organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(6-Chloro-2-meth­­oxy­quinolin-3-yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one acetone monosolvate

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 July 2013; accepted 22 July 2013; online 27 July 2013)

In the title solvate, C29H21ClN2O2·C3H6O, a prop-2-en-1-one bridge links two quinolinyl residues; the latter are almost perpendicular [dihedral angle = 78.27 (6)°]. The dihedral angle between the quinonyl ring system and its pendant phenyl group is 59.78 (8)°. A small twist in the bridging prop-2-en-1-one group is noted [O=C—C=C torsion angle = −10.6 (3)°]. In the crystal, a three-dimensional architecture arises as a result of C—H⋯O and ππ stacking [centroid–centroid distances = 3.5504 (12)–3.6623 (12) Å].

Related literature

For background details and the biological applications of quinolinyl derivatives, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1274.]).

[Scheme 1]

Experimental

Crystal data
  • C29H21ClN2O2·C3H6O

  • Mr = 523.01

  • Monoclinic, P 21 /c

  • a = 17.1714 (3) Å

  • b = 10.7099 (2) Å

  • c = 14.5248 (2) Å

  • β = 100.021 (2)°

  • V = 2630.42 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.665, Tmax = 1.000

  • 11367 measured reflections

  • 5408 independent reflections

  • 4574 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.167

  • S = 1.03

  • 5408 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.95 2.47 3.319 (3) 149
C30—H30A⋯O1i 0.98 2.52 3.373 (4) 146
C28—H28⋯O3 0.95 2.57 3.467 (3) 158
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The the title compound, (I), was investigated in connection with on-going studies of quinolinyl chalcones (Prasath et al., 2013a), motivated by their potential anti-bacterial, anti-fungal, anti-malarial and anti-cancer activity (Joshi et al., 2011).

The molecular structure of the quinolinyl derivative, (I), Fig. 1, comprises two quinolinyl residues connected by the ends of a prop-2-en-1-one bridge, in an almost perpendicular relationship; the dihedral angle between the quinolinyl residues is 78.27 (6)°. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 59.78 (8)°. The conformation about the ethylene bond [C18C19 = 1.336 (3) Å] is E. A small twist in the bridging prop-2-en-1-one group is manifested in the O1—C17—C18—C19 torsion angle of -10.6 (3)°. An distinct conformation was reported recently for a related structure, namely (2E)-3-(6-chloro-2-methoxyquinolin-3-yl)-1-(2,4-dimethylquinolin-3 - y)prop-2-en-1-one (Prasath et al., 2013b) where the nitrogen atoms are approximately syn as opposed to approximately anti in (I).

In the crystal packing, the quinolinyl and acetone molecules are connected by C—H···O interactions, Table 1. Additional C—H···O contacts and a number of ππ interactions, involving pyridyl, a quinolinyl-C6 ring and the phenyl group, connect molecules into a three-dimensional architecture [centroid···centroid distances = 3.5504 (12), 3.5747 (12) and 3.6623 (12) Å], Fig. 2.

Related literature top

For background details and the biological applications of quinolinyl derivatives, see: Joshi et al. (2011); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M) and 2,6-dichloroquinoline-3-carbaldehyde (230 mg, 0.001 M) in methanol (20 ml) containing potassium hydroxide (0.2 g) was stirred at room temperature for 12 h. The reaction mixture was then neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate - hexane (3:1) mixture to afford compound. Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded blocks in 62% yield; M.pt: 366–368 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.47 and 0.46 e Å-3, respectively, were located 0.85 Å and 0.68 Å from the O2 and Cl1 atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View in projection down the c axis of the unit-cell contents of (I). The ππ and C—H···O interactions are shown as purple and orange dashed lines, respectively.
(2E)-3-(6-Chloro-2-methoxyquinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one acetone monosolvate top
Crystal data top
C29H21ClN2O2·C3H6OF(000) = 1096
Mr = 523.01Dx = 1.321 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4229 reflections
a = 17.1714 (3) Åθ = 2.6–76.5°
b = 10.7099 (2) ŵ = 1.58 mm1
c = 14.5248 (2) ÅT = 100 K
β = 100.021 (2)°Prism, pale-yellow
V = 2630.42 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5408 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4574 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 2.6°
ω scanh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 913
Tmin = 0.665, Tmax = 1.000l = 1811
11367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0953P)2 + 1.726P]
where P = (Fo2 + 2Fc2)/3
5408 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C29H21ClN2O2·C3H6OV = 2630.42 (8) Å3
Mr = 523.01Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.1714 (3) ŵ = 1.58 mm1
b = 10.7099 (2) ÅT = 100 K
c = 14.5248 (2) Å0.30 × 0.25 × 0.20 mm
β = 100.021 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5408 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
4574 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 1.000Rint = 0.032
11367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 1.47 e Å3
5408 reflectionsΔρmin = 0.46 e Å3
346 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62921 (3)0.12909 (5)0.32316 (4)0.03232 (17)
O10.22537 (9)0.34889 (15)0.74016 (10)0.0264 (3)
O20.47465 (9)0.10414 (17)0.80988 (11)0.0324 (4)
N10.12879 (10)0.59002 (17)0.50819 (13)0.0258 (4)
N20.55712 (10)0.06750 (17)0.70334 (12)0.0245 (4)
C10.08058 (12)0.5228 (2)0.44105 (14)0.0235 (4)
C20.03155 (13)0.5910 (2)0.36971 (15)0.0295 (5)
H20.03320.67970.37020.035*
C30.01806 (14)0.5301 (2)0.30037 (15)0.0338 (5)
H30.05010.57670.25250.041*
C40.02195 (13)0.3989 (2)0.29950 (15)0.0314 (5)
H40.05670.35750.25100.038*
C50.02415 (12)0.3303 (2)0.36832 (14)0.0264 (4)
H50.02040.24180.36770.032*
C60.07738 (11)0.3911 (2)0.44037 (13)0.0216 (4)
C70.12817 (11)0.32582 (19)0.51344 (13)0.0201 (4)
C80.17507 (11)0.39553 (19)0.58093 (13)0.0210 (4)
C90.17372 (12)0.5289 (2)0.57624 (14)0.0241 (4)
C100.22557 (14)0.6057 (2)0.64860 (17)0.0332 (5)
H10A0.22290.69360.62930.050*
H10B0.28030.57630.65510.050*
H10C0.20740.59760.70870.050*
C110.12677 (11)0.18704 (19)0.51703 (13)0.0211 (4)
C120.14436 (12)0.1150 (2)0.44272 (14)0.0242 (4)
H120.15970.15500.39030.029*
C130.13946 (13)0.0141 (2)0.44520 (16)0.0293 (5)
H130.15170.06190.39460.035*
C140.11663 (13)0.0742 (2)0.52142 (17)0.0317 (5)
H140.11250.16270.52250.038*
C150.10015 (13)0.0036 (2)0.59537 (16)0.0305 (5)
H150.08520.04400.64790.037*
C160.10515 (12)0.1257 (2)0.59373 (14)0.0250 (4)
H160.09380.17290.64520.030*
C170.23238 (11)0.33553 (18)0.65850 (13)0.0208 (4)
C180.29959 (11)0.27093 (19)0.62832 (13)0.0217 (4)
H180.29650.25180.56390.026*
C190.36459 (11)0.23825 (19)0.68814 (14)0.0223 (4)
H190.36490.24910.75310.027*
C200.43552 (11)0.18660 (19)0.65883 (13)0.0218 (4)
C210.49258 (12)0.11715 (19)0.72277 (14)0.0231 (4)
C220.57217 (11)0.08240 (19)0.61423 (14)0.0221 (4)
C230.64121 (12)0.0285 (2)0.59056 (15)0.0266 (4)
H230.67620.01750.63600.032*
C240.65784 (12)0.0425 (2)0.50195 (16)0.0273 (4)
H240.70410.00590.48610.033*
C250.60641 (12)0.1109 (2)0.43496 (15)0.0244 (4)
C260.53820 (12)0.16319 (19)0.45448 (14)0.0229 (4)
H260.50350.20750.40760.027*
C270.52045 (11)0.15016 (18)0.54522 (14)0.0204 (4)
C280.45154 (11)0.20257 (19)0.57037 (14)0.0215 (4)
H280.41610.24910.52570.026*
C290.52882 (18)0.0347 (3)0.87429 (17)0.0424 (6)
H29A0.51010.03050.93420.064*
H29B0.58070.07530.88320.064*
H29C0.53320.05000.85010.064*
O30.33767 (14)0.4389 (2)0.45197 (14)0.0573 (6)
C300.23862 (15)0.4489 (3)0.31684 (17)0.0373 (6)
H30A0.23710.35790.32350.056*
H30B0.25510.47000.25740.056*
H30C0.18590.48350.31780.056*
C310.29599 (14)0.5025 (2)0.39548 (15)0.0331 (5)
C320.29821 (18)0.6428 (3)0.40126 (19)0.0450 (6)
H32A0.34670.66920.44270.068*
H32B0.25210.67280.42620.068*
H32C0.29730.67770.33870.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0329 (3)0.0336 (3)0.0345 (3)0.0039 (2)0.0173 (2)0.0023 (2)
O10.0261 (7)0.0297 (8)0.0242 (7)0.0027 (6)0.0063 (6)0.0013 (6)
O20.0278 (8)0.0422 (10)0.0265 (7)0.0063 (7)0.0026 (6)0.0116 (7)
N10.0244 (9)0.0217 (9)0.0326 (9)0.0024 (7)0.0087 (7)0.0035 (7)
N20.0223 (8)0.0263 (9)0.0231 (8)0.0029 (7)0.0008 (6)0.0031 (7)
C10.0213 (9)0.0268 (11)0.0245 (9)0.0063 (8)0.0098 (8)0.0045 (8)
C20.0300 (11)0.0297 (11)0.0310 (11)0.0103 (9)0.0111 (9)0.0089 (9)
C30.0296 (11)0.0444 (14)0.0279 (11)0.0145 (10)0.0063 (9)0.0108 (10)
C40.0242 (10)0.0431 (14)0.0261 (10)0.0082 (9)0.0015 (8)0.0005 (9)
C50.0235 (10)0.0299 (11)0.0261 (10)0.0042 (8)0.0054 (8)0.0003 (8)
C60.0179 (9)0.0264 (10)0.0219 (9)0.0040 (7)0.0077 (7)0.0031 (8)
C70.0148 (8)0.0252 (10)0.0216 (9)0.0019 (7)0.0064 (7)0.0016 (7)
C80.0174 (9)0.0247 (10)0.0223 (9)0.0019 (7)0.0076 (7)0.0015 (7)
C90.0201 (9)0.0241 (10)0.0294 (10)0.0019 (8)0.0077 (8)0.0000 (8)
C100.0317 (11)0.0225 (11)0.0431 (13)0.0013 (9)0.0003 (10)0.0022 (9)
C110.0166 (8)0.0224 (10)0.0236 (9)0.0024 (7)0.0014 (7)0.0009 (7)
C120.0195 (9)0.0292 (11)0.0229 (9)0.0028 (8)0.0008 (7)0.0024 (8)
C130.0229 (10)0.0287 (11)0.0330 (11)0.0050 (8)0.0046 (8)0.0090 (9)
C140.0270 (10)0.0205 (10)0.0433 (12)0.0009 (8)0.0062 (9)0.0008 (9)
C150.0251 (10)0.0287 (11)0.0358 (11)0.0027 (8)0.0005 (9)0.0065 (9)
C160.0218 (9)0.0275 (11)0.0250 (10)0.0002 (8)0.0025 (7)0.0014 (8)
C170.0184 (9)0.0201 (9)0.0238 (9)0.0013 (7)0.0035 (7)0.0010 (7)
C180.0199 (9)0.0231 (10)0.0227 (9)0.0012 (7)0.0052 (7)0.0035 (7)
C190.0209 (9)0.0242 (10)0.0217 (9)0.0002 (7)0.0034 (7)0.0025 (7)
C200.0178 (9)0.0225 (10)0.0242 (9)0.0005 (7)0.0011 (7)0.0042 (8)
C210.0247 (10)0.0232 (10)0.0202 (9)0.0008 (8)0.0009 (7)0.0032 (7)
C220.0185 (9)0.0192 (9)0.0276 (10)0.0018 (7)0.0007 (7)0.0035 (8)
C230.0177 (9)0.0264 (10)0.0341 (11)0.0010 (8)0.0001 (8)0.0045 (9)
C240.0174 (9)0.0273 (11)0.0371 (11)0.0012 (8)0.0047 (8)0.0076 (9)
C250.0218 (9)0.0240 (10)0.0294 (10)0.0055 (8)0.0097 (8)0.0040 (8)
C260.0219 (9)0.0199 (10)0.0268 (10)0.0022 (7)0.0039 (7)0.0002 (8)
C270.0169 (9)0.0179 (9)0.0261 (9)0.0012 (7)0.0028 (7)0.0021 (7)
C280.0175 (9)0.0208 (9)0.0255 (9)0.0006 (7)0.0019 (7)0.0015 (7)
C290.0550 (16)0.0437 (15)0.0290 (12)0.0158 (12)0.0087 (11)0.0058 (10)
O30.0579 (13)0.0665 (15)0.0453 (11)0.0049 (11)0.0028 (10)0.0181 (10)
C300.0363 (12)0.0427 (14)0.0359 (12)0.0130 (10)0.0146 (10)0.0117 (10)
C310.0324 (12)0.0415 (14)0.0269 (10)0.0060 (10)0.0098 (9)0.0035 (9)
C320.0560 (17)0.0404 (15)0.0407 (13)0.0156 (12)0.0142 (12)0.0066 (11)
Geometric parameters (Å, º) top
Cl1—C251.746 (2)C14—H140.9500
O1—C171.221 (2)C15—C161.388 (3)
O2—C211.360 (3)C15—H150.9500
O2—C291.411 (3)C16—H160.9500
N1—C91.317 (3)C17—C181.476 (3)
N1—C11.369 (3)C18—C191.336 (3)
N2—C211.304 (3)C18—H180.9500
N2—C221.373 (3)C19—C201.467 (3)
C1—C61.411 (3)C19—H190.9500
C1—C21.419 (3)C20—C281.371 (3)
C2—C31.366 (3)C20—C211.435 (3)
C2—H20.9500C22—C231.414 (3)
C3—C41.407 (4)C22—C271.418 (3)
C3—H30.9500C23—C241.374 (3)
C4—C51.375 (3)C23—H230.9500
C4—H40.9500C24—C251.401 (3)
C5—C61.422 (3)C24—H240.9500
C5—H50.9500C25—C261.372 (3)
C6—C71.433 (3)C26—C271.410 (3)
C7—C81.375 (3)C26—H260.9500
C7—C111.488 (3)C27—C281.414 (3)
C8—C91.431 (3)C28—H280.9500
C8—C171.505 (3)C29—H29A0.9800
C9—C101.499 (3)C29—H29B0.9800
C10—H10A0.9800C29—H29C0.9800
C10—H10B0.9800O3—C311.202 (3)
C10—H10C0.9800C30—C311.488 (3)
C11—C161.398 (3)C30—H30A0.9800
C11—C121.401 (3)C30—H30B0.9800
C12—C131.386 (3)C30—H30C0.9800
C12—H120.9500C31—C321.505 (4)
C13—C141.395 (3)C32—H32A0.9800
C13—H130.9500C32—H32B0.9800
C14—C151.383 (3)C32—H32C0.9800
C21—O2—C29116.16 (17)C18—C17—C8114.89 (16)
C9—N1—C1118.42 (19)C19—C18—C17122.50 (18)
C21—N2—C22117.61 (17)C19—C18—H18118.7
N1—C1—C6123.29 (18)C17—C18—H18118.7
N1—C1—C2117.2 (2)C18—C19—C20123.50 (18)
C6—C1—C2119.5 (2)C18—C19—H19118.3
C3—C2—C1120.5 (2)C20—C19—H19118.3
C3—C2—H2119.8C28—C20—C21116.46 (18)
C1—C2—H2119.8C28—C20—C19122.50 (18)
C2—C3—C4120.4 (2)C21—C20—C19121.03 (18)
C2—C3—H3119.8N2—C21—O2119.87 (18)
C4—C3—H3119.8N2—C21—C20125.56 (18)
C5—C4—C3120.5 (2)O2—C21—C20114.56 (18)
C5—C4—H4119.8N2—C22—C23119.04 (18)
C3—C4—H4119.8N2—C22—C27121.91 (18)
C4—C5—C6120.3 (2)C23—C22—C27119.06 (19)
C4—C5—H5119.8C24—C23—C22120.2 (2)
C6—C5—H5119.8C24—C23—H23119.9
C1—C6—C5118.83 (18)C22—C23—H23119.9
C1—C6—C7117.66 (18)C23—C24—C25119.92 (19)
C5—C6—C7123.51 (19)C23—C24—H24120.0
C8—C7—C6117.93 (19)C25—C24—H24120.0
C8—C7—C11121.90 (17)C26—C25—C24121.83 (19)
C6—C7—C11120.12 (17)C26—C25—Cl1118.97 (17)
C7—C8—C9120.37 (18)C24—C25—Cl1119.20 (16)
C7—C8—C17121.82 (18)C25—C26—C27118.94 (19)
C9—C8—C17117.72 (18)C25—C26—H26120.5
N1—C9—C8122.29 (19)C27—C26—H26120.5
N1—C9—C10116.9 (2)C26—C27—C28121.92 (18)
C8—C9—C10120.79 (19)C26—C27—C22120.04 (18)
C9—C10—H10A109.5C28—C27—C22118.04 (18)
C9—C10—H10B109.5C20—C28—C27120.41 (18)
H10A—C10—H10B109.5C20—C28—H28119.8
C9—C10—H10C109.5C27—C28—H28119.8
H10A—C10—H10C109.5O2—C29—H29A109.5
H10B—C10—H10C109.5O2—C29—H29B109.5
C16—C11—C12118.5 (2)H29A—C29—H29B109.5
C16—C11—C7120.37 (18)O2—C29—H29C109.5
C12—C11—C7121.04 (18)H29A—C29—H29C109.5
C13—C12—C11120.4 (2)H29B—C29—H29C109.5
C13—C12—H12119.8C31—C30—H30A109.5
C11—C12—H12119.8C31—C30—H30B109.5
C12—C13—C14120.5 (2)H30A—C30—H30B109.5
C12—C13—H13119.7C31—C30—H30C109.5
C14—C13—H13119.7H30A—C30—H30C109.5
C15—C14—C13119.2 (2)H30B—C30—H30C109.5
C15—C14—H14120.4O3—C31—C30122.8 (3)
C13—C14—H14120.4O3—C31—C32121.4 (2)
C14—C15—C16120.7 (2)C30—C31—C32115.8 (2)
C14—C15—H15119.6C31—C32—H32A109.5
C16—C15—H15119.6C31—C32—H32B109.5
C15—C16—C11120.6 (2)H32A—C32—H32B109.5
C15—C16—H16119.7C31—C32—H32C109.5
C11—C16—H16119.7H32A—C32—H32C109.5
O1—C17—C18123.90 (18)H32B—C32—H32C109.5
O1—C17—C8120.99 (18)
C9—N1—C1—C60.9 (3)C7—C11—C16—C15176.94 (18)
C9—N1—C1—C2178.66 (18)C7—C8—C17—O1117.8 (2)
N1—C1—C2—C3179.97 (19)C9—C8—C17—O165.6 (3)
C6—C1—C2—C30.5 (3)C7—C8—C17—C1867.3 (2)
C1—C2—C3—C40.8 (3)C9—C8—C17—C18109.3 (2)
C2—C3—C4—C50.1 (3)O1—C17—C18—C1910.6 (3)
C3—C4—C5—C61.1 (3)C8—C17—C18—C19164.11 (19)
N1—C1—C6—C5178.86 (18)C17—C18—C19—C20173.03 (19)
C2—C1—C6—C50.7 (3)C18—C19—C20—C2820.8 (3)
N1—C1—C6—C70.8 (3)C18—C19—C20—C21159.9 (2)
C2—C1—C6—C7179.69 (18)C22—N2—C21—O2179.46 (18)
C4—C5—C6—C11.5 (3)C22—N2—C21—C200.1 (3)
C4—C5—C6—C7178.94 (19)C29—O2—C21—N20.5 (3)
C1—C6—C7—C81.8 (3)C29—O2—C21—C20179.0 (2)
C5—C6—C7—C8177.81 (18)C28—C20—C21—N20.8 (3)
C1—C6—C7—C11179.30 (17)C19—C20—C21—N2179.8 (2)
C5—C6—C7—C110.3 (3)C28—C20—C21—O2179.62 (18)
C6—C7—C8—C91.3 (3)C19—C20—C21—O20.3 (3)
C11—C7—C8—C9178.73 (17)C21—N2—C22—C23179.30 (19)
C6—C7—C8—C17177.82 (17)C21—N2—C22—C270.6 (3)
C11—C7—C8—C174.7 (3)N2—C22—C23—C24179.71 (19)
C1—N1—C9—C81.5 (3)C27—C22—C23—C240.3 (3)
C1—N1—C9—C10179.85 (19)C22—C23—C24—C250.3 (3)
C7—C8—C9—N10.4 (3)C23—C24—C25—C261.3 (3)
C17—C8—C9—N1176.27 (18)C23—C24—C25—Cl1179.27 (16)
C7—C8—C9—C10179.01 (19)C24—C25—C26—C271.6 (3)
C17—C8—C9—C102.3 (3)Cl1—C25—C26—C27179.00 (15)
C8—C7—C11—C1659.1 (3)C25—C26—C27—C28179.44 (18)
C6—C7—C11—C16118.3 (2)C25—C26—C27—C220.9 (3)
C8—C7—C11—C12123.1 (2)N2—C22—C27—C26179.99 (18)
C6—C7—C11—C1259.5 (3)C23—C22—C27—C260.1 (3)
C16—C11—C12—C130.7 (3)N2—C22—C27—C280.3 (3)
C7—C11—C12—C13177.16 (18)C23—C22—C27—C28179.64 (18)
C11—C12—C13—C140.3 (3)C21—C20—C28—C271.1 (3)
C12—C13—C14—C151.0 (3)C19—C20—C28—C27179.53 (18)
C13—C14—C15—C160.8 (3)C26—C27—C28—C20179.06 (19)
C14—C15—C16—C110.2 (3)C22—C27—C28—C200.6 (3)
C12—C11—C16—C150.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.473.319 (3)149
C30—H30A···O1i0.982.523.373 (4)146
C28—H28···O30.952.573.467 (3)158
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.952.473.319 (3)149
C30—H30A···O1i0.982.523.373 (4)146
C28—H28···O30.952.573.467 (3)158
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1274.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds