organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1340-o1341

2-Hy­dr­oxy­methyl-1,3-di­methyl-1H-imidazol-3-ium triiodide

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1, 25000 , Algeria, and bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse, Organique, PHYSYNOR, Université Constantine1, 25000 Constantine, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 21 July 2013; accepted 22 July 2013; online 27 July 2013)

The crystal packing of the title salt, C6H11N2O+·I3, can be described as consisting of alternating layers of cations and anions parallel to the (100) plane along the a-axis direction. The components are linked by O—H⋯I, C—H⋯I and C—H⋯O interactions, generating a three-dimensional network. The O atom deviates from the imidazol ring by 0.896 (2) Å.

Related literature

For the importance of heterocyclic compounds and their applications, see: Pandey et al. (2009[Pandey, S. K., Singh, A. & Nizamuddin, A. S. (2009). Eur. J. Med. Chem. 44, 1188-1197.]); Nasser (2000[Nasser, A. H. (2000). Molecules, 5, 826-834.]). For the biological activity of imidazole and imidazolium derivatives, see: Ucucu et al. (2001[Ucucu, U., Karaburun, N. G. & Isikdag, I. (2001). Il Farmaco, 56, 285-290.]); Dominianni et al. (1989[Dominianni, S. J., Yen, I. & Terence, T. (1989). J. Med. Chem. 32, 2301-2306.]); Ozkay et al. (2010[Ozkay, Y., Isikdag, I., Incesu, Z. & Akalin, G. (2010). Eur. J. Med. Chem. 45, 3320-3328.]). For our previous work on imidazole derivatives, see: Bahnous et al. (2012[Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.]); Zama et al. (2013[Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837-o838.]); Chelghoum et al. (2011[Chelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N2O+·I3

  • Mr = 507.87

  • Monoclinic, P 21 /c

  • a = 7.1647 (8) Å

  • b = 15.5586 (19) Å

  • c = 11.3201 (13) Å

  • β = 96.026 (7)°

  • V = 1254.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.44 mm−1

  • T = 150 K

  • 0.24 × 0.03 × 0.02 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 1.000

  • 7061 measured reflections

  • 2222 independent reflections

  • 2104 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.034

  • S = 1.15

  • 2222 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I1i 0.82 3.03 3.741 (2) 146
C1—H1B⋯I3ii 0.97 3.05 3.924 (3) 151
C4—H4⋯O1iii 0.93 2.60 3.421 (4) 148
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2006[Bruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SMART; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.] and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Heterocyclic compounds have so far been synthesized mainly due to the wide range of biological activities. At present, the role of heterocyclic compounds has become increasingly important in designing new class of structural entities of medicinal importance (Pandey et al., 2009; Nasser, 2000). Imidazole is a nitrogen containing heterocyclic ring which possesses biological and pharmaceutical importance (Ozkay, et al., 2010). It forms the main structure of some well known components of human organisms, i.e. the amino acid histidine, Vit-B12, a component of DNA base structure and purines, histamine and biotin (Ucucu, et al., 2001). In other hand, imidazolium salts are known for the wide range of their biological activity. A large variety of these salts have been used as anti-inflammatory, antibacterial, antifungal and thromboxane synthetase inhibitior (Dominianni et al., 1989). In continuation of our studies on imidazole derivatives (Bahnous et al., 2012; Zama et al., 2013 and Chelghoum et al., 2011). We report herein the synthesis and crystal structure of a new imidazolium salt, I, bearing two methyl groups at C-1 and C-3 positions, a hydroxymethyl at C-2 and a triiodide anion that balance the charge.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title molecule, C6H11N2O, I3, contains a 1,3-dimethyl-2-hydroxymethylidazolium cation and triiodide anion. The crystal packing can be described as alternating layers parallel to the (100) plane along the a axis, where triiodide anion is located in these layers (Fig. 2) and they are linked together by O—H···I, C—H···I and C—H···O intermolecular hydrogen bonds As shown in the Figure 2, the imidazol rings of the symmetry related layers are intercalated, however the centroid to centroid distance between the imidazol rings are too long (5.3400 (19) and 5.6641 (19) Å) for considering π-π interactions. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the ionic structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For the importance of heterocyclic compounds and their applications, see: Pandey et al. (2009); Nasser (2000). For the biological activity of imidazole and imidazolium derivatives, see: Ucucu et al. (2001); Dominianni et al. (1989); Ozkay et al. (2010). For our previous work on imidazole derivatives, see: Bahnous et al. (2012); Zama et al. (2013); Chelghoum et al. (2011).

Experimental top

The treatment of 1,3-dimethyl-2-hydroxymethylimidazolium iodide (Chelghoum et al., 2011) with diluted sulfuric acid solution, during ten days in opened flask for slow evaporation, gave the title compound as a brown crystals. The crystals are filtered off and washed with water. Suitable crystal of compound (I) was selected and X-ray crystallographic analysis confirmed the structural assignment (Fig. 1).

Refinement top

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.93 Å; Cmethylene—Hmethylene = 0.97 Å; Cmethyl—Hmethyl = 0.96 Å and Chydroxy—Hhydroxy = 0.82 Å; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl or hydroxy) = 1.5Ueq(Cmethyl or hydroxy) or Uiso(Haryl or Hmethylene) = 1.2 Ueq(Caryl or Cmethylene).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SMART (Bruker, 2006); data reduction: SMART (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Alternating layers of (I) viewed down the c axis showing hydrgen bond as dashed line.
2-Hydroxymethyl-1,3-dimethyl-1H-imidazol-3-ium triiodide top
Crystal data top
C6H11N2O+·I3F(000) = 912
Mr = 507.87Dx = 2.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5058 reflections
a = 7.1647 (8) Åθ = 2.2–25.1°
b = 15.5586 (19) ŵ = 7.44 mm1
c = 11.3201 (13) ÅT = 150 K
β = 96.026 (7)°Stick, brown
V = 1254.9 (3) Å30.24 × 0.03 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
CCD rotation images, thin slices scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 88
Tmin = 0.781, Tmax = 1.000k = 1818
7061 measured reflectionsl = 1313
2222 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.034H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + 1.5935P]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C6H11N2O+·I3V = 1254.9 (3) Å3
Mr = 507.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1647 (8) ŵ = 7.44 mm1
b = 15.5586 (19) ÅT = 150 K
c = 11.3201 (13) Å0.24 × 0.03 × 0.02 mm
β = 96.026 (7)°
Data collection top
Bruker APEXII
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2104 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 1.000Rint = 0.022
7061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.034H-atom parameters constrained
S = 1.15Δρmax = 0.45 e Å3
2222 reflectionsΔρmin = 0.47 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.23583 (2)0.148350 (12)0.326494 (15)0.01269 (6)
I10.19816 (3)0.006510 (12)0.171029 (17)0.01684 (6)
I30.25836 (3)0.297933 (14)0.474053 (18)0.02126 (6)
N20.7383 (3)0.17050 (16)0.3419 (2)0.0144 (5)
O10.8099 (3)0.15052 (14)0.09130 (18)0.0177 (5)
H10.91190.12860.08330.027*
N10.7438 (3)0.03209 (16)0.3568 (2)0.0141 (5)
C20.7275 (4)0.09763 (19)0.2795 (3)0.0132 (6)
C50.7344 (4)0.0598 (2)0.3266 (3)0.0209 (7)
H5A0.610.07380.2920.031*
H5B0.76430.09330.39720.031*
H5C0.82270.07230.27070.031*
C60.7239 (4)0.2584 (2)0.2943 (3)0.0196 (7)
H6A0.84210.27510.26860.029*
H6B0.69180.29710.35510.029*
H6C0.62850.26050.22820.029*
C30.7663 (4)0.0651 (2)0.4703 (3)0.0195 (7)
H30.78110.03360.54050.023*
C40.7630 (4)0.1512 (2)0.4610 (3)0.0171 (7)
H40.77510.19040.52340.021*
C10.6972 (4)0.0911 (2)0.1468 (3)0.0160 (6)
H1A0.72690.03320.12280.019*
H1B0.5660.10180.12040.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.01199 (10)0.01601 (11)0.01018 (10)0.00047 (7)0.00176 (7)0.00073 (7)
I10.02125 (11)0.01258 (11)0.01685 (11)0.00009 (8)0.00283 (8)0.00207 (8)
I30.02175 (11)0.02351 (12)0.01884 (12)0.00312 (8)0.00360 (8)0.00943 (8)
N20.0138 (12)0.0121 (13)0.0176 (14)0.0021 (10)0.0039 (10)0.0011 (11)
O10.0196 (10)0.0200 (12)0.0144 (11)0.0001 (9)0.0058 (8)0.0043 (9)
N10.0139 (12)0.0159 (13)0.0122 (12)0.0006 (10)0.0008 (9)0.0034 (11)
C20.0075 (13)0.0149 (15)0.0172 (15)0.0021 (11)0.0017 (11)0.0017 (12)
C50.0276 (17)0.0114 (16)0.0234 (17)0.0011 (13)0.0022 (13)0.0032 (13)
C60.0235 (16)0.0124 (16)0.0239 (17)0.0016 (13)0.0075 (13)0.0029 (13)
C30.0193 (15)0.0275 (19)0.0117 (15)0.0002 (13)0.0021 (12)0.0025 (13)
C40.0182 (15)0.0213 (17)0.0127 (15)0.0006 (13)0.0054 (12)0.0039 (13)
C10.0158 (14)0.0176 (16)0.0141 (15)0.0007 (12)0.0004 (11)0.0042 (13)
Geometric parameters (Å, º) top
I2—I32.8594 (4)C5—H5A0.96
I2—I12.9792 (4)C5—H5B0.96
N2—C21.334 (4)C5—H5C0.96
N2—C41.374 (4)C6—H6A0.96
N2—C61.470 (4)C6—H6B0.96
O1—C11.417 (3)C6—H6C0.96
O1—H10.82C3—C41.344 (5)
N1—C21.341 (4)C3—H30.93
N1—C31.377 (4)C4—H40.93
N1—C51.470 (4)C1—H1A0.97
C2—C11.499 (4)C1—H1B0.97
I3—I2—I1178.026 (8)N2—C6—H6B109.5
C2—N2—C4109.2 (3)H6A—C6—H6B109.5
C2—N2—C6126.8 (3)N2—C6—H6C109.5
C4—N2—C6124.0 (3)H6A—C6—H6C109.5
C1—O1—H1109.5H6B—C6—H6C109.5
C2—N1—C3108.6 (3)C4—C3—N1107.4 (3)
C2—N1—C5126.1 (3)C4—C3—H3126.3
C3—N1—C5125.3 (3)N1—C3—H3126.3
N2—C2—N1107.7 (3)C3—C4—N2107.1 (3)
N2—C2—C1125.7 (3)C3—C4—H4126.4
N1—C2—C1126.6 (3)N2—C4—H4126.4
N1—C5—H5A109.5O1—C1—C2111.7 (2)
N1—C5—H5B109.5O1—C1—H1A109.3
H5A—C5—H5B109.5C2—C1—H1A109.3
N1—C5—H5C109.5O1—C1—H1B109.3
H5A—C5—H5C109.5C2—C1—H1B109.3
H5B—C5—H5C109.5H1A—C1—H1B107.9
N2—C6—H6A109.5
C4—N2—C2—N10.4 (3)C2—N1—C3—C40.2 (3)
C6—N2—C2—N1178.8 (2)C5—N1—C3—C4178.4 (3)
C4—N2—C2—C1178.8 (3)N1—C3—C4—N20.1 (3)
C6—N2—C2—C10.4 (4)C2—N2—C4—C30.3 (3)
C3—N1—C2—N20.4 (3)C6—N2—C4—C3179.0 (3)
C5—N1—C2—N2178.2 (2)N2—C2—C1—O144.3 (4)
C3—N1—C2—C1178.7 (3)N1—C2—C1—O1137.6 (3)
C5—N1—C2—C10.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.823.033.741 (2)146
C1—H1B···I3ii0.973.053.924 (3)151
C4—H4···O1iii0.932.603.421 (4)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.82003.03003.741 (2)146.00
C1—H1B···I3ii0.97003.05003.924 (3)151.00
C4—H4···O1iii0.93002.60003.421 (4)148.00
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to all personal of the research squad "Synthèse de molécules à objectif thérapeutique" of PHYSYNOR Laboratory, Université Constantine1, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDominianni, S. J., Yen, I. & Terence, T. (1989). J. Med. Chem. 32, 2301–2306.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNasser, A. H. (2000). Molecules, 5, 826–834.  Google Scholar
First citationOzkay, Y., Isikdag, I., Incesu, Z. & Akalin, G. (2010). Eur. J. Med. Chem. 45, 3320–3328.  Web of Science PubMed Google Scholar
First citationPandey, S. K., Singh, A. & Nizamuddin, A. S. (2009). Eur. J. Med. Chem. 44, 1188–1197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUcucu, U., Karaburun, N. G. & Isikdag, I. (2001). Il Farmaco, 56, 285–290.  PubMed CAS Google Scholar
First citationZama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1340-o1341
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds