organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Chloro-8-methyl­quinolin-3-yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 July 2013; accepted 22 July 2013; online 27 July 2013)

In the title compound, C29H21ClN2O, there is a twist in the bridging prop-2-en-1-one group [C=C—C=O torsion angle = 22.7 (2)°]. The quinolinyl residues form a dihedral angle of 86.92 (4)°, indicating an almost perpendicular relationship. In the crystal, supra­molecular layers in the bc plane are stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.4947 (7) Å].

Related literature

For background details and the biological applications of quinolinyl chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C29H21ClN2O

  • Mr = 448.93

  • Monoclinic, P 21 /c

  • a = 10.9837 (2) Å

  • b = 21.0604 (3) Å

  • c = 9.3927 (1) Å

  • β = 90.009 (1)°

  • V = 2172.73 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.75 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.852, Tmax = 1.000

  • 8885 measured reflections

  • 4444 independent reflections

  • 3956 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.03

  • 4444 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6-C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.90 3.5847 (15) 130
C16—H16⋯Cg2ii 0.95 2.74 3.6060 (14) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nitrogen-containing heterocyclic analogues are found to be key intermediates in organic synthesis and exhibit a multitude of biological properties (Prasath & Bhavana, 2012). This has prompted research into the design and synthesis of a variety of nitrogen-containing chalcone derivatives, and their evaluation for anti-bacterial, anti-fungal, anti-malarial and anti-cancer potential (Prasath et al., 2013a; Joshi et al., 2011). It was in this connection that the title compound, (I), was investigated.

The molecular structure of (I), Fig. 1, comprises two quinolinyl residues connected by the ends of a prop-2-en-1-one bridge. The dihedral angle between the quinolinyl residues is 86.92 (4)°, indicating an almost perpendicular relationship. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 72.70 (5)°. The conformation about the ethylene bond [C18C19 = 1.3363 (18) Å] is E. A twist in the bridging prop-2-en-1-one group is manifested in the O1—C17—C18—C19 torsion angle of 22.7 (2)°. An similar open conformation was reported recently for a related structure, namely (2E)-3-(2-chloro-8-methylquinolin-3-yl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one (Prasath et al., 2013b).

In the crystal packing, ππ interactions between centrosymmetrically related N2-pyridyl rings [centroid···centroid distance = 3.4947 (7) Å and symmetry operation: -x, 1 - y, 1 - z] combine with phenyl-C—H···π interactions, Table 1, to stabilize supramolecular layers in the bc plane, Fig. 2. Layers inter-digitate along the a axis with no specific interactions between them, Fig. 3.

Related literature top

For background details and the biological applications of quinolinyl chalcones, see: Joshi et al. (2011); Prasath & Bhavana (2012); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M), 2-chloro-8-methylquinoline-3-carbaldehyde (200 mg, 0.001 M) and KOH (0.2 g) in methanol (20 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The deposited solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I); 81% yield, M.pt: 381–383 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. View of the supramolecular layer formed in the bc plane by ππ and C—H···π interactions shown as purple and orange dashed lines, respectively.
[Figure 3] Fig. 3. View in projection down the c axis of the unit-cell contents of (I). The ππ and C—H···π interactions are shown as purple and orange dashed lines, respectively.
(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C29H21ClN2OF(000) = 936
Mr = 448.93Dx = 1.372 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5025 reflections
a = 10.9837 (2) Åθ = 4.0–76.5°
b = 21.0604 (3) ŵ = 1.75 mm1
c = 9.3927 (1) ÅT = 100 K
β = 90.009 (1)°Prism, pale-yellow
V = 2172.73 (6) Å30.35 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4444 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3956 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.0°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 2617
Tmin = 0.852, Tmax = 1.000l = 119
8885 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.5734P]
where P = (Fo2 + 2Fc2)/3
4444 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C29H21ClN2OV = 2172.73 (6) Å3
Mr = 448.93Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.9837 (2) ŵ = 1.75 mm1
b = 21.0604 (3) ÅT = 100 K
c = 9.3927 (1) Å0.35 × 0.15 × 0.10 mm
β = 90.009 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4444 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3956 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1.000Rint = 0.020
8885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4444 reflectionsΔρmin = 0.35 e Å3
300 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12153 (3)0.498061 (14)0.15385 (3)0.02104 (10)
O10.07264 (9)0.72584 (5)0.24609 (12)0.0279 (2)
N10.25624 (10)0.88805 (5)0.38792 (11)0.0194 (2)
N20.15106 (9)0.42899 (5)0.37948 (11)0.0170 (2)
C10.37937 (12)0.88017 (6)0.37540 (13)0.0178 (3)
C20.45334 (13)0.93537 (6)0.37127 (14)0.0220 (3)
H20.41670.97620.37580.026*
C30.57705 (13)0.93017 (7)0.36081 (14)0.0236 (3)
H30.62570.96750.35840.028*
C40.63343 (12)0.87007 (7)0.35355 (14)0.0224 (3)
H40.71940.86710.34510.027*
C50.56435 (12)0.81582 (6)0.35870 (13)0.0201 (3)
H50.60300.77550.35500.024*
C60.43568 (12)0.81954 (6)0.36946 (13)0.0173 (2)
C70.35840 (11)0.76506 (6)0.36811 (13)0.0164 (2)
C80.23401 (12)0.77416 (6)0.36914 (13)0.0173 (2)
C90.18560 (12)0.83726 (6)0.38431 (13)0.0181 (3)
C100.05163 (13)0.84859 (6)0.40364 (16)0.0253 (3)
H10A0.03870.89090.44440.038*
H10B0.01810.81640.46800.038*
H10C0.01070.84590.31120.038*
C110.41321 (11)0.70034 (6)0.36303 (13)0.0167 (2)
C120.47280 (12)0.67678 (6)0.48298 (14)0.0208 (3)
H120.48280.70300.56440.025*
C130.51759 (13)0.61511 (7)0.48404 (15)0.0234 (3)
H130.55670.59900.56670.028*
C140.50532 (13)0.57701 (6)0.36472 (15)0.0240 (3)
H140.53510.53470.36580.029*
C150.44938 (14)0.60088 (6)0.24349 (15)0.0246 (3)
H150.44280.57510.16080.030*
C160.40293 (12)0.66235 (6)0.24261 (14)0.0203 (3)
H160.36420.67840.15960.024*
C170.14745 (12)0.72006 (6)0.34199 (14)0.0197 (3)
C180.16008 (12)0.66060 (6)0.42449 (14)0.0194 (3)
H180.19530.66110.51690.023*
C190.12123 (12)0.60618 (6)0.36714 (14)0.0193 (3)
H190.07890.60910.27920.023*
C200.13765 (11)0.54270 (6)0.42670 (14)0.0173 (2)
C210.13793 (11)0.48749 (6)0.33840 (13)0.0168 (2)
C220.16629 (11)0.41804 (6)0.52263 (13)0.0166 (2)
C230.17783 (11)0.35408 (6)0.56986 (14)0.0189 (3)
C240.19252 (12)0.34365 (6)0.71322 (15)0.0226 (3)
H240.20060.30120.74640.027*
C250.19608 (13)0.39384 (7)0.81299 (14)0.0237 (3)
H250.20650.38470.91130.028*
C260.18456 (12)0.45557 (6)0.76904 (14)0.0207 (3)
H260.18670.48920.83640.025*
C270.16941 (11)0.46883 (6)0.62186 (14)0.0177 (3)
C280.15474 (11)0.53112 (6)0.56974 (14)0.0182 (3)
H280.15670.56580.63440.022*
C290.17284 (13)0.30021 (6)0.46518 (15)0.0241 (3)
H29A0.18490.25990.51550.036*
H29B0.23710.30560.39380.036*
H29C0.09330.29990.41790.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02611 (17)0.01835 (16)0.01868 (16)0.00250 (11)0.00140 (12)0.00135 (11)
O10.0274 (5)0.0181 (5)0.0383 (6)0.0019 (4)0.0141 (4)0.0028 (4)
N10.0228 (6)0.0147 (5)0.0207 (5)0.0007 (4)0.0013 (4)0.0008 (4)
N20.0157 (5)0.0145 (5)0.0209 (5)0.0003 (4)0.0007 (4)0.0001 (4)
C10.0224 (6)0.0160 (6)0.0150 (6)0.0014 (5)0.0009 (4)0.0003 (4)
C20.0278 (7)0.0157 (6)0.0224 (6)0.0033 (5)0.0001 (5)0.0005 (5)
C30.0273 (7)0.0196 (6)0.0238 (6)0.0085 (5)0.0010 (5)0.0006 (5)
C40.0196 (6)0.0264 (7)0.0212 (6)0.0041 (5)0.0008 (5)0.0004 (5)
C50.0221 (6)0.0190 (6)0.0190 (6)0.0008 (5)0.0014 (5)0.0008 (5)
C60.0212 (6)0.0159 (6)0.0147 (6)0.0016 (5)0.0014 (4)0.0001 (4)
C70.0217 (6)0.0137 (6)0.0138 (5)0.0005 (5)0.0015 (4)0.0009 (4)
C80.0207 (6)0.0131 (6)0.0181 (6)0.0013 (5)0.0020 (5)0.0015 (4)
C90.0203 (6)0.0141 (6)0.0198 (6)0.0002 (5)0.0023 (5)0.0024 (5)
C100.0209 (7)0.0170 (6)0.0381 (8)0.0024 (5)0.0010 (6)0.0011 (6)
C110.0161 (6)0.0141 (6)0.0200 (6)0.0011 (5)0.0009 (4)0.0011 (5)
C120.0239 (6)0.0192 (6)0.0192 (6)0.0013 (5)0.0025 (5)0.0004 (5)
C130.0239 (7)0.0219 (7)0.0245 (7)0.0034 (5)0.0024 (5)0.0049 (5)
C140.0260 (7)0.0164 (6)0.0296 (7)0.0056 (5)0.0025 (5)0.0017 (5)
C150.0322 (7)0.0179 (6)0.0238 (7)0.0032 (5)0.0015 (5)0.0033 (5)
C160.0242 (6)0.0185 (6)0.0184 (6)0.0022 (5)0.0006 (5)0.0008 (5)
C170.0187 (6)0.0138 (6)0.0266 (7)0.0001 (5)0.0022 (5)0.0004 (5)
C180.0178 (6)0.0160 (6)0.0245 (6)0.0013 (5)0.0017 (5)0.0018 (5)
C190.0176 (6)0.0150 (6)0.0253 (6)0.0003 (5)0.0012 (5)0.0013 (5)
C200.0134 (5)0.0138 (6)0.0246 (6)0.0011 (4)0.0008 (4)0.0005 (5)
C210.0152 (6)0.0163 (6)0.0189 (6)0.0001 (5)0.0006 (4)0.0007 (5)
C220.0130 (5)0.0158 (6)0.0209 (6)0.0002 (4)0.0003 (4)0.0008 (5)
C230.0159 (6)0.0153 (6)0.0255 (6)0.0002 (5)0.0002 (5)0.0016 (5)
C240.0206 (6)0.0193 (6)0.0279 (7)0.0003 (5)0.0012 (5)0.0061 (5)
C250.0229 (7)0.0276 (7)0.0205 (6)0.0009 (5)0.0024 (5)0.0047 (5)
C260.0194 (6)0.0221 (6)0.0206 (6)0.0013 (5)0.0010 (5)0.0015 (5)
C270.0137 (6)0.0168 (6)0.0225 (6)0.0011 (5)0.0005 (4)0.0002 (5)
C280.0158 (6)0.0154 (6)0.0234 (6)0.0010 (5)0.0004 (5)0.0032 (5)
C290.0288 (7)0.0140 (6)0.0293 (7)0.0009 (5)0.0017 (5)0.0007 (5)
Geometric parameters (Å, º) top
Cl1—C211.7568 (13)C13—C141.385 (2)
O1—C171.2252 (16)C13—H130.9500
N1—C91.3219 (16)C14—C151.3879 (19)
N1—C11.3677 (17)C14—H140.9500
N2—C211.2991 (16)C15—C161.3916 (18)
N2—C221.3744 (16)C15—H150.9500
C1—C21.4188 (18)C16—H160.9500
C1—C61.4198 (18)C17—C181.4792 (17)
C2—C31.367 (2)C18—C191.3363 (18)
C2—H20.9500C18—H180.9500
C3—C41.411 (2)C19—C201.4605 (17)
C3—H30.9500C19—H190.9500
C4—C51.3723 (18)C20—C281.3783 (18)
C4—H40.9500C20—C211.4282 (17)
C5—C61.4191 (18)C22—C271.4193 (17)
C5—H50.9500C22—C231.4238 (17)
C6—C71.4273 (17)C23—C241.3738 (19)
C7—C81.3797 (18)C23—C291.5023 (18)
C7—C111.4909 (17)C24—C251.413 (2)
C8—C91.4384 (17)C24—H240.9500
C8—C171.5057 (17)C25—C261.3699 (19)
C9—C101.5018 (18)C25—H250.9500
C10—H10A0.9800C26—C271.4201 (18)
C10—H10B0.9800C26—H260.9500
C10—H10C0.9800C27—C281.4095 (18)
C11—C161.3900 (18)C28—H280.9500
C11—C121.3942 (18)C29—H29A0.9800
C12—C131.3887 (18)C29—H29B0.9800
C12—H120.9500C29—H29C0.9800
C9—N1—C1118.69 (11)C14—C15—H15119.9
C21—N2—C22117.60 (11)C16—C15—H15119.9
N1—C1—C2117.98 (12)C11—C16—C15120.05 (12)
N1—C1—C6122.91 (12)C11—C16—H16120.0
C2—C1—C6119.10 (12)C15—C16—H16120.0
C3—C2—C1120.37 (13)O1—C17—C18122.14 (12)
C3—C2—H2119.8O1—C17—C8118.21 (12)
C1—C2—H2119.8C18—C17—C8119.52 (11)
C2—C3—C4120.78 (12)C19—C18—C17119.01 (12)
C2—C3—H3119.6C19—C18—H18120.5
C4—C3—H3119.6C17—C18—H18120.5
C5—C4—C3120.17 (13)C18—C19—C20126.25 (12)
C5—C4—H4119.9C18—C19—H19116.9
C3—C4—H4119.9C20—C19—H19116.9
C4—C5—C6120.48 (12)C28—C20—C21114.95 (11)
C4—C5—H5119.8C28—C20—C19123.51 (12)
C6—C5—H5119.8C21—C20—C19121.54 (12)
C5—C6—C1119.10 (12)N2—C21—C20126.86 (12)
C5—C6—C7123.18 (12)N2—C21—Cl1115.12 (10)
C1—C6—C7117.66 (11)C20—C21—Cl1118.01 (10)
C8—C7—C6118.49 (11)N2—C22—C27121.26 (11)
C8—C7—C11121.81 (11)N2—C22—C23118.32 (11)
C6—C7—C11119.68 (11)C27—C22—C23120.42 (12)
C7—C8—C9119.68 (11)C24—C23—C22117.85 (12)
C7—C8—C17121.26 (11)C24—C23—C29121.67 (12)
C9—C8—C17118.84 (11)C22—C23—C29120.48 (12)
N1—C9—C8122.21 (12)C23—C24—C25122.25 (12)
N1—C9—C10116.32 (11)C23—C24—H24118.9
C8—C9—C10121.41 (11)C25—C24—H24118.9
C9—C10—H10A109.5C26—C25—C24120.50 (12)
C9—C10—H10B109.5C26—C25—H25119.8
H10A—C10—H10B109.5C24—C25—H25119.8
C9—C10—H10C109.5C25—C26—C27119.40 (12)
H10A—C10—H10C109.5C25—C26—H26120.3
H10B—C10—H10C109.5C27—C26—H26120.3
C16—C11—C12119.40 (12)C28—C27—C22118.08 (12)
C16—C11—C7121.30 (11)C28—C27—C26122.31 (12)
C12—C11—C7119.28 (11)C22—C27—C26119.59 (12)
C13—C12—C11120.32 (12)C20—C28—C27121.25 (12)
C13—C12—H12119.8C20—C28—H28119.4
C11—C12—H12119.8C27—C28—H28119.4
C14—C13—C12120.10 (12)C23—C29—H29A109.5
C14—C13—H13119.9C23—C29—H29B109.5
C12—C13—H13119.9H29A—C29—H29B109.5
C13—C14—C15119.81 (12)C23—C29—H29C109.5
C13—C14—H14120.1H29A—C29—H29C109.5
C15—C14—H14120.1H29B—C29—H29C109.5
C14—C15—C16120.27 (13)
C9—N1—C1—C2176.45 (12)C7—C11—C16—C15176.59 (13)
C9—N1—C1—C64.90 (19)C14—C15—C16—C110.5 (2)
N1—C1—C2—C3179.11 (12)C7—C8—C17—O1124.57 (14)
C6—C1—C2—C30.41 (19)C9—C8—C17—O150.12 (18)
C1—C2—C3—C40.2 (2)C7—C8—C17—C1851.55 (18)
C2—C3—C4—C50.8 (2)C9—C8—C17—C18133.76 (13)
C3—C4—C5—C60.84 (19)O1—C17—C18—C1922.7 (2)
C4—C5—C6—C10.26 (19)C8—C17—C18—C19153.30 (13)
C4—C5—C6—C7176.77 (12)C17—C18—C19—C20173.33 (12)
N1—C1—C6—C5179.00 (11)C18—C19—C20—C2824.6 (2)
C2—C1—C6—C50.37 (18)C18—C19—C20—C21154.88 (13)
N1—C1—C6—C73.81 (18)C22—N2—C21—C200.07 (19)
C2—C1—C6—C7177.56 (11)C22—N2—C21—Cl1178.95 (9)
C5—C6—C7—C8175.52 (11)C28—C20—C21—N20.82 (19)
C1—C6—C7—C81.55 (17)C19—C20—C21—N2179.62 (12)
C5—C6—C7—C113.39 (18)C28—C20—C21—Cl1178.04 (9)
C1—C6—C7—C11179.54 (11)C19—C20—C21—Cl11.52 (16)
C6—C7—C8—C95.52 (18)C21—N2—C22—C270.93 (17)
C11—C7—C8—C9175.59 (11)C21—N2—C22—C23178.49 (11)
C6—C7—C8—C17169.12 (11)N2—C22—C23—C24179.74 (11)
C11—C7—C8—C179.77 (18)C27—C22—C23—C240.32 (18)
C1—N1—C9—C80.64 (19)N2—C22—C23—C290.26 (18)
C1—N1—C9—C10177.94 (11)C27—C22—C23—C29179.17 (11)
C7—C8—C9—N14.64 (19)C22—C23—C24—C250.16 (19)
C17—C8—C9—N1170.14 (12)C29—C23—C24—C25179.32 (12)
C7—C8—C9—C10172.53 (12)C23—C24—C25—C260.1 (2)
C17—C8—C9—C1012.70 (18)C24—C25—C26—C270.2 (2)
C8—C7—C11—C1668.30 (17)N2—C22—C27—C280.85 (18)
C6—C7—C11—C16110.58 (14)C23—C22—C27—C28178.55 (11)
C8—C7—C11—C12109.78 (14)N2—C22—C27—C26179.61 (11)
C6—C7—C11—C1271.35 (16)C23—C22—C27—C260.21 (18)
C16—C11—C12—C132.3 (2)C25—C26—C27—C28178.78 (12)
C7—C11—C12—C13175.77 (12)C25—C26—C27—C220.07 (19)
C11—C12—C13—C141.2 (2)C21—C20—C28—C270.85 (17)
C12—C13—C14—C150.7 (2)C19—C20—C28—C27179.60 (12)
C13—C14—C15—C161.6 (2)C22—C27—C28—C200.09 (18)
C12—C11—C16—C151.5 (2)C26—C27—C28—C20178.63 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6-C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.903.5847 (15)130
C16—H16···Cg2ii0.952.743.6060 (14)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6-C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.903.5847 (15)130
C16—H16···Cg2ii0.952.743.6060 (14)152
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525–530.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds