
S1—C1—C4121.22 (17)S1—C3—H3B110.00
N1—C1—C4126.6 (2)C2—C3—H3A110.00
O1—C2—N1122.62 (19)C2—C3—H3B110.00
O1—C2—C3125.85 (19)H3A—C3—H3B109.00
N1—C2—C3111.53 (17)C7—C8—H8121.00
S1—C3—C2107.42 (14)C9—C8—H8121.00
C1—C4—C5126.3 (2)C8—C9—H9120.00
C1—C4—C6117.9 (2)C10—C9—H9120.00
C5—C4—C6115.80 (18)C9—C10—H10120.00
N2—C5—C4174.4 (2)C11—C10—H10120.00
N3—C6—C4179.4 (2)C10—C11—H11120.00
N1—C7—C8118.67 (18)C12—C11—H11120.00
N1—C7—C12118.95 (18)C7—C12—H12121.00
C8—C7—C12122.4 (2)C11—C12—H12121.00
C7—C8—C9118.27 (18)
C3—S1—C1—N14.42 (14)N1—C1—C4—C50.5 (3)
C3—S1—C1—C4175.95 (16)S1—C1—C4—C62.2 (3)
C1—S1—C3—C24.78 (14)S1—C1—C4—C5179.94 (15)
C7—N1—C1—S1179.56 (14)N1—C1—C4—C6177.33 (18)
C2—N1—C1—C4177.70 (18)N1—C2—C3—S14.19 (19)
C7—N1—C1—C40.0 (3)O1—C2—C3—S1176.30 (17)
C7—N1—C2—C3176.70 (16)N1—C7—C8—C9179.13 (17)
C1—N1—C2—O1179.35 (18)C12—C7—C8—C91.1 (3)
C7—N1—C2—O12.8 (3)N1—C7—C12—C11178.78 (18)
C2—N1—C1—S12.7 (2)C8—C7—C12—C110.8 (3)
C2—N1—C7—C1294.9 (2)C7—C8—C9—C100.9 (3)
C1—N1—C7—C894.5 (2)C8—C9—C10—C110.3 (3)
C1—N1—C2—C31.1 (2)C9—C10—C11—C120.1 (3)
C1—N1—C7—C1287.5 (2)C10—C11—C12—C70.2 (3)
C2—N1—C7—C883.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···N3i0.952.583.479 (4)157
C8—H8···Cg2ii0.952.963.610 (3)127
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H7N3OS
Mr241.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)16.979 (9), 9.407 (5), 7.034 (4)
β (°) 103.927 (11)
V3)1090.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.24 × 0.12 × 0.04
Data collection
DiffractometerRigaku AFC12 (Right)
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.944, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3632, 1986, 1955
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.08
No. of reflections1986
No. of parameters154
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18
Absolute structureFlack x parameter determined using 718 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.03 (3)

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···N3i0.952.583.479 (4)157
C8—H8···Cg2ii0.952.963.610 (3)127
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

Manchester Metropolitan University, Erciyes University and Sohag University are gratefully acknowledged for supporting this study.

References

First citationAbhinit, M., Ghodke, M. & Pratima, N. A. (2009). Int. J. Pharm. Pharm. Sci. 1, 47–64.  CAS Google Scholar
First citationBouzroura, S., Bentarzi, Y., Kaoua, R., Kolli, B. N., Martini, S. P. & Dunach, E. (2010). Org. Commun. 3, 8–14.  CAS Google Scholar
First citationFarhat, M. F., El-Saghier, A. M. M., Makhlouf, M. A., Kreddan, K. M. & Elmezoughi, A. B. (2007). J. Sulfur Chem. 28, 563–572.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMistry, K. M. & Desai, K. R. (2004). E-J. Chem. 1, 189–193.  CrossRef CAS Google Scholar
First citationNaeem, M., Chaudhary, M. N., Baloch, F. H. & Amjad, R. (2009). J. Chem. Soc. Pak. 31, 633–637.  CAS Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationPomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731–1733.  CSD CrossRef IUCr Journals Google Scholar
First citationRamalakshmi, N., Aruloly, L., Arunkumar, S., Ilango, K. & Puratchikody, A. (2009). Malaysian J. Sci. 28, 197–203.  CAS Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, M. C., Shahu, N. K., Kohli, D. V., Chaturvedi, S. C. & Sharma, S. (2009). Digest J. Nanomater. Biostruct. 4, 223–232.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurgut, Z., Yolacan, C., Aydogan, F. E., Bagdatli, E. & Ocal, N. (2007). Molecules, 12, 2151–2159.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds