organic compounds
(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one
aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bCentre for Organic and Medicinal Chemistry, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, C29H21ClN2O, there is a twist in the bridging prop-2-en-1-one group [C=C—C=O torsion angle = 22.7 (2)°]. The quinolinyl residues form a dihedral angle of 86.92 (4)°, indicating an almost perpendicular relationship. In the crystal, supramolecular layers in the bc plane are stabilized by C—H⋯π and π–π interactions [centroid–centroid distance = 3.4947 (7) Å].
Related literature
For background details and the biological applications of quinolinyl et al. (2011); Prasath & Bhavana (2012); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).
see: JoshiExperimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813020229/hg5335sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813020229/hg5335Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813020229/hg5335Isup3.cml
A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M), 2-chloro-8-methylquinoline-3-carbaldehyde (200 mg, 0.001 M) and KOH (0.2 g) in methanol (20 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The deposited solid was filtered, dried and purified by
using a 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I); 81% yield, M.pt: 381–383 K.Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation.Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. | |
Fig. 2. View of the supramolecular layer formed in the bc plane by π—π and C—H···π interactions shown as purple and orange dashed lines, respectively. | |
Fig. 3. View in projection down the c axis of the unit-cell contents of (I). The π—π and C—H···π interactions are shown as purple and orange dashed lines, respectively. |
C29H21ClN2O | F(000) = 936 |
Mr = 448.93 | Dx = 1.372 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 5025 reflections |
a = 10.9837 (2) Å | θ = 4.0–76.5° |
b = 21.0604 (3) Å | µ = 1.75 mm−1 |
c = 9.3927 (1) Å | T = 100 K |
β = 90.009 (1)° | Prism, pale-yellow |
V = 2172.73 (6) Å3 | 0.35 × 0.15 × 0.10 mm |
Z = 4 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4444 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3956 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.6°, θmin = 4.0° |
ω scan | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −26→17 |
Tmin = 0.852, Tmax = 1.000 | l = −11→9 |
8885 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.5734P] where P = (Fo2 + 2Fc2)/3 |
4444 reflections | (Δ/σ)max < 0.001 |
300 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C29H21ClN2O | V = 2172.73 (6) Å3 |
Mr = 448.93 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 10.9837 (2) Å | µ = 1.75 mm−1 |
b = 21.0604 (3) Å | T = 100 K |
c = 9.3927 (1) Å | 0.35 × 0.15 × 0.10 mm |
β = 90.009 (1)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4444 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 3956 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 1.000 | Rint = 0.020 |
8885 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
4444 reflections | Δρmin = −0.35 e Å−3 |
300 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.12153 (3) | 0.498061 (14) | 0.15385 (3) | 0.02104 (10) | |
O1 | 0.07264 (9) | 0.72584 (5) | 0.24609 (12) | 0.0279 (2) | |
N1 | 0.25624 (10) | 0.88805 (5) | 0.38792 (11) | 0.0194 (2) | |
N2 | 0.15106 (9) | 0.42899 (5) | 0.37948 (11) | 0.0170 (2) | |
C1 | 0.37937 (12) | 0.88017 (6) | 0.37540 (13) | 0.0178 (3) | |
C2 | 0.45334 (13) | 0.93537 (6) | 0.37127 (14) | 0.0220 (3) | |
H2 | 0.4167 | 0.9762 | 0.3758 | 0.026* | |
C3 | 0.57705 (13) | 0.93017 (7) | 0.36081 (14) | 0.0236 (3) | |
H3 | 0.6257 | 0.9675 | 0.3584 | 0.028* | |
C4 | 0.63343 (12) | 0.87007 (7) | 0.35355 (14) | 0.0224 (3) | |
H4 | 0.7194 | 0.8671 | 0.3451 | 0.027* | |
C5 | 0.56435 (12) | 0.81582 (6) | 0.35870 (13) | 0.0201 (3) | |
H5 | 0.6030 | 0.7755 | 0.3550 | 0.024* | |
C6 | 0.43568 (12) | 0.81954 (6) | 0.36946 (13) | 0.0173 (2) | |
C7 | 0.35840 (11) | 0.76506 (6) | 0.36811 (13) | 0.0164 (2) | |
C8 | 0.23401 (12) | 0.77416 (6) | 0.36914 (13) | 0.0173 (2) | |
C9 | 0.18560 (12) | 0.83726 (6) | 0.38431 (13) | 0.0181 (3) | |
C10 | 0.05163 (13) | 0.84859 (6) | 0.40364 (16) | 0.0253 (3) | |
H10A | 0.0387 | 0.8909 | 0.4444 | 0.038* | |
H10B | 0.0181 | 0.8164 | 0.4680 | 0.038* | |
H10C | 0.0107 | 0.8459 | 0.3112 | 0.038* | |
C11 | 0.41321 (11) | 0.70034 (6) | 0.36303 (13) | 0.0167 (2) | |
C12 | 0.47280 (12) | 0.67678 (6) | 0.48298 (14) | 0.0208 (3) | |
H12 | 0.4828 | 0.7030 | 0.5644 | 0.025* | |
C13 | 0.51759 (13) | 0.61511 (7) | 0.48404 (15) | 0.0234 (3) | |
H13 | 0.5567 | 0.5990 | 0.5667 | 0.028* | |
C14 | 0.50532 (13) | 0.57701 (6) | 0.36472 (15) | 0.0240 (3) | |
H14 | 0.5351 | 0.5347 | 0.3658 | 0.029* | |
C15 | 0.44938 (14) | 0.60088 (6) | 0.24349 (15) | 0.0246 (3) | |
H15 | 0.4428 | 0.5751 | 0.1608 | 0.030* | |
C16 | 0.40293 (12) | 0.66235 (6) | 0.24261 (14) | 0.0203 (3) | |
H16 | 0.3642 | 0.6784 | 0.1596 | 0.024* | |
C17 | 0.14745 (12) | 0.72006 (6) | 0.34199 (14) | 0.0197 (3) | |
C18 | 0.16008 (12) | 0.66060 (6) | 0.42449 (14) | 0.0194 (3) | |
H18 | 0.1953 | 0.6611 | 0.5169 | 0.023* | |
C19 | 0.12123 (12) | 0.60618 (6) | 0.36714 (14) | 0.0193 (3) | |
H19 | 0.0789 | 0.6091 | 0.2792 | 0.023* | |
C20 | 0.13765 (11) | 0.54270 (6) | 0.42670 (14) | 0.0173 (2) | |
C21 | 0.13793 (11) | 0.48749 (6) | 0.33840 (13) | 0.0168 (2) | |
C22 | 0.16629 (11) | 0.41804 (6) | 0.52263 (13) | 0.0166 (2) | |
C23 | 0.17783 (11) | 0.35408 (6) | 0.56986 (14) | 0.0189 (3) | |
C24 | 0.19252 (12) | 0.34365 (6) | 0.71322 (15) | 0.0226 (3) | |
H24 | 0.2006 | 0.3012 | 0.7464 | 0.027* | |
C25 | 0.19608 (13) | 0.39384 (7) | 0.81299 (14) | 0.0237 (3) | |
H25 | 0.2065 | 0.3847 | 0.9113 | 0.028* | |
C26 | 0.18456 (12) | 0.45557 (6) | 0.76904 (14) | 0.0207 (3) | |
H26 | 0.1867 | 0.4892 | 0.8364 | 0.025* | |
C27 | 0.16941 (11) | 0.46883 (6) | 0.62186 (14) | 0.0177 (3) | |
C28 | 0.15474 (11) | 0.53112 (6) | 0.56974 (14) | 0.0182 (3) | |
H28 | 0.1567 | 0.5658 | 0.6344 | 0.022* | |
C29 | 0.17284 (13) | 0.30021 (6) | 0.46518 (15) | 0.0241 (3) | |
H29A | 0.1849 | 0.2599 | 0.5155 | 0.036* | |
H29B | 0.2371 | 0.3056 | 0.3938 | 0.036* | |
H29C | 0.0933 | 0.2999 | 0.4179 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02611 (17) | 0.01835 (16) | 0.01868 (16) | 0.00250 (11) | −0.00140 (12) | 0.00135 (11) |
O1 | 0.0274 (5) | 0.0181 (5) | 0.0383 (6) | −0.0019 (4) | −0.0141 (4) | 0.0028 (4) |
N1 | 0.0228 (6) | 0.0147 (5) | 0.0207 (5) | −0.0007 (4) | −0.0013 (4) | 0.0008 (4) |
N2 | 0.0157 (5) | 0.0145 (5) | 0.0209 (5) | −0.0003 (4) | −0.0007 (4) | −0.0001 (4) |
C1 | 0.0224 (6) | 0.0160 (6) | 0.0150 (6) | −0.0014 (5) | −0.0009 (4) | 0.0003 (4) |
C2 | 0.0278 (7) | 0.0157 (6) | 0.0224 (6) | −0.0033 (5) | −0.0001 (5) | 0.0005 (5) |
C3 | 0.0273 (7) | 0.0196 (6) | 0.0238 (6) | −0.0085 (5) | −0.0010 (5) | 0.0006 (5) |
C4 | 0.0196 (6) | 0.0264 (7) | 0.0212 (6) | −0.0041 (5) | −0.0008 (5) | 0.0004 (5) |
C5 | 0.0221 (6) | 0.0190 (6) | 0.0190 (6) | −0.0008 (5) | −0.0014 (5) | −0.0008 (5) |
C6 | 0.0212 (6) | 0.0159 (6) | 0.0147 (6) | −0.0016 (5) | −0.0014 (4) | −0.0001 (4) |
C7 | 0.0217 (6) | 0.0137 (6) | 0.0138 (5) | −0.0005 (5) | −0.0015 (4) | 0.0009 (4) |
C8 | 0.0207 (6) | 0.0131 (6) | 0.0181 (6) | −0.0013 (5) | −0.0020 (5) | 0.0015 (4) |
C9 | 0.0203 (6) | 0.0141 (6) | 0.0198 (6) | −0.0002 (5) | −0.0023 (5) | 0.0024 (5) |
C10 | 0.0209 (7) | 0.0170 (6) | 0.0381 (8) | 0.0024 (5) | −0.0010 (6) | 0.0011 (6) |
C11 | 0.0161 (6) | 0.0141 (6) | 0.0200 (6) | −0.0011 (5) | 0.0009 (4) | 0.0011 (5) |
C12 | 0.0239 (6) | 0.0192 (6) | 0.0192 (6) | 0.0013 (5) | −0.0025 (5) | −0.0004 (5) |
C13 | 0.0239 (7) | 0.0219 (7) | 0.0245 (7) | 0.0034 (5) | −0.0024 (5) | 0.0049 (5) |
C14 | 0.0260 (7) | 0.0164 (6) | 0.0296 (7) | 0.0056 (5) | 0.0025 (5) | 0.0017 (5) |
C15 | 0.0322 (7) | 0.0179 (6) | 0.0238 (7) | 0.0032 (5) | 0.0015 (5) | −0.0033 (5) |
C16 | 0.0242 (6) | 0.0185 (6) | 0.0184 (6) | 0.0022 (5) | −0.0006 (5) | 0.0008 (5) |
C17 | 0.0187 (6) | 0.0138 (6) | 0.0266 (7) | 0.0001 (5) | −0.0022 (5) | −0.0004 (5) |
C18 | 0.0178 (6) | 0.0160 (6) | 0.0245 (6) | −0.0013 (5) | −0.0017 (5) | 0.0018 (5) |
C19 | 0.0176 (6) | 0.0150 (6) | 0.0253 (6) | 0.0003 (5) | −0.0012 (5) | 0.0013 (5) |
C20 | 0.0134 (5) | 0.0138 (6) | 0.0246 (6) | −0.0011 (4) | −0.0008 (4) | −0.0005 (5) |
C21 | 0.0152 (6) | 0.0163 (6) | 0.0189 (6) | −0.0001 (5) | −0.0006 (4) | 0.0007 (5) |
C22 | 0.0130 (5) | 0.0158 (6) | 0.0209 (6) | −0.0002 (4) | −0.0003 (4) | 0.0008 (5) |
C23 | 0.0159 (6) | 0.0153 (6) | 0.0255 (6) | −0.0002 (5) | −0.0002 (5) | 0.0016 (5) |
C24 | 0.0206 (6) | 0.0193 (6) | 0.0279 (7) | 0.0003 (5) | −0.0012 (5) | 0.0061 (5) |
C25 | 0.0229 (7) | 0.0276 (7) | 0.0205 (6) | −0.0009 (5) | −0.0024 (5) | 0.0047 (5) |
C26 | 0.0194 (6) | 0.0221 (6) | 0.0206 (6) | −0.0013 (5) | −0.0010 (5) | −0.0015 (5) |
C27 | 0.0137 (6) | 0.0168 (6) | 0.0225 (6) | −0.0011 (5) | −0.0005 (4) | −0.0002 (5) |
C28 | 0.0158 (6) | 0.0154 (6) | 0.0234 (6) | −0.0010 (5) | −0.0004 (5) | −0.0032 (5) |
C29 | 0.0288 (7) | 0.0140 (6) | 0.0293 (7) | 0.0009 (5) | −0.0017 (5) | 0.0007 (5) |
Cl1—C21 | 1.7568 (13) | C13—C14 | 1.385 (2) |
O1—C17 | 1.2252 (16) | C13—H13 | 0.9500 |
N1—C9 | 1.3219 (16) | C14—C15 | 1.3879 (19) |
N1—C1 | 1.3677 (17) | C14—H14 | 0.9500 |
N2—C21 | 1.2991 (16) | C15—C16 | 1.3916 (18) |
N2—C22 | 1.3744 (16) | C15—H15 | 0.9500 |
C1—C2 | 1.4188 (18) | C16—H16 | 0.9500 |
C1—C6 | 1.4198 (18) | C17—C18 | 1.4792 (17) |
C2—C3 | 1.367 (2) | C18—C19 | 1.3363 (18) |
C2—H2 | 0.9500 | C18—H18 | 0.9500 |
C3—C4 | 1.411 (2) | C19—C20 | 1.4605 (17) |
C3—H3 | 0.9500 | C19—H19 | 0.9500 |
C4—C5 | 1.3723 (18) | C20—C28 | 1.3783 (18) |
C4—H4 | 0.9500 | C20—C21 | 1.4282 (17) |
C5—C6 | 1.4191 (18) | C22—C27 | 1.4193 (17) |
C5—H5 | 0.9500 | C22—C23 | 1.4238 (17) |
C6—C7 | 1.4273 (17) | C23—C24 | 1.3738 (19) |
C7—C8 | 1.3797 (18) | C23—C29 | 1.5023 (18) |
C7—C11 | 1.4909 (17) | C24—C25 | 1.413 (2) |
C8—C9 | 1.4384 (17) | C24—H24 | 0.9500 |
C8—C17 | 1.5057 (17) | C25—C26 | 1.3699 (19) |
C9—C10 | 1.5018 (18) | C25—H25 | 0.9500 |
C10—H10A | 0.9800 | C26—C27 | 1.4201 (18) |
C10—H10B | 0.9800 | C26—H26 | 0.9500 |
C10—H10C | 0.9800 | C27—C28 | 1.4095 (18) |
C11—C16 | 1.3900 (18) | C28—H28 | 0.9500 |
C11—C12 | 1.3942 (18) | C29—H29A | 0.9800 |
C12—C13 | 1.3887 (18) | C29—H29B | 0.9800 |
C12—H12 | 0.9500 | C29—H29C | 0.9800 |
C9—N1—C1 | 118.69 (11) | C14—C15—H15 | 119.9 |
C21—N2—C22 | 117.60 (11) | C16—C15—H15 | 119.9 |
N1—C1—C2 | 117.98 (12) | C11—C16—C15 | 120.05 (12) |
N1—C1—C6 | 122.91 (12) | C11—C16—H16 | 120.0 |
C2—C1—C6 | 119.10 (12) | C15—C16—H16 | 120.0 |
C3—C2—C1 | 120.37 (13) | O1—C17—C18 | 122.14 (12) |
C3—C2—H2 | 119.8 | O1—C17—C8 | 118.21 (12) |
C1—C2—H2 | 119.8 | C18—C17—C8 | 119.52 (11) |
C2—C3—C4 | 120.78 (12) | C19—C18—C17 | 119.01 (12) |
C2—C3—H3 | 119.6 | C19—C18—H18 | 120.5 |
C4—C3—H3 | 119.6 | C17—C18—H18 | 120.5 |
C5—C4—C3 | 120.17 (13) | C18—C19—C20 | 126.25 (12) |
C5—C4—H4 | 119.9 | C18—C19—H19 | 116.9 |
C3—C4—H4 | 119.9 | C20—C19—H19 | 116.9 |
C4—C5—C6 | 120.48 (12) | C28—C20—C21 | 114.95 (11) |
C4—C5—H5 | 119.8 | C28—C20—C19 | 123.51 (12) |
C6—C5—H5 | 119.8 | C21—C20—C19 | 121.54 (12) |
C5—C6—C1 | 119.10 (12) | N2—C21—C20 | 126.86 (12) |
C5—C6—C7 | 123.18 (12) | N2—C21—Cl1 | 115.12 (10) |
C1—C6—C7 | 117.66 (11) | C20—C21—Cl1 | 118.01 (10) |
C8—C7—C6 | 118.49 (11) | N2—C22—C27 | 121.26 (11) |
C8—C7—C11 | 121.81 (11) | N2—C22—C23 | 118.32 (11) |
C6—C7—C11 | 119.68 (11) | C27—C22—C23 | 120.42 (12) |
C7—C8—C9 | 119.68 (11) | C24—C23—C22 | 117.85 (12) |
C7—C8—C17 | 121.26 (11) | C24—C23—C29 | 121.67 (12) |
C9—C8—C17 | 118.84 (11) | C22—C23—C29 | 120.48 (12) |
N1—C9—C8 | 122.21 (12) | C23—C24—C25 | 122.25 (12) |
N1—C9—C10 | 116.32 (11) | C23—C24—H24 | 118.9 |
C8—C9—C10 | 121.41 (11) | C25—C24—H24 | 118.9 |
C9—C10—H10A | 109.5 | C26—C25—C24 | 120.50 (12) |
C9—C10—H10B | 109.5 | C26—C25—H25 | 119.8 |
H10A—C10—H10B | 109.5 | C24—C25—H25 | 119.8 |
C9—C10—H10C | 109.5 | C25—C26—C27 | 119.40 (12) |
H10A—C10—H10C | 109.5 | C25—C26—H26 | 120.3 |
H10B—C10—H10C | 109.5 | C27—C26—H26 | 120.3 |
C16—C11—C12 | 119.40 (12) | C28—C27—C22 | 118.08 (12) |
C16—C11—C7 | 121.30 (11) | C28—C27—C26 | 122.31 (12) |
C12—C11—C7 | 119.28 (11) | C22—C27—C26 | 119.59 (12) |
C13—C12—C11 | 120.32 (12) | C20—C28—C27 | 121.25 (12) |
C13—C12—H12 | 119.8 | C20—C28—H28 | 119.4 |
C11—C12—H12 | 119.8 | C27—C28—H28 | 119.4 |
C14—C13—C12 | 120.10 (12) | C23—C29—H29A | 109.5 |
C14—C13—H13 | 119.9 | C23—C29—H29B | 109.5 |
C12—C13—H13 | 119.9 | H29A—C29—H29B | 109.5 |
C13—C14—C15 | 119.81 (12) | C23—C29—H29C | 109.5 |
C13—C14—H14 | 120.1 | H29A—C29—H29C | 109.5 |
C15—C14—H14 | 120.1 | H29B—C29—H29C | 109.5 |
C14—C15—C16 | 120.27 (13) | ||
C9—N1—C1—C2 | 176.45 (12) | C7—C11—C16—C15 | −176.59 (13) |
C9—N1—C1—C6 | −4.90 (19) | C14—C15—C16—C11 | 0.5 (2) |
N1—C1—C2—C3 | 179.11 (12) | C7—C8—C17—O1 | −124.57 (14) |
C6—C1—C2—C3 | 0.41 (19) | C9—C8—C17—O1 | 50.12 (18) |
C1—C2—C3—C4 | 0.2 (2) | C7—C8—C17—C18 | 51.55 (18) |
C2—C3—C4—C5 | −0.8 (2) | C9—C8—C17—C18 | −133.76 (13) |
C3—C4—C5—C6 | 0.84 (19) | O1—C17—C18—C19 | 22.7 (2) |
C4—C5—C6—C1 | −0.26 (19) | C8—C17—C18—C19 | −153.30 (13) |
C4—C5—C6—C7 | 176.77 (12) | C17—C18—C19—C20 | 173.33 (12) |
N1—C1—C6—C5 | −179.00 (11) | C18—C19—C20—C28 | 24.6 (2) |
C2—C1—C6—C5 | −0.37 (18) | C18—C19—C20—C21 | −154.88 (13) |
N1—C1—C6—C7 | 3.81 (18) | C22—N2—C21—C20 | 0.07 (19) |
C2—C1—C6—C7 | −177.56 (11) | C22—N2—C21—Cl1 | 178.95 (9) |
C5—C6—C7—C8 | −175.52 (11) | C28—C20—C21—N2 | 0.82 (19) |
C1—C6—C7—C8 | 1.55 (17) | C19—C20—C21—N2 | −179.62 (12) |
C5—C6—C7—C11 | 3.39 (18) | C28—C20—C21—Cl1 | −178.04 (9) |
C1—C6—C7—C11 | −179.54 (11) | C19—C20—C21—Cl1 | 1.52 (16) |
C6—C7—C8—C9 | −5.52 (18) | C21—N2—C22—C27 | −0.93 (17) |
C11—C7—C8—C9 | 175.59 (11) | C21—N2—C22—C23 | 178.49 (11) |
C6—C7—C8—C17 | 169.12 (11) | N2—C22—C23—C24 | −179.74 (11) |
C11—C7—C8—C17 | −9.77 (18) | C27—C22—C23—C24 | −0.32 (18) |
C1—N1—C9—C8 | 0.64 (19) | N2—C22—C23—C29 | −0.26 (18) |
C1—N1—C9—C10 | 177.94 (11) | C27—C22—C23—C29 | 179.17 (11) |
C7—C8—C9—N1 | 4.64 (19) | C22—C23—C24—C25 | 0.16 (19) |
C17—C8—C9—N1 | −170.14 (12) | C29—C23—C24—C25 | −179.32 (12) |
C7—C8—C9—C10 | −172.53 (12) | C23—C24—C25—C26 | 0.1 (2) |
C17—C8—C9—C10 | 12.70 (18) | C24—C25—C26—C27 | −0.2 (2) |
C8—C7—C11—C16 | 68.30 (17) | N2—C22—C27—C28 | 0.85 (18) |
C6—C7—C11—C16 | −110.58 (14) | C23—C22—C27—C28 | −178.55 (11) |
C8—C7—C11—C12 | −109.78 (14) | N2—C22—C27—C26 | 179.61 (11) |
C6—C7—C11—C12 | 71.35 (16) | C23—C22—C27—C26 | 0.21 (18) |
C16—C11—C12—C13 | −2.3 (2) | C25—C26—C27—C28 | 178.78 (12) |
C7—C11—C12—C13 | 175.77 (12) | C25—C26—C27—C22 | 0.07 (19) |
C11—C12—C13—C14 | 1.2 (2) | C21—C20—C28—C27 | −0.85 (17) |
C12—C13—C14—C15 | 0.7 (2) | C19—C20—C28—C27 | 179.60 (12) |
C13—C14—C15—C16 | −1.6 (2) | C22—C27—C28—C20 | 0.09 (18) |
C12—C11—C16—C15 | 1.5 (2) | C26—C27—C28—C20 | −178.63 (12) |
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6-C9 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.95 | 2.90 | 3.5847 (15) | 130 |
C16—H16···Cg2ii | 0.95 | 2.74 | 3.6060 (14) | 152 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2. |
Cg1 and Cg2 are the centroids of the C1–C6 and N1,C1,C6-C9 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 0.95 | 2.90 | 3.5847 (15) | 130 |
C16—H16···Cg2ii | 0.95 | 2.74 | 3.6060 (14) | 152 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: prasad24487@yahoo.co.in.
Acknowledgements
RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876. Web of Science CrossRef CAS Google Scholar
Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525–530. Web of Science CrossRef CAS Google Scholar
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70. Web of Science CSD CrossRef CAS Google Scholar
Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen-containing heterocyclic analogues are found to be key intermediates in organic synthesis and exhibit a multitude of biological properties (Prasath & Bhavana, 2012). This has prompted research into the design and synthesis of a variety of nitrogen-containing chalcone derivatives, and their evaluation for anti-bacterial, anti-fungal, anti-malarial and anti-cancer potential (Prasath et al., 2013a; Joshi et al., 2011). It was in this connection that the title compound, (I), was investigated.
The molecular structure of (I), Fig. 1, comprises two quinolinyl residues connected by the ends of a prop-2-en-1-one bridge. The dihedral angle between the quinolinyl residues is 86.92 (4)°, indicating an almost perpendicular relationship. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 72.70 (5)°. The conformation about the ethylene bond [C18═C19 = 1.3363 (18) Å] is E. A twist in the bridging prop-2-en-1-one group is manifested in the O1—C17—C18—C19 torsion angle of 22.7 (2)°. An similar open conformation was reported recently for a related structure, namely (2E)-3-(2-chloro-8-methylquinolin-3-yl)-1-(2,4-dimethylquinolin-3-yl)prop-2-en-1-one (Prasath et al., 2013b).
In the crystal packing, π—π interactions between centrosymmetrically related N2-pyridyl rings [centroid···centroid distance = 3.4947 (7) Å and symmetry operation: -x, 1 - y, 1 - z] combine with phenyl-C—H···π interactions, Table 1, to stabilize supramolecular layers in the bc plane, Fig. 2. Layers inter-digitate along the a axis with no specific interactions between them, Fig. 3.