organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(2-Hy­dr­oxy-4-meth­­oxy­phen­yl)ethyl­­idene]-N-methyl­hydrazinecarbo­thio­amide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 16 July 2013; accepted 17 July 2013; online 24 July 2013)

In the title compound, C11H15N3O2S, the dihedral angle between the mean planes of the benzene ring and hydrazinecarbo­thio­amide group is 9.2 (1)°. An intra­molecular O—H⋯N hydrogen bond is observed, serving to maintain an approximately planar conformation for the molecule. In the crystal, inversion dimers linked by C—H⋯O inter­actions occur. Further C—H⋯O contacts link dimers into (010) chains.

Related literature

For the synthesis and structure of thio­semicarbazones as ligands, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.], 2012[Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804-810.]). For palladium complexes with thio­semicarbazone ligands, see: Chellan et al. (2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520-3528.]). For related structures, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2013[Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.]). For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2S

  • Mr = 253.32

  • Monoclinic, P 21 /n

  • a = 10.9881 (8) Å

  • b = 9.1468 (6) Å

  • c = 12.5575 (9) Å

  • β = 109.400 (8)°

  • V = 1190.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.14 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.728, Tmax = 1.000

  • 13894 measured reflections

  • 4104 independent reflections

  • 3320 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.231

  • S = 1.16

  • 4104 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.566 (3) 145
C10—H10A⋯O2i 0.96 2.59 3.301 (4) 132
C10—H10C⋯O1ii 0.96 2.57 3.481 (4) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiosemicarbazones are a versatile class of ligands that can adopt multiple modes of binding to a metal (Lobana, et al., 2009) and the synthesis and structure determination of these metal complexes is an active area of research. (Lobana, et al., 2012) Palladium complexes with thiosemicarbazone ligands have been shown to have a variety of biological activity including anti-fungal and anti-tumor activity. (Chellan, et al., 2010). We have previously reported the structure of two analogous novel thiosemicarbazones (Anderson, et al., 2012; Anderson, et al., 2013). Here, we report the synthesis and crystal structure of a novel thiosemicarbazone ligand, (I), C11H15N3O2S .

In (I), the dihedral angle between the mean planes of the benzene ring and hydrazinecarbothioamide group (N1/N2/C8/S1/N3) is 9.2 (1)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, an intramolecular O—H···N hydrogen bond is observed serving to keep the molecule in a nearly planar conformation. Additional weak and C—H···O intermolecular interactions (Table 1) assist in linking the molecules into dimers along (010) and influence crystal packing (Fig. 2).

Related literature top

For the synthesis and structure of thiosemicarbazones as ligands that bind to metals, see: Lobana et al. (2009, 2012). For palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For related structures, see: Anderson et al. (2012, 2013). For bond lengths, see: Allen et al. (1987).

Experimental top

A 50 mL round bottom flask was charged with 0.218 g (1.31 mmol) of 2'-hydroxy-4'-methoxyacetophenone, 0.138 g (1.31 mmol) of 4-methyl-3- thiosemicarbazide, dissolved in 20 mL of methanol. The resulting colorless solution was refluxed for 48 hours and then a drop of concentrated HCl was added and the solution was refluxed for an additional 48 hours. The resulting yellow solution was transferred to a 125 mL separatory funnel. Dichloromethane (10 mL) and water (10 mL) were added, and the organic layer was separated. The aqueous layer was extracted with an additional 10 mL of dichloromethane. The organic layers were combined, washed with brine (2 x 10 mL), dried with magnesium sulfate, and the solvent was removed in vacuo to give a yellow solid (Fig. 3). The solid was dissolved in hot acetonitrile, allowed to cool to room temperature and then stored at 273 K resulting in colorless crystals (58 mg, 18%) after 24 hours. M.p. 448-453 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C11(H11A,H11B,H11C). Idealised tetrahedral OH refined as rotating group: O1(H1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate O1—H1···N1 intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate O—H···N intramolecular hydrogen bonds and weak C—H···O intermolecular interactions linking the molecules into dimers along (010).
[Figure 3] Fig. 3. Synthesis of (I).
2-[1-(2-Hydroxy-4-methoxyphenyl)ethylidene]-N-methylhydrazinecarbothioamide top
Crystal data top
C11H15N3O2SF(000) = 536
Mr = 253.32Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 10.9881 (8) ÅCell parameters from 4367 reflections
b = 9.1468 (6) Åθ = 3.0–32.9°
c = 12.5575 (9) ŵ = 0.27 mm1
β = 109.400 (8)°T = 173 K
V = 1190.45 (15) Å3Irregular, colourless
Z = 40.42 × 0.38 × 0.14 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4104 independent reflections
Radiation source: Enhance (Mo) X-ray Source3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0416 pixels mm-1θmax = 33.0°, θmin = 3.0°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.728, Tmax = 1.000l = 1818
13894 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.0907P)2 + 2.429P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
4104 reflectionsΔρmax = 1.21 e Å3
158 parametersΔρmin = 0.46 e Å3
0 restraints
Crystal data top
C11H15N3O2SV = 1190.45 (15) Å3
Mr = 253.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9881 (8) ŵ = 0.27 mm1
b = 9.1468 (6) ÅT = 173 K
c = 12.5575 (9) Å0.42 × 0.38 × 0.14 mm
β = 109.400 (8)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3320 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 1.000Rint = 0.043
13894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.16Δρmax = 1.21 e Å3
4104 reflectionsΔρmin = 0.46 e Å3
158 parameters
Special details top

Experimental. 1H NMR [(CD3)2CO]: 11.7 (br s, 1H, NH) 9.52 (br s, 1H, OH) 7.73 (br s, 1H, NH) 7.5 (d, J = 8.6, 1H Ar) 6.47 (d, J = 8.6 1H Ar) 6.42 (d, 1H Ar) 3.80 (s, 3H, CH3) 3.13 (d, J = 4.7, 3H, CH3) 2.43 (s, 3H, CH3)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21259 (6)0.28834 (7)0.36426 (6)0.02286 (19)
O10.55069 (19)0.2003 (2)0.50127 (19)0.0280 (4)
H10.49360.25300.46080.042*
O20.9881 (2)0.0943 (3)0.60376 (19)0.0309 (5)
N10.4600 (2)0.4175 (3)0.36942 (19)0.0220 (4)
N20.3540 (2)0.5019 (3)0.31878 (19)0.0220 (4)
H20.36280.58690.29290.026*
N30.1393 (2)0.5407 (3)0.2551 (2)0.0240 (4)
H30.15950.62250.23170.029*
C10.5729 (2)0.4652 (3)0.3762 (2)0.0198 (4)
C20.6806 (2)0.3678 (3)0.4335 (2)0.0201 (5)
C30.6655 (2)0.2410 (3)0.4935 (2)0.0207 (5)
C40.7702 (3)0.1533 (3)0.5478 (2)0.0245 (5)
H40.75850.07030.58620.029*
C50.8923 (3)0.1875 (3)0.5459 (2)0.0232 (5)
C60.9109 (3)0.3099 (3)0.4871 (2)0.0260 (5)
H60.99230.33270.48440.031*
C70.8055 (3)0.3967 (3)0.4329 (2)0.0250 (5)
H70.81820.47860.39390.030*
C80.2350 (2)0.4514 (3)0.3095 (2)0.0192 (4)
C90.0037 (3)0.5110 (4)0.2322 (3)0.0299 (6)
H9A0.00700.45350.29240.045*
H9B0.02980.45820.16240.045*
H9C0.04220.60160.22640.045*
C100.5946 (3)0.6111 (3)0.3322 (3)0.0255 (5)
H10A0.55420.61330.25170.038*
H10B0.68560.62780.35080.038*
H10C0.55800.68600.36580.038*
C111.1161 (3)0.1303 (4)0.6095 (3)0.0349 (7)
H11A1.14200.21950.65100.052*
H11B1.11910.14250.53440.052*
H11C1.17360.05290.64670.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (3)0.0190 (3)0.0279 (3)0.0010 (2)0.0104 (2)0.0013 (2)
O10.0214 (9)0.0276 (10)0.0383 (11)0.0008 (8)0.0143 (8)0.0071 (8)
O20.0216 (9)0.0354 (11)0.0358 (11)0.0056 (8)0.0094 (8)0.0128 (9)
N10.0192 (10)0.0224 (10)0.0245 (10)0.0012 (8)0.0072 (8)0.0009 (8)
N20.0172 (9)0.0207 (10)0.0287 (11)0.0001 (8)0.0083 (8)0.0027 (8)
N30.0197 (10)0.0212 (10)0.0320 (11)0.0019 (8)0.0099 (8)0.0049 (8)
C10.0193 (11)0.0200 (11)0.0199 (10)0.0012 (8)0.0063 (8)0.0006 (8)
C20.0193 (11)0.0198 (10)0.0212 (10)0.0014 (9)0.0068 (8)0.0001 (8)
C30.0203 (11)0.0217 (11)0.0221 (11)0.0022 (9)0.0098 (9)0.0007 (9)
C40.0262 (12)0.0228 (12)0.0266 (12)0.0002 (10)0.0115 (10)0.0047 (9)
C50.0209 (11)0.0251 (12)0.0239 (11)0.0009 (9)0.0076 (9)0.0021 (9)
C60.0197 (11)0.0277 (13)0.0314 (13)0.0024 (10)0.0096 (10)0.0042 (10)
C70.0205 (11)0.0247 (12)0.0308 (13)0.0024 (9)0.0101 (10)0.0044 (10)
C80.0200 (11)0.0191 (10)0.0200 (10)0.0002 (8)0.0086 (8)0.0020 (8)
C90.0203 (12)0.0316 (14)0.0383 (15)0.0048 (10)0.0103 (11)0.0067 (12)
C100.0200 (11)0.0207 (11)0.0348 (14)0.0013 (9)0.0080 (10)0.0026 (10)
C110.0204 (12)0.0417 (17)0.0424 (17)0.0044 (12)0.0104 (11)0.0084 (14)
Geometric parameters (Å, º) top
S1—C81.695 (3)C3—C41.383 (4)
O1—H10.8200C4—H40.9300
O1—C31.350 (3)C4—C51.386 (4)
O2—C51.362 (3)C5—C61.393 (4)
O2—C111.423 (4)C6—H60.9300
N1—N21.366 (3)C6—C71.383 (4)
N1—C11.290 (3)C7—H70.9300
N2—H20.8600C9—H9A0.9600
N2—C81.354 (3)C9—H9B0.9600
N3—H30.8600C9—H9C0.9600
N3—C81.328 (3)C10—H10A0.9600
N3—C91.446 (4)C10—H10B0.9600
C1—C21.465 (4)C10—H10C0.9600
C1—C101.494 (4)C11—H11A0.9600
C2—C31.422 (4)C11—H11B0.9600
C2—C71.400 (4)C11—H11C0.9600
C3—O1—H1109.5C7—C6—H6120.8
C5—O2—C11117.3 (2)C2—C7—H7118.3
C1—N1—N2119.4 (2)C6—C7—C2123.4 (2)
N1—N2—H2120.1C6—C7—H7118.3
C8—N2—N1119.8 (2)N2—C8—S1122.13 (19)
C8—N2—H2120.1N3—C8—S1123.55 (19)
C8—N3—H3117.4N3—C8—N2114.3 (2)
C8—N3—C9125.1 (2)N3—C9—H9A109.5
C9—N3—H3117.4N3—C9—H9B109.5
N1—C1—C2115.4 (2)N3—C9—H9C109.5
N1—C1—C10123.1 (2)H9A—C9—H9B109.5
C2—C1—C10121.5 (2)H9A—C9—H9C109.5
C3—C2—C1122.5 (2)H9B—C9—H9C109.5
C7—C2—C1121.1 (2)C1—C10—H10A109.5
C7—C2—C3116.4 (2)C1—C10—H10B109.5
O1—C3—C2122.7 (2)C1—C10—H10C109.5
O1—C3—C4116.6 (2)H10A—C10—H10B109.5
C4—C3—C2120.7 (2)H10A—C10—H10C109.5
C3—C4—H4119.6H10B—C10—H10C109.5
C3—C4—C5120.8 (2)O2—C11—H11A109.5
C5—C4—H4119.6O2—C11—H11B109.5
O2—C5—C4115.5 (2)O2—C11—H11C109.5
O2—C5—C6124.2 (2)H11A—C11—H11B109.5
C4—C5—C6120.3 (2)H11A—C11—H11C109.5
C5—C6—H6120.8H11B—C11—H11C109.5
C7—C6—C5118.5 (2)
O1—C3—C4—C5179.1 (3)C3—C2—C7—C60.4 (4)
O2—C5—C6—C7179.2 (3)C3—C4—C5—O2179.1 (2)
N1—N2—C8—S12.8 (3)C3—C4—C5—C61.2 (4)
N1—N2—C8—N3177.6 (2)C4—C5—C6—C71.0 (4)
N1—C1—C2—C39.8 (4)C5—C6—C7—C20.2 (4)
N1—C1—C2—C7171.0 (2)C7—C2—C3—O1179.8 (2)
N2—N1—C1—C2179.1 (2)C7—C2—C3—C40.3 (4)
N2—N1—C1—C100.7 (4)C9—N3—C8—S11.7 (4)
C1—N1—N2—C8178.8 (2)C9—N3—C8—N2178.7 (3)
C1—C2—C3—O10.6 (4)C10—C1—C2—C3168.6 (2)
C1—C2—C3—C4179.0 (2)C10—C1—C2—C710.6 (4)
C1—C2—C7—C6178.9 (3)C11—O2—C5—C4176.4 (3)
C2—C3—C4—C50.5 (4)C11—O2—C5—C63.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.566 (3)145
C10—H10A···O2i0.962.593.301 (4)132
C10—H10C···O1ii0.962.573.481 (4)158
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.566 (3)144.6
C10—H10A···O2i0.962.593.301 (4)131.5
C10—H10C···O1ii0.962.573.481 (4)157.8
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds