metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m444-m445

(5,10,15,20-Tetra­phenyl­porphyrinato-κ4N)zinc–18-crown-6 (1/1)

aLaboratoire de Physico-chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Norbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 25 June 2013; accepted 1 July 2013; online 10 July 2013)

In the title compound, [Zn(C44H28N4)]·C12H24O6, the ZnII ion lies on an inversion center and the asymmetric unit contains one half of a Zn(TPP) complex (TPP = 5,10,15,20-tetra­phenyl­porphyrin dianion) and one half of a centrosymmetric 18-crown-6 mol­ecule. The Zn(TPP) complex exhibits a nearly planar conformation of the porphyrin core [maximum deviation = 0.106 (2) Å] with an average Zn—N distance of 2.047 (2) Å. The title compound is considered as a one-dimensional polymer along [010], in which the Zn(TPP) moiety is linked to the closest O atoms of two symmetry-related 18-crown-6 mol­ecules with a Zn—O distance of 2.582 (1) Å, completing a distorted octahedral coordination environment of the metal ion. The chains are mainly sustained by weak C—H⋯π inter­actions. An ethyl­ene group of the 18-crown-6 mol­ecule is disordered over three sites with occupancies of 0.50, 0.25 and 0.25.

Related literature

For related structures, see: Cheng & Scheidt (1995[Cheng, B. & Scheidt, W. R. (1995). Inorg. Chim. Acta, 237, 5-11.]); Diskin-Posner et al. (1999[Diskin-Posner, Y., Kumar, R. K. & Goldberg, I. (1999). New J. Chem. 23, 885-890.]); Ezzayani et al. (2013[Ezzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114-m115.]); Kojima et al. (2009[Kojima, T., Nakanishi, T., Honda, T., Harada, R., Shiro, M. & Fukuzumi, S. (2009). Eur. J. Inorg. Chem. pp. 727-734.]); Kumar et al. (1997[Kumar, R. K., Goldborth, A. & Goldberg, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 383-384.]); Mansour et al. (2010[Mansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509-m510.]); Ricard et al. (2001[Ricard, D., Richard, P. & Boitrel, B. (2001). Acta Cryst. E57, m404-m406.]); Suijkerbuijk et al. (2007[Suijkerbuijk, B. M. J. M., Tooke, D. M., Spek, A. L., Van Koten, G. & Gebbink, R. J. M. K. (2007). Chem. Asian J. 2, 889-903.]); Toumi et al. (2013[Toumi, H., Belghith, Y., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m354-m355.]). For the SIMU/ISOR restraints used in the refinement, see: McArdle (1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]). For a description of the Cambridge Strcutural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the synthesis, see: Oberda et al. (2011[Oberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391-2399.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C44H28N4)]·C12H24O6

  • Mr = 942.39

  • Triclinic, [P \overline 1]

  • a = 10.2170 (3) Å

  • b = 11.1190 (4) Å

  • c = 11.8243 (3) Å

  • α = 104.384 (3)°

  • β = 105.912 (3)°

  • γ = 108.096 (3)°

  • V = 1143.23 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 180 K

  • 0.48 × 0.45 × 0.33 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.918, Tmax = 1.000

  • 22963 measured reflections

  • 4503 independent reflections

  • 3774 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.07

  • 4503 reflections

  • 310 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C4, N2/C6–C9 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg1i 0.93 2.98 3.824 (2) 152
C20—H20⋯Cg3ii 0.93 2.84 3.746 (2) 164
C24—H24ACg2 0.97 2.73 3.686 (3) 167
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+3, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].

Supporting information


Comment top

In continuation of our research on the crystal structures of metalloporphyrins resulting from the interactions of porphyrin complexes type [MII(TPP)] (TPP is a dianion of 5,10,15,20-tetraphenylporphyrin and M is a metal) with 18-crown-6 (18-C-6), we recently reported the molecular structures of three metalloporphyrines involving 18-C-6. The first one is (tetraphenylporphyrinato)cobalt(II)-18-C-6 with the formula [CoII(TPP)].(18-C-6) (Mansour et al., 2010) and the second structure concerns the coordination complex diaqua(tetraphenylporphyrinato)magnesium(II)-18-C-6 with the formula [Mg(TPP)(H2O)2].(18-C-6) (Ezzayani et al., 2013). The third metalloporphyrin-18-C-6 derivative is the [Cd(TPP)(H2O)].(18-C-6) species (Toumi et al., 2013). By the other hand a search of Cambridge Structural Database (CSD, version 5.34; Allen, 2002) reveals only two zinc–porphyrin structures involving 18-C-6 molecules, with the same formula [Zn(TPP)(H2O)].(18-C-6) [CSD refcodes: ZOLXUT (Cheng & Scheidt, 1995), and XIYGAN (Diskin-Posner et al., 1999)]. The average equatorial Zn—N distance equal to 2.071 (1) Å lies in the range [2.035 (2)–2.081 (5) Å] of related porphyrin species, i.e. [Zn(TPP)(H2O)2] (Suijkerbuijk et al., 2007) and [Zn(TPP)(4-pyridinamine)] (Kojima et al., 2009). In order to gain more insight into the interactions of 18-C-6 with zinc–porphyrin complexes, we report herein the synthesis and crystal structure of the title compound, [Zn(TPP)].(18-C-6).

In the title compound, two symmetry-related 18-C-6 molecules are weakly bonded to the ZnII ion via the O1 atom with a distance of 2.582 (1) Å (Fig. 1). It is noteworthy that the Zn—O bond length values for metalloporphyrin type [Zn(porph)(OR)] (R = an alkyl or aryl group) are within the large range [2.147 (5)–2.708 (2) Å] [CSD refcodes: BOQPIG (Ricard et al., 2001), and GETGER (Kumar et al., 1997)]. Consequently, we can consider that for the title compound, the 18-C-6 molecule is weakly coordinated to the central metal. We noticed the striking resemblance of the title compound and the related compound [CoII(TPP)].(18-C-6): (i) the two structures are isomorphs and they have the space group P1 and the cell parameters are very close; (ii) the Co—O(18-C-6) distance [2.533 (2) Å] is quite close to the value of the title compound. The porphyrin core presents a nearly planar conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.106 (2) and 0.000 (2) Å for C10 and C3 atoms, respectively, while the ZnII ion is at 0.05 (1) Å from the plane.

The crystal structure of the title compound resembles to one-dimensional coordination polymer, where each [Zn(TPP)] moiety is linked to two symmetry-related 18-C-6 molecules through the O1 and O1i atoms (symmetry code: (i) 2-x, -y, 1-z) (Fig. 2). These chains are mainly sustained by weak C—H···π interactions (Table 1).

Related literature top

For related structures, see: Cheng & Scheidt (1995); Diskin-Posner et al. (1999); Ezzayani et al. (2013); Kojima et al. (2009); Kumar et al. (1997); Mansour et al. (2010); Ricard et al. (2001); Suijkerbuijk et al. (2007); Toumi et al. (2013). For the SIMU/ISOR restraints used in the refinement, see: McArdle (1995). For a description of the Cambridge Strcutural Database, see: Allen (2002). For the synthesis, see: Oberda et al. (2011).

Experimental top

The reaction of the Zn(TPP) complex (15 mg, 0.022 mmol) (Oberda et al., 2011) with an excess of 18-C-6 (80 mg, 0.302 mmol) in 15 ml of chlorobenzene at room temperature yielded after two hours a red-purple solution. Crystals of the title compound were obtained by diffusion of hexane into the chlorobenzene solution.

Refinement top

All H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). An ethylene group of the 18-C-6 molecule is disordered over three sites with occupancies of 0.50, 0.25 and 0.25. The anisotropic ellipsoids of the atoms O3, C27A and C28A of the 18-C-6 molecule were elongated, so the SIMU/ISOR restraints (McArdle, 1995) and EADP constraint commands in the SHELXL97 software (Sheldrick, 2008) were used .

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. [Symmtry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y-1, -z+1.]
[Figure 2] Fig. 2. A drawing showing the one-dimensional structure of the title compound. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, -y, 1-z.]
(5,10,15,20-Tetraphenylporphyrinato-κ4N)zinc–18-crown-6 (1/1) top
Crystal data top
[Zn(C44H28N4)]·C12H24O6Z = 1
Mr = 942.39F(000) = 494
Triclinic, P1Dx = 1.369 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2170 (3) ÅCell parameters from 13909 reflections
b = 11.1190 (4) Åθ = 3.3–29.1°
c = 11.8243 (3) ŵ = 0.60 mm1
α = 104.384 (3)°T = 180 K
β = 105.912 (3)°Block, violet
γ = 108.096 (3)°0.48 × 0.45 × 0.33 mm
V = 1143.23 (8) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4503 independent reflections
Radiation source: fine-focus sealed tube3774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1978 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.918, Tmax = 1.000l = 1414
22963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.5621P]
where P = (Fo2 + 2Fc2)/3
4503 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.95 e Å3
30 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Zn(C44H28N4)]·C12H24O6γ = 108.096 (3)°
Mr = 942.39V = 1143.23 (8) Å3
Triclinic, P1Z = 1
a = 10.2170 (3) ÅMo Kα radiation
b = 11.1190 (4) ŵ = 0.60 mm1
c = 11.8243 (3) ÅT = 180 K
α = 104.384 (3)°0.48 × 0.45 × 0.33 mm
β = 105.912 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4503 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3774 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1.000Rint = 0.023
22963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03930 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.95 e Å3
4503 reflectionsΔρmin = 0.67 e Å3
310 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn1.00000.00000.50000.03274 (14)
N11.11054 (18)0.01373 (18)0.66650 (15)0.0230 (4)
N20.79951 (17)0.10495 (17)0.50470 (15)0.0213 (3)
C11.2617 (2)0.0346 (2)0.72913 (18)0.0219 (4)
C21.2919 (2)0.0065 (2)0.83665 (19)0.0248 (4)
H21.38540.01400.89490.030*
C31.1598 (2)0.0801 (2)0.83723 (18)0.0243 (4)
H31.14500.11990.89580.029*
C41.0454 (2)0.0857 (2)0.72994 (18)0.0215 (4)
C50.8921 (2)0.1589 (2)0.69362 (18)0.0214 (4)
C60.7795 (2)0.1682 (2)0.58835 (18)0.0217 (4)
C70.6231 (2)0.2468 (2)0.5519 (2)0.0274 (5)
H70.58050.29960.59270.033*
C80.5497 (2)0.2298 (2)0.4477 (2)0.0270 (4)
H80.44710.26770.40380.032*
C90.6606 (2)0.1415 (2)0.41709 (18)0.0215 (4)
C101.3700 (2)0.1076 (2)0.69132 (18)0.0221 (4)
C110.8443 (2)0.2378 (2)0.77232 (18)0.0218 (4)
C120.8211 (3)0.3733 (2)0.7389 (2)0.0355 (5)
H120.83690.41510.66840.043*
C130.7744 (3)0.4473 (2)0.8098 (2)0.0382 (6)
H130.75930.53830.78670.046*
C140.7504 (2)0.3870 (2)0.9138 (2)0.0318 (5)
H140.71900.43680.96110.038*
C150.7733 (3)0.2519 (2)0.9478 (2)0.0338 (5)
H150.75690.21051.01810.041*
C160.8207 (2)0.1776 (2)0.8774 (2)0.0288 (5)
H160.83660.08640.90130.035*
C171.5297 (2)0.1524 (2)0.77206 (18)0.0228 (4)
C181.6208 (2)0.1016 (2)0.7256 (2)0.0303 (5)
H181.58130.03830.64370.036*
C191.7692 (3)0.1441 (3)0.7995 (2)0.0373 (5)
H191.82870.10940.76720.045*
C201.8297 (2)0.2382 (3)0.9214 (2)0.0366 (6)
H201.92980.26740.97060.044*
C211.7406 (2)0.2884 (2)0.9696 (2)0.0337 (5)
H211.78050.35071.05190.040*
C221.59147 (13)0.24577 (12)0.89529 (11)0.0270 (4)
H221.53210.28010.92830.032*
O10.99283 (13)0.23197 (12)0.38069 (11)0.0414 (4)
C230.88485 (13)0.30609 (12)0.25589 (11)0.0415 (6)
H23A0.92470.35820.20720.050*
H23B0.86690.24240.21710.050*
C240.7397 (3)0.4009 (3)0.2491 (2)0.0423 (6)
H24A0.71250.35630.31490.051*
H24B0.66220.42520.16810.051*
O20.7523 (2)0.51824 (18)0.26441 (18)0.0450 (4)
C250.6304 (3)0.6046 (3)0.2816 (3)0.0473 (6)
H25A0.54700.65660.20120.057*
H25B0.59910.55090.33800.057*
C260.6787 (3)0.6981 (3)0.3367 (3)0.0510 (7)
H26A0.59230.77340.32820.061*
H26B0.73290.73440.29210.061*
O30.7692 (2)0.6263 (2)0.4630 (2)0.0602 (5)
C27A0.9180 (7)0.6327 (7)0.5200 (6)0.0541 (7)0.50
H27A0.95690.65760.45580.065*0.50
H27B0.99020.54610.58480.065*0.50
C28A0.8820 (7)0.7408 (7)0.5755 (6)0.0492 (8)0.50
H28A0.85210.71030.64470.059*0.50
H28B0.79990.82290.51180.059*0.50
C27B0.8033 (15)0.7226 (13)0.5251 (14)0.0541 (7)0.25
H27C0.78390.70960.60220.065*0.25
H27D0.74530.81650.46850.065*0.25
C28B0.9557 (13)0.6854 (13)0.5508 (13)0.0492 (8)0.25
H28C1.01090.58950.60210.059*0.25
H28D0.97240.70180.47250.059*0.25
C27C0.8191 (15)0.7395 (13)0.4715 (13)0.0541 (7)0.25
H27E0.73870.82150.46040.065*0.25
H27F0.86630.76000.41270.065*0.25
C28C0.9287 (15)0.6667 (14)0.6059 (12)0.0492 (8)0.25
H28E0.87900.65670.66450.059*0.25
H28F0.99910.57790.61840.059*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01801 (19)0.0560 (3)0.0266 (2)0.00947 (17)0.00743 (14)0.02734 (18)
N10.0178 (8)0.0310 (9)0.0204 (8)0.0074 (7)0.0065 (7)0.0138 (7)
N20.0182 (8)0.0277 (9)0.0180 (8)0.0078 (7)0.0058 (6)0.0116 (7)
C10.0206 (9)0.0250 (10)0.0183 (9)0.0085 (8)0.0049 (8)0.0089 (8)
C20.0232 (10)0.0294 (11)0.0200 (10)0.0106 (9)0.0040 (8)0.0110 (8)
C30.0257 (10)0.0285 (11)0.0191 (9)0.0102 (9)0.0066 (8)0.0125 (8)
C40.0234 (10)0.0252 (10)0.0176 (9)0.0098 (8)0.0080 (8)0.0103 (8)
C50.0249 (10)0.0227 (10)0.0185 (9)0.0091 (8)0.0105 (8)0.0091 (8)
C60.0217 (10)0.0245 (10)0.0198 (9)0.0076 (8)0.0101 (8)0.0096 (8)
C70.0226 (10)0.0338 (12)0.0268 (11)0.0072 (9)0.0112 (9)0.0158 (9)
C80.0188 (10)0.0318 (11)0.0272 (11)0.0057 (9)0.0078 (8)0.0127 (9)
C90.0184 (9)0.0255 (10)0.0198 (9)0.0077 (8)0.0070 (8)0.0091 (8)
C100.0199 (9)0.0244 (10)0.0201 (9)0.0088 (8)0.0054 (8)0.0082 (8)
C110.0181 (9)0.0258 (10)0.0194 (9)0.0054 (8)0.0055 (8)0.0113 (8)
C120.0522 (15)0.0290 (12)0.0245 (11)0.0139 (11)0.0175 (10)0.0089 (9)
C130.0504 (15)0.0233 (11)0.0313 (12)0.0065 (11)0.0106 (11)0.0109 (10)
C140.0276 (11)0.0368 (13)0.0288 (11)0.0050 (10)0.0084 (9)0.0213 (10)
C150.0431 (13)0.0442 (14)0.0296 (11)0.0230 (11)0.0229 (10)0.0214 (10)
C160.0379 (12)0.0288 (11)0.0281 (11)0.0163 (10)0.0170 (9)0.0152 (9)
C170.0202 (10)0.0256 (10)0.0225 (10)0.0072 (8)0.0060 (8)0.0137 (8)
C180.0275 (11)0.0339 (12)0.0295 (11)0.0125 (10)0.0107 (9)0.0116 (9)
C190.0259 (11)0.0465 (14)0.0495 (14)0.0193 (11)0.0167 (11)0.0254 (12)
C200.0182 (10)0.0450 (14)0.0424 (13)0.0069 (10)0.0018 (9)0.0274 (11)
C210.0298 (12)0.0333 (12)0.0255 (11)0.0041 (10)0.0001 (9)0.0134 (9)
C220.0256 (10)0.0277 (11)0.0254 (10)0.0092 (9)0.0071 (8)0.0110 (9)
O10.0372 (9)0.0465 (10)0.0370 (9)0.0164 (8)0.0067 (7)0.0185 (8)
C230.0559 (16)0.0368 (13)0.0301 (12)0.0170 (12)0.0140 (11)0.0145 (10)
C240.0449 (14)0.0412 (14)0.0350 (13)0.0208 (12)0.0062 (11)0.0106 (11)
O20.0465 (10)0.0412 (10)0.0627 (12)0.0218 (9)0.0329 (9)0.0252 (9)
C250.0296 (12)0.0583 (17)0.0482 (15)0.0101 (12)0.0137 (11)0.0212 (13)
C260.0595 (18)0.0364 (14)0.0672 (19)0.0201 (13)0.0383 (16)0.0188 (13)
O30.0635 (8)0.0611 (8)0.0590 (8)0.0356 (6)0.0160 (6)0.0219 (6)
C27A0.0561 (9)0.0546 (9)0.0546 (9)0.0271 (7)0.0179 (7)0.0225 (7)
C28A0.0508 (10)0.0514 (10)0.0503 (10)0.0242 (8)0.0202 (7)0.0213 (8)
C27B0.0561 (9)0.0546 (9)0.0546 (9)0.0271 (7)0.0179 (7)0.0225 (7)
C28B0.0508 (10)0.0514 (10)0.0503 (10)0.0242 (8)0.0202 (7)0.0213 (8)
C27C0.0561 (9)0.0546 (9)0.0546 (9)0.0271 (7)0.0179 (7)0.0225 (7)
C28C0.0508 (10)0.0514 (10)0.0503 (10)0.0242 (8)0.0202 (7)0.0213 (8)
Geometric parameters (Å, º) top
Zn—N22.0421 (16)C21—C221.389 (2)
Zn—N12.0524 (16)C21—H210.9300
N1—C11.372 (2)C22—H220.9300
N1—C41.374 (2)O1—C28Aii1.397 (6)
N2—C91.371 (2)O1—C231.4185
N2—C61.372 (2)O1—C28Bii1.487 (13)
C1—C101.405 (3)O1—C28Cii1.587 (12)
C1—C21.443 (3)C23—C241.496 (3)
C2—C31.347 (3)C23—H23A0.9700
C2—H20.9300C23—H23B0.9700
C3—C41.443 (3)C24—O21.400 (3)
C3—H30.9300C24—H24A0.9700
C4—C51.402 (3)C24—H24B0.9700
C5—C61.400 (3)O2—C251.417 (3)
C5—C111.504 (3)C25—C261.492 (4)
C6—C71.439 (3)C25—H25A0.9700
C7—C81.346 (3)C25—H25B0.9700
C7—H70.9300C26—O31.384 (4)
C8—C91.445 (3)C26—H26A0.9700
C8—H80.9300C26—H26B0.9700
C9—C10i1.406 (3)O3—C27C1.513 (12)
C10—C9i1.406 (3)O3—C27B1.513 (13)
C10—C171.493 (3)O3—C27A1.517 (6)
C11—C161.379 (3)C27A—C28A1.504 (9)
C11—C121.384 (3)C27A—H27A0.9700
C12—C131.388 (3)C27A—H27B0.9700
C12—H120.9300C28A—O1ii1.397 (6)
C13—C141.370 (3)C28A—H28A0.9700
C13—H130.9300C28A—H28B0.9700
C14—C151.380 (3)C27B—C28B1.403 (18)
C14—H140.9300C27B—H27C0.9700
C15—C161.386 (3)C27B—H27D0.9700
C15—H150.9300C28B—O1ii1.487 (12)
C16—H160.9300C28B—H28C0.9700
C17—C221.392 (2)C28B—H28D0.9700
C17—C181.393 (3)C27C—C28C1.502 (18)
C18—C191.382 (3)C27C—H27E0.9700
C18—H180.9300C27C—H27F0.9700
C19—C201.383 (4)C28C—O1ii1.587 (12)
C19—H190.9300C28C—H28E0.9700
C20—C211.381 (4)C28C—H28F0.9700
C20—H200.9300
N2—Zn—N2i180.0C20—C21—H21120.0
N2—Zn—N1i89.28 (6)C22—C21—H21120.0
N2i—Zn—N1i90.72 (6)C21—C22—C17120.83 (16)
N2—Zn—N190.72 (6)C21—C22—H22119.6
N2i—Zn—N189.28 (6)C17—C22—H22119.6
N1i—Zn—N1180.0C28Aii—O1—C23121.4 (3)
C1—N1—C4106.75 (16)C23—O1—C28Bii115.6 (5)
C1—N1—Zn127.32 (13)C23—O1—C28Cii99.7 (5)
C4—N1—Zn125.65 (13)O1—C23—C24113.75 (11)
C9—N2—C6106.67 (16)O1—C23—H23A108.8
C9—N2—Zn127.28 (13)C24—C23—H23A108.8
C6—N2—Zn125.51 (13)O1—C23—H23B108.8
N1—C1—C10125.32 (18)C24—C23—H23B108.8
N1—C1—C2109.25 (17)H23A—C23—H23B107.7
C10—C1—C2125.37 (18)O2—C24—C23109.77 (19)
C3—C2—C1107.45 (17)O2—C24—H24A109.7
C3—C2—H2126.3C23—C24—H24A109.7
C1—C2—H2126.3O2—C24—H24B109.7
C2—C3—C4107.10 (17)C23—C24—H24B109.7
C2—C3—H3126.5H24A—C24—H24B108.2
C4—C3—H3126.5C24—O2—C25114.6 (2)
N1—C4—C5125.70 (17)O2—C25—C26108.3 (2)
N1—C4—C3109.43 (17)O2—C25—H25A110.0
C5—C4—C3124.81 (18)C26—C25—H25A110.0
C6—C5—C4125.74 (18)O2—C25—H25B110.0
C6—C5—C11116.99 (17)C26—C25—H25B110.0
C4—C5—C11117.24 (17)H25A—C25—H25B108.4
N2—C6—C5126.10 (18)O3—C26—C25108.8 (2)
N2—C6—C7109.46 (17)O3—C26—H26A109.9
C5—C6—C7124.44 (18)C25—C26—H26A109.9
C8—C7—C6107.41 (18)O3—C26—H26B109.9
C8—C7—H7126.3C25—C26—H26B109.9
C6—C7—H7126.3H26A—C26—H26B108.3
C7—C8—C9107.03 (18)C26—O3—C27C91.8 (5)
C7—C8—H8126.5C26—O3—C27B109.8 (6)
C9—C8—H8126.5C26—O3—C27A121.5 (3)
N2—C9—C10i125.72 (18)C28A—C27A—O3103.6 (5)
N2—C9—C8109.42 (17)C28A—C27A—H27A111.0
C10i—C9—C8124.69 (18)O3—C27A—H27A111.0
C1—C10—C9i124.99 (18)C28A—C27A—H27B111.0
C1—C10—C17117.65 (17)O3—C27A—H27B111.0
C9i—C10—C17117.36 (18)H27A—C27A—H27B109.0
C16—C11—C12118.84 (19)O1ii—C28A—C27A109.5 (5)
C16—C11—C5120.98 (18)O1ii—C28A—H28A109.8
C12—C11—C5120.17 (18)C27A—C28A—H28A109.8
C11—C12—C13120.5 (2)O1ii—C28A—H28B109.8
C11—C12—H12119.8C27A—C28A—H28B109.8
C13—C12—H12119.8H28A—C28A—H28B108.2
C14—C13—C12120.3 (2)C28B—C27B—O3102.5 (10)
C14—C13—H13119.8C28B—C27B—H27C111.3
C12—C13—H13119.8O3—C27B—H27C111.3
C13—C14—C15119.6 (2)C28B—C27B—H27D111.3
C13—C14—H14120.2O3—C27B—H27D111.3
C15—C14—H14120.2H27C—C27B—H27D109.2
C14—C15—C16120.2 (2)C27B—C28B—O1ii108.4 (10)
C14—C15—H15119.9C27B—C28B—H28C110.0
C16—C15—H15119.9O1ii—C28B—H28C110.0
C11—C16—C15120.6 (2)C27B—C28B—H28D110.0
C11—C16—H16119.7O1ii—C28B—H28D110.0
C15—C16—H16119.7H28C—C28B—H28D108.4
C22—C17—C18118.35 (17)C28C—C27C—O396.2 (9)
C22—C17—C10121.02 (17)C28C—C27C—H27E112.5
C18—C17—C10120.63 (18)O3—C27C—H27E112.5
C19—C18—C17120.8 (2)C28C—C27C—H27F112.5
C19—C18—H18119.6O3—C27C—H27F112.5
C17—C18—H18119.6H27E—C27C—H27F110.0
C18—C19—C20120.3 (2)C27C—C28C—O1ii100.7 (9)
C18—C19—H19119.9C27C—C28C—H28E111.6
C20—C19—H19119.9O1ii—C28C—H28E111.6
C21—C20—C19119.7 (2)C27C—C28C—H28F111.6
C21—C20—H20120.1O1ii—C28C—H28F111.6
C19—C20—H20120.1H28E—C28C—H28F109.4
C20—C21—C22120.0 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C4, N2/C6–C9 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1iii0.932.983.824 (2)152
C20—H20···Cg3iv0.932.843.746 (2)164
C24—H24A···Cg20.972.733.686 (3)167
Symmetry codes: (iii) x+2, y, z+2; (iv) x+3, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C44H28N4)]·C12H24O6
Mr942.39
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)10.2170 (3), 11.1190 (4), 11.8243 (3)
α, β, γ (°)104.384 (3), 105.912 (3), 108.096 (3)
V3)1143.23 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.48 × 0.45 × 0.33
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.918, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22963, 4503, 3774
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.07
No. of reflections4503
No. of parameters310
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.67

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C4, N2/C6–C9 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.983.824 (2)152
C20—H20···Cg3ii0.932.843.746 (2)164
C24—H24A···Cg20.972.733.686 (3)167
Symmetry codes: (i) x+2, y, z+2; (ii) x+3, y, z+2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCheng, B. & Scheidt, W. R. (1995). Inorg. Chim. Acta, 237, 5–11.  CSD CrossRef CAS Web of Science Google Scholar
First citationDiskin-Posner, Y., Kumar, R. K. & Goldberg, I. (1999). New J. Chem. 23, 885–890.  CAS Google Scholar
First citationEzzayani, K., Nasri, S., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m114–m115.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKojima, T., Nakanishi, T., Honda, T., Harada, R., Shiro, M. & Fukuzumi, S. (2009). Eur. J. Inorg. Chem. pp. 727–734.  Web of Science CSD CrossRef Google Scholar
First citationKumar, R. K., Goldborth, A. & Goldberg, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 383–384.  CAS Google Scholar
First citationMansour, A., Belkhiria, M. S., Daran, J.-C. & Nasri, H. (2010). Acta Cryst. E66, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationOberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391–2399.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRicard, D., Richard, P. & Boitrel, B. (2001). Acta Cryst. E57, m404–m406.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuijkerbuijk, B. M. J. M., Tooke, D. M., Spek, A. L., Van Koten, G. & Gebbink, R. J. M. K. (2007). Chem. Asian J. 2, 889–903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationToumi, H., Belghith, Y., Daran, J.-C. & Nasri, H. (2013). Acta Cryst. E69, m354–m355.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m444-m445
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds