organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3′-benzyl-4′-(2-chloro­phen­yl)-1′-methyl-2-oxo­spiro­[indoline-3,2′-pyrrolidine]-3′-carboxyl­ate

aPost Graduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 1 July 2013; accepted 3 July 2013; online 6 July 2013)

In the title compound, C27H25ClN2O3, the methyl­pyrrolidine ring adopts an envelope conformation with the N atom at the flap. The mean plane of the pyrrolidine ring makes dihedral angles of 82.1 (1), 84.4 (1) and 79.8 (1)°, respectively, with the adjacent benzene ring, the mean plane of the indoline ring system and the phenyl ring. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked into chains along [101] by N—H⋯O hydrogen bonds. C—H⋯π inter­actions are observed between the chains.

Related literature

For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Witherup et al. (1995[Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682—6685.]). For the biological activity of oxindole derivatives, see: Glover et al. (1998[Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656-659.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H25ClN2O3

  • Mr = 460.94

  • Monoclinic, P 21 /n

  • a = 13.0887 (6) Å

  • b = 14.0869 (7) Å

  • c = 13.3521 (7) Å

  • β = 113.524 (2)°

  • V = 2257.25 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.960

  • 29103 measured reflections

  • 6735 independent reflections

  • 4875 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 0.98

  • 6735 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.06 2.9004 (15) 164
C5—H5⋯O1 0.93 2.31 3.168 (2) 153
C18—H18A⋯O1 0.97 2.54 3.2469 (18) 130
C24—H24⋯O3 0.93 2.47 3.1650 (19) 132
C23—H23⋯Cg3ii 0.93 2.77 3.600 (2) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrrolidine-containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995). Oxindole derivatives are of importance in the total synthesis of indole and oxindole alkaloids such as potent inhibitors of monoamine oxidase (MAO) in human urine and rat tissues (Glover et al., 1998). We report herein the crystal structure of the title compound.

In the molecule the pyrrolidine ring (N1/C8–C10) adopts an envelope conformation with N1 atom located at the flap position having asymmetry parameter (Nardelli, 1983) ΔCS (N1) = 5.21 (2) Å and with the puckering parameters (Cremer and Pople, 1975) q2 = 0.396 (2) Å and Φ2 = 172.6 (3)°. The sum of bond angles around N1 of the pyrrolidine ring [336.8 (1)°] is in accordance with sp3 hybridization. The bond length C17—O1 = 1.210 (1) Å indicates a keto group in the indoline. The pyrrolidine ring (N1/C8–C10) is almost equatorial with indoline (C10–C17/N2), chlorophenyl (C1–C6/Cl1) and phenyl (C19–C24) rings by making dihedral angles of 84.4 (1), 82.1 (1) and 79.8 (1)°, respectively. The indoline ring (C10–C17/N2) makes dihedral angles of 39.5 (2) and 61.2 (1)° with chlorophenyl(C1–C6/Cl1) and the phenyl (C19–C24) rings, respectively.

The structure is stabilized by an intermolecular N—H···O hydrogen bond and C—H···O intramolecular hydrogen bonds. The crystal structure is further consolidated by C—H ···Cg3 interactions, where Cg3 is the centroid of C11–C16 ring.

Related literature top

For the biological activity of pyrrolidine-containing compounds and their use in catalysis, see: Witherup et al. (1995). For the biological activity of oxindole derivatives, see: Glover et al. (1998). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of (E)-methyl 2-benzyl-3-(2-chlorophenyl)acrylate (2 mmol, 0.58 g), isatin (2 mmol, 0.29 g) and sarcosine (2 mmol, 0.18 g) in acetonitrile (8 ml) was refluxed for about 10 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. Then the resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3×10 ml). The combined organic layers were washed with brine (2×10 ml) and dried overanhydrous Na2SO4. The organic layer was concentrated and the crude sample was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexane (1:4) to afford the title compound as a colourless solid in 72% yield.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C or N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of packing of the molecules with hydrogen bonds (dashed lines).
Methyl 3'-benzyl-4'-(2-chlorophenyl)-1'-methyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C27H25ClN2O3F(000) = 968
Mr = 460.94Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6735 reflections
a = 13.0887 (6) Åθ = 2.2–30.2°
b = 14.0869 (7) ŵ = 0.20 mm1
c = 13.3521 (7) ÅT = 293 K
β = 113.524 (2)°Block, colourless
V = 2257.25 (19) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6735 independent reflections
Radiation source: fine-focus sealed tube4875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 30.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1816
Tmin = 0.953, Tmax = 0.960k = 1919
29103 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.8661P]
where P = (Fo2 + 2Fc2)/3
6735 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C27H25ClN2O3V = 2257.25 (19) Å3
Mr = 460.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0887 (6) ŵ = 0.20 mm1
b = 14.0869 (7) ÅT = 293 K
c = 13.3521 (7) Å0.30 × 0.20 × 0.20 mm
β = 113.524 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6735 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4875 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.960Rint = 0.028
29103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.98Δρmax = 0.33 e Å3
6735 reflectionsΔρmin = 0.28 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65520 (4)0.17226 (3)0.69233 (3)0.05286 (13)
O10.87657 (9)0.41364 (8)1.12278 (9)0.0420 (3)
O20.59975 (8)0.11329 (8)0.94843 (9)0.0434 (3)
O30.75502 (8)0.06272 (7)1.08175 (8)0.0335 (2)
N10.64083 (9)0.32985 (8)1.04601 (9)0.0297 (2)
N20.90123 (10)0.31908 (9)1.26947 (10)0.0366 (3)
H2A0.96550.33951.31330.044*
C10.74514 (13)0.26845 (11)0.74148 (12)0.0377 (3)
C20.79808 (15)0.30118 (15)0.67659 (14)0.0517 (4)
H20.78410.27290.60940.062*
C30.87159 (16)0.37590 (16)0.71259 (16)0.0566 (5)
H30.90730.39830.66940.068*
C40.89246 (15)0.41751 (13)0.81149 (16)0.0489 (4)
H40.94300.46740.83600.059*
C50.83802 (13)0.38500 (11)0.87492 (13)0.0387 (3)
H50.85190.41440.94150.046*
C60.76294 (11)0.30942 (10)0.84199 (11)0.0313 (3)
C70.69843 (11)0.27784 (10)0.90838 (10)0.0286 (3)
H70.63720.23790.86020.034*
C80.64501 (12)0.36094 (11)0.94391 (12)0.0348 (3)
H8A0.68980.41790.95480.042*
H8B0.57070.37370.88960.042*
C90.76153 (10)0.21839 (9)1.01578 (10)0.0248 (2)
C100.74498 (10)0.28097 (9)1.10802 (10)0.0262 (3)
C110.74272 (11)0.22971 (10)1.20696 (10)0.0289 (3)
C120.66310 (12)0.17276 (11)1.21911 (12)0.0364 (3)
H120.59730.15911.15950.044*
C130.68229 (15)0.13580 (12)1.32176 (14)0.0441 (4)
H130.62930.09671.33070.053*
C140.77965 (16)0.15694 (13)1.41035 (13)0.0468 (4)
H140.79190.13061.47800.056*
C150.85906 (14)0.21627 (12)1.40071 (12)0.0444 (4)
H150.92390.23131.46070.053*
C160.83831 (11)0.25255 (10)1.29825 (11)0.0325 (3)
C170.84848 (11)0.34756 (10)1.16400 (12)0.0306 (3)
C180.88559 (10)0.19699 (10)1.04371 (11)0.0290 (3)
H18A0.92540.25691.05900.035*
H18B0.91400.16021.11070.035*
C190.91513 (11)0.14448 (10)0.95948 (11)0.0287 (3)
C200.99679 (13)0.18304 (11)0.93025 (13)0.0377 (3)
H201.02990.24020.96120.045*
C211.03006 (16)0.13863 (12)0.85642 (15)0.0476 (4)
H211.08440.16620.83750.057*
C220.98273 (15)0.05323 (13)0.81053 (14)0.0474 (4)
H221.00500.02290.76070.057*
C230.90285 (14)0.01356 (12)0.83900 (14)0.0443 (4)
H230.87080.04410.80850.053*
C240.86929 (12)0.05847 (11)0.91287 (13)0.0380 (3)
H240.81500.03040.93160.046*
C250.69557 (11)0.12675 (9)1.00893 (10)0.0277 (3)
C260.69898 (15)0.02398 (12)1.08696 (15)0.0484 (4)
H26A0.74970.06461.14220.073*
H26B0.67350.05561.01750.073*
H26C0.63640.00961.10460.073*
C270.60968 (14)0.40408 (12)1.10432 (14)0.0427 (4)
H27A0.54020.43191.05680.064*
H27B0.66640.45211.12760.064*
H27C0.60180.37721.16700.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0585 (3)0.0513 (3)0.0387 (2)0.0011 (2)0.00890 (18)0.00687 (17)
O10.0440 (6)0.0340 (6)0.0505 (6)0.0111 (5)0.0216 (5)0.0061 (5)
O20.0317 (5)0.0397 (6)0.0438 (6)0.0094 (4)0.0005 (4)0.0098 (5)
O30.0341 (5)0.0279 (5)0.0342 (5)0.0001 (4)0.0093 (4)0.0072 (4)
N10.0268 (5)0.0312 (6)0.0313 (5)0.0051 (4)0.0118 (4)0.0042 (4)
N20.0278 (6)0.0421 (7)0.0344 (6)0.0044 (5)0.0066 (5)0.0083 (5)
C10.0384 (7)0.0406 (8)0.0326 (7)0.0098 (6)0.0128 (6)0.0075 (6)
C20.0536 (10)0.0701 (12)0.0376 (8)0.0157 (9)0.0248 (7)0.0097 (8)
C30.0517 (10)0.0732 (13)0.0583 (11)0.0097 (10)0.0361 (9)0.0239 (10)
C40.0425 (9)0.0457 (9)0.0666 (11)0.0013 (7)0.0302 (8)0.0166 (8)
C50.0391 (8)0.0352 (8)0.0454 (8)0.0001 (6)0.0206 (6)0.0054 (6)
C60.0327 (7)0.0311 (7)0.0321 (6)0.0052 (5)0.0150 (5)0.0079 (5)
C70.0278 (6)0.0301 (7)0.0263 (6)0.0000 (5)0.0092 (5)0.0051 (5)
C80.0325 (7)0.0354 (7)0.0378 (7)0.0077 (6)0.0154 (6)0.0103 (6)
C90.0240 (6)0.0249 (6)0.0244 (5)0.0017 (5)0.0083 (4)0.0003 (5)
C100.0235 (6)0.0277 (6)0.0268 (6)0.0016 (5)0.0095 (5)0.0004 (5)
C110.0276 (6)0.0321 (7)0.0272 (6)0.0031 (5)0.0110 (5)0.0002 (5)
C120.0335 (7)0.0399 (8)0.0375 (7)0.0009 (6)0.0160 (6)0.0022 (6)
C130.0510 (9)0.0425 (9)0.0477 (9)0.0033 (7)0.0292 (7)0.0090 (7)
C140.0625 (11)0.0471 (9)0.0342 (7)0.0154 (8)0.0226 (7)0.0112 (7)
C150.0476 (9)0.0493 (9)0.0290 (7)0.0111 (7)0.0075 (6)0.0009 (6)
C160.0305 (7)0.0349 (7)0.0297 (6)0.0054 (5)0.0097 (5)0.0029 (5)
C170.0272 (6)0.0297 (7)0.0363 (7)0.0017 (5)0.0142 (5)0.0081 (5)
C180.0238 (6)0.0312 (7)0.0305 (6)0.0006 (5)0.0094 (5)0.0034 (5)
C190.0251 (6)0.0291 (6)0.0303 (6)0.0036 (5)0.0094 (5)0.0001 (5)
C200.0384 (8)0.0321 (7)0.0474 (8)0.0022 (6)0.0223 (6)0.0032 (6)
C210.0541 (10)0.0431 (9)0.0612 (10)0.0035 (8)0.0395 (9)0.0016 (8)
C220.0583 (10)0.0454 (9)0.0493 (9)0.0028 (8)0.0327 (8)0.0072 (7)
C230.0485 (9)0.0389 (8)0.0475 (9)0.0044 (7)0.0213 (7)0.0140 (7)
C240.0361 (7)0.0379 (8)0.0431 (8)0.0070 (6)0.0190 (6)0.0084 (6)
C250.0280 (6)0.0271 (6)0.0264 (6)0.0009 (5)0.0091 (5)0.0012 (5)
C260.0569 (10)0.0329 (8)0.0510 (9)0.0063 (7)0.0168 (8)0.0121 (7)
C270.0445 (9)0.0393 (8)0.0491 (9)0.0113 (7)0.0237 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cl1—C11.7424 (18)C10—C171.5702 (18)
O1—C171.2108 (17)C11—C121.375 (2)
O2—C251.2053 (16)C11—C161.3918 (18)
O3—C251.3269 (15)C12—C131.392 (2)
O3—C261.4406 (18)C12—H120.9300
N1—C81.4536 (18)C13—C141.381 (3)
N1—C101.4550 (16)C13—H130.9300
N1—C271.4556 (19)C14—C151.379 (3)
N2—C171.3582 (19)C14—H140.9300
N2—C161.399 (2)C15—C161.382 (2)
N2—H2A0.8600C15—H150.9300
C1—C21.387 (2)C18—C191.5194 (19)
C1—C61.392 (2)C18—H18A0.9700
C2—C31.377 (3)C18—H18B0.9700
C2—H20.9300C19—C241.385 (2)
C3—C41.369 (3)C19—C201.387 (2)
C3—H30.9300C20—C211.377 (2)
C4—C51.384 (2)C20—H200.9300
C4—H40.9300C21—C221.380 (3)
C5—C61.396 (2)C21—H210.9300
C5—H50.9300C22—C231.367 (2)
C6—C71.5146 (19)C22—H220.9300
C7—C81.533 (2)C23—C241.383 (2)
C7—C91.5794 (17)C23—H230.9300
C7—H70.9800C24—H240.9300
C8—H8A0.9700C26—H26A0.9600
C8—H8B0.9700C26—H26B0.9600
C9—C251.5353 (18)C26—H26C0.9600
C9—C181.5438 (18)C27—H27A0.9600
C9—C101.5980 (18)C27—H27B0.9600
C10—C111.5162 (18)C27—H27C0.9600
C25—O3—C26116.79 (11)C14—C13—C12120.31 (16)
C8—N1—C10107.39 (10)C14—C13—H13119.8
C8—N1—C27114.12 (12)C12—C13—H13119.8
C10—N1—C27115.75 (11)C15—C14—C13121.51 (15)
C17—N2—C16111.80 (11)C15—C14—H14119.2
C17—N2—H2A124.1C13—C14—H14119.2
C16—N2—H2A124.1C14—C15—C16117.31 (15)
C2—C1—C6122.10 (16)C14—C15—H15121.3
C2—C1—Cl1117.02 (14)C16—C15—H15121.3
C6—C1—Cl1120.89 (12)C15—C16—C11122.29 (15)
C3—C2—C1119.34 (17)C15—C16—N2127.96 (14)
C3—C2—H2120.3C11—C16—N2109.65 (12)
C1—C2—H2120.3O1—C17—N2125.27 (13)
C4—C3—C2120.44 (16)O1—C17—C10127.14 (13)
C4—C3—H3119.8N2—C17—C10107.58 (12)
C2—C3—H3119.8C19—C18—C9118.04 (10)
C3—C4—C5119.68 (17)C19—C18—H18A107.8
C3—C4—H4120.2C9—C18—H18A107.8
C5—C4—H4120.2C19—C18—H18B107.8
C4—C5—C6121.96 (16)C9—C18—H18B107.8
C4—C5—H5119.0H18A—C18—H18B107.1
C6—C5—H5119.0C24—C19—C20117.43 (13)
C1—C6—C5116.47 (14)C24—C19—C18124.48 (13)
C1—C6—C7121.63 (13)C20—C19—C18118.04 (12)
C5—C6—C7121.78 (13)C21—C20—C19121.54 (15)
C6—C7—C8112.74 (11)C21—C20—H20119.2
C6—C7—C9118.39 (11)C19—C20—H20119.2
C8—C7—C9105.17 (10)C20—C21—C22120.00 (15)
C6—C7—H7106.6C20—C21—H21120.0
C8—C7—H7106.6C22—C21—H21120.0
C9—C7—H7106.6C23—C22—C21119.39 (15)
N1—C8—C7104.64 (11)C23—C22—H22120.3
N1—C8—H8A110.8C21—C22—H22120.3
C7—C8—H8A110.8C22—C23—C24120.50 (15)
N1—C8—H8B110.8C22—C23—H23119.7
C7—C8—H8B110.8C24—C23—H23119.7
H8A—C8—H8B108.9C23—C24—C19121.13 (14)
C25—C9—C18111.25 (11)C23—C24—H24119.4
C25—C9—C7108.29 (10)C19—C24—H24119.4
C18—C9—C7116.19 (11)O2—C25—O3122.21 (12)
C25—C9—C10105.29 (10)O2—C25—C9125.61 (12)
C18—C9—C10112.00 (10)O3—C25—C9112.13 (10)
C7—C9—C10102.98 (10)O3—C26—H26A109.5
N1—C10—C11112.42 (11)O3—C26—H26B109.5
N1—C10—C17114.99 (11)H26A—C26—H26B109.5
C11—C10—C17100.54 (10)O3—C26—H26C109.5
N1—C10—C9101.95 (10)H26A—C26—H26C109.5
C11—C10—C9117.69 (11)H26B—C26—H26C109.5
C17—C10—C9109.87 (10)N1—C27—H27A109.5
C12—C11—C16119.35 (13)N1—C27—H27B109.5
C12—C11—C10131.30 (12)H27A—C27—H27B109.5
C16—C11—C10109.25 (12)N1—C27—H27C109.5
C11—C12—C13119.14 (14)H27A—C27—H27C109.5
C11—C12—H12120.4H27B—C27—H27C109.5
C13—C12—H12120.4
C6—C1—C2—C30.7 (2)C17—C10—C11—C168.30 (14)
Cl1—C1—C2—C3178.80 (14)C9—C10—C11—C16110.91 (13)
C1—C2—C3—C40.1 (3)C16—C11—C12—C132.8 (2)
C2—C3—C4—C50.9 (3)C10—C11—C12—C13178.68 (15)
C3—C4—C5—C61.0 (3)C11—C12—C13—C140.6 (2)
C2—C1—C6—C50.6 (2)C12—C13—C14—C151.4 (3)
Cl1—C1—C6—C5178.88 (11)C13—C14—C15—C161.1 (2)
C2—C1—C6—C7175.46 (14)C14—C15—C16—C111.2 (2)
Cl1—C1—C6—C75.07 (19)C14—C15—C16—N2174.75 (15)
C4—C5—C6—C10.3 (2)C12—C11—C16—C153.2 (2)
C4—C5—C6—C7176.31 (14)C10—C11—C16—C15179.89 (13)
C1—C6—C7—C8128.67 (14)C12—C11—C16—N2173.40 (13)
C5—C6—C7—C847.18 (17)C10—C11—C16—N23.29 (16)
C1—C6—C7—C9108.02 (15)C17—N2—C16—C15171.99 (15)
C5—C6—C7—C976.13 (17)C17—N2—C16—C114.37 (16)
C10—N1—C8—C740.65 (14)C16—N2—C17—O1169.08 (14)
C27—N1—C8—C7170.37 (12)C16—N2—C17—C109.77 (15)
C6—C7—C8—N1150.69 (11)N1—C10—C17—O147.09 (19)
C9—C7—C8—N120.31 (14)C11—C10—C17—O1168.07 (14)
C6—C7—C9—C25126.30 (13)C9—C10—C17—O167.20 (17)
C8—C7—C9—C25106.70 (12)N1—C10—C17—N2131.74 (12)
C6—C7—C9—C180.28 (17)C11—C10—C17—N210.76 (13)
C8—C7—C9—C18127.29 (12)C9—C10—C17—N2113.97 (12)
C6—C7—C9—C10122.52 (12)C25—C9—C18—C1967.05 (15)
C8—C7—C9—C104.48 (13)C7—C9—C18—C1957.46 (16)
C8—N1—C10—C11169.67 (11)C10—C9—C18—C19175.41 (11)
C27—N1—C10—C1161.54 (15)C9—C18—C19—C2453.85 (19)
C8—N1—C10—C1776.09 (14)C9—C18—C19—C20128.89 (14)
C27—N1—C10—C1752.70 (16)C24—C19—C20—C211.0 (2)
C8—N1—C10—C942.72 (13)C18—C19—C20—C21178.49 (15)
C27—N1—C10—C9171.51 (11)C19—C20—C21—C220.7 (3)
C25—C9—C10—N185.91 (11)C20—C21—C22—C230.1 (3)
C18—C9—C10—N1153.05 (11)C21—C22—C23—C240.2 (3)
C7—C9—C10—N127.49 (12)C22—C23—C24—C190.2 (3)
C25—C9—C10—C1137.55 (14)C20—C19—C24—C230.8 (2)
C18—C9—C10—C1183.49 (14)C18—C19—C24—C23178.06 (14)
C7—C9—C10—C11150.94 (11)C26—O3—C25—O21.1 (2)
C25—C9—C10—C17151.71 (10)C26—O3—C25—C9176.38 (12)
C18—C9—C10—C1730.67 (14)C18—C9—C25—O2146.65 (14)
C7—C9—C10—C1794.90 (11)C7—C9—C25—O217.80 (19)
N1—C10—C11—C1245.1 (2)C10—C9—C25—O291.82 (16)
C17—C10—C11—C12167.86 (15)C18—C9—C25—O335.95 (15)
C9—C10—C11—C1272.93 (19)C7—C9—C25—O3164.80 (11)
N1—C10—C11—C16131.09 (12)C10—C9—C25—O385.58 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.9004 (15)164
C5—H5···O10.932.313.168 (2)153
C18—H18A···O10.972.543.2469 (18)130
C24—H24···O30.932.473.1650 (19)132
C23—H23···Cg3ii0.932.773.600 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC27H25ClN2O3
Mr460.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.0887 (6), 14.0869 (7), 13.3521 (7)
β (°) 113.524 (2)
V3)2257.25 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.953, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
29103, 6735, 4875
Rint0.028
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 0.98
No. of reflections6735
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.9004 (15)164
C5—H5···O10.932.313.168 (2)153
C18—H18A···O10.972.543.2469 (18)130
C24—H24···O30.932.473.1650 (19)132
C23—H23···Cg3ii0.932.773.600 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT–Madras, India, for the data collection.

References

First citationBruker (2004). SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656–659.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682—6685.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds