metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m455-m456

Bis[μ-3,5-bis­­(pyridin-2-yl)pyrazolato]bis­­[(hexa­fluoro­phosphato)copper(II)]

aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp

(Received 2 July 2013; accepted 8 July 2013; online 13 July 2013)

The title dinuclear complex mol­ecule, [Cu2(C13H9N4)2(PF6)2], lies about an inversion center. The CuII atom shows a square-pyramidal coordination geometry with the basal plane formed by four N atoms of the two bis-chelating 3,5-bis­(pyridin-2-yl)pyrazolate ions and with one F atom of the hexa­fluoro­phosphate ion in the apical position. Mol­ecules are stacked in a column along the a axis through C—H⋯F hydrogen bonds. The columns are further linked by other C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For metal complexes of 3,5-bis­(2-pyrid­yl)pyrazole, see: Klingele et al. (2009[Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698-2741.]); Yoneda, Adachi, Hayami et al. (2006[Yoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45-47.]); Yoneda, Adachi, Nishio et al. (2006[Yoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Katada, M., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459-5461.]); Ishikawa et al. (2010[Ishikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139-11144.]); Mishima et al. (2011[Mishima, A., Fuyuhiro, A., Kumagai, H. & Kawata, S. (2011). Acta Cryst. E67, m1523-m1524.]); Washizaki et al. (2012[Washizaki, T., Ishikawa, R., Yoneda, K., Kitagawa, S., Kaizaki, S., Fuyuhiro, A. & Kawata, S. (2012). RSC Adv. 2, 12169-12172.]). For an example of a coordinated hexa­fluoro­phosphate ion, see: Noro et al. (2011[Noro, S., Ohba, T., Fukuhara, K., Takahashi, Y., Akutagawa, T. & Nakamura, T. (2011). Dalton Trans. 40, 2268-2274.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H9N4)2(F6P)2]

  • Mr = 859.52

  • Monoclinic, P 21 /c

  • a = 6.3558 (4) Å

  • b = 21.2388 (14) Å

  • c = 10.9252 (9) Å

  • β = 95.753 (2)°

  • V = 1467.36 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 200 K

  • 0.50 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.603, Tmax = 0.845

  • 23498 measured reflections

  • 3364 independent reflections

  • 3035 reflections with F2 > 2σ(F2)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.05

  • 3364 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—F1 2.4027 (14)
Cu1—N1i 2.0698 (15)
Cu1—N2i 1.9393 (16)
Cu1—N3 1.9405 (15)
Cu1—N4 2.0577 (17)
Symmetry code: (i) -x, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F3ii 0.95 2.31 3.257 (3) 175
C11—H7⋯F2iii 0.95 2.54 3.451 (3) 162
C12—H8⋯F5iv 0.95 2.60 3.456 (3) 150
C13—H9⋯F3iv 0.95 2.52 3.226 (3) 131
Symmetry codes: (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

3,5-Bis(2-pyridyl)pyrazole [Hbpypz] can be used to construct of a series of mononuclear, dinuclear and polynuclear complexes as it is well-known due to the versatile properties of the ligand (Klingele et al., 2009). The Hbpypz has four N donors by deprotonation; the two N atoms in a pyrazole moiety and two N atoms in pyridine moieties. This ligand can bind to metal ions by behaving as a bidentate or as a tetradentate ligand and would be possible to form various coordination modes (Yoneda, Adachi, Hayami et al., 2006; Yoneda, Adachi, Nishio et al., 2006). In particular, two bpypz- ions form a planar dinuclear complex by chelating two metal ions at equatorial position (Washizaki et al., 2012). The dinuclear complex has unique coordination sites at the apical positions, which can trap ions hardly to coordinate. We have previously reported the dinuclear complex with coordinated hydrogensulfate ions at the apical sites (Mishima et al., 2011). The complex consists of a planer dinuclear complex and two hydrogensulfate ions, and forms a 1D chain with methanol molecules by hydrogen-bonding interactions.

The title planer dinuclear CuII complex with two PF6- ions has a similar structure to the above complex. The basal plane in the complex is formed by four N donors of two deprotnated tetradentate bridging bpypz- ligands. Cu—N distances are Cu—N1 2.0698 (15) Å, Cu—N2 1.9393 (16) Å, Cu—N3 1.9405 (15) Å, and Cu—N4 2.0577 (17) Å. CuII ions are each penta-coordinated by occupying PF6- ion at apical positions in the opposite direction and form a near ideal square-pyramidal coordination environment with t value of 0.068. The distance of Cu—F1 is 2.4027 (14) Å. To the best of our knowledge, the crystal structure report of PF6- coordinated CuII complex is only a few examples (Noro et al., 2011). The adjacent dinuclear complexes are stacked in columns through a weak ππ stacking interaction between pyridyl and pyrazol rings of the bpypz- ions (centroid-centroid distance 3.879 Å) and C—H···F hydrogen bonds between the bpypz- and the PF6- ions (Table 2). The C—H···F interactions are expected to be weak because of the low acidity of C—H system. However, the interatomic distances are in close contact; the distances of C—H···F bond are H1···F3 2.689 Å, H2···F4 2.666 Å, H8···F5 2.603 Å and H9···F3 2.522 Å. The supramolecular structure results from C—H···F bonds between adjacent columns. The distances between the columns are H3···F3 2.308 Å, H7···F2 2.536 Å and H5···F8 2.634 Å.

Related literature top

For metal complexes of 3,5-bis(2-pyridyl)pyrazole, see: Klingele et al. (2009); Yoneda, Adachi, Hayami et al. (2006); Yoneda, Adachi, Nishio et al. (2006); Ishikawa et al. (2010); Mishima et al. (2011); Washizaki et al. (2012). For an example of a coordinated hexafluorophosphate ion, see: Noro et al. (2011).

Experimental top

A methanolic solution of Cu(AcO)2.H2O (5ml, 20 mmol dm-3 ) was transferred to a glass tube, and then a methanolic solution of Hbpypz (5ml, 20 mmol dm-3), NaPF6 (5 ml, 10 mmol dm-3) were poured into the glass tube without mixing the solutions. Purple crystals began to format ambient temperature within one week. Yield: 14 mg (54 %). Elemental analysis (%) calcd for C26H18N8F12P2Cu2 : C 36.33, H 2.11, N 13.04; found: C 36.29, H 2.13, N 13.04.

Refinement top

The C-bound hydrogen atoms in the bpypz- ion were placed at calculated positions (C—H = 0.95 Å) and were treated as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title complex, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A fragment of one-dimensional structure of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packing structures of the title complex viewed along the a axis (a) and the c axis (b).
Bis[µ-3,5-bis(pyridin-2-yl)pyrazolato]bis[(hexafluorophosphato)copper(II)] top
Crystal data top
[Cu2(C13H9N4)2(F6P)2]F(000) = 852.00
Mr = 859.52Dx = 1.945 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 17353 reflections
a = 6.3558 (4) Åθ = 3.2–27.5°
b = 21.2388 (14) ŵ = 1.67 mm1
c = 10.9252 (9) ÅT = 200 K
β = 95.753 (2)°Block, purple
V = 1467.36 (18) Å30.50 × 0.15 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3035 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.028
¥w scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.603, Tmax = 0.845k = 2727
23498 measured reflectionsl = 1414
3364 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.8933P]
where P = (Fo2 + 2Fc2)/3
3364 reflections(Δ/σ)max = 0.005
226 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.19 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu2(C13H9N4)2(F6P)2]V = 1467.36 (18) Å3
Mr = 859.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.3558 (4) ŵ = 1.67 mm1
b = 21.2388 (14) ÅT = 200 K
c = 10.9252 (9) Å0.50 × 0.15 × 0.10 mm
β = 95.753 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3364 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3035 reflections with F2 > 2σ(F2)
Tmin = 0.603, Tmax = 0.845Rint = 0.028
23498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
3364 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24888 (3)1.033789 (9)0.417882 (19)0.02189 (8)
P10.03196 (7)1.13684 (2)0.14887 (5)0.02699 (12)
F10.0266 (2)1.09594 (7)0.27373 (13)0.0462 (4)
F20.28337 (18)1.14060 (7)0.17046 (13)0.0442 (4)
F30.22096 (18)1.13202 (6)0.13015 (12)0.0396 (3)
F40.0145 (3)1.19979 (7)0.22615 (15)0.0542 (4)
F50.0487 (3)1.07334 (7)0.07324 (15)0.0563 (4)
F60.0329 (3)1.17709 (8)0.02601 (13)0.0538 (4)
N10.4133 (3)0.88408 (7)0.53595 (15)0.0270 (4)
N20.0897 (3)0.93626 (7)0.45127 (14)0.0253 (3)
N30.0774 (3)0.95817 (7)0.39846 (15)0.0252 (3)
N40.4018 (3)0.98801 (7)0.28636 (15)0.0267 (4)
C10.5796 (4)0.85849 (11)0.5849 (2)0.0407 (5)
C20.6626 (4)0.80010 (12)0.5503 (3)0.0457 (6)
C30.5719 (4)0.76610 (11)0.4628 (3)0.0422 (5)
C40.4009 (4)0.79120 (10)0.4109 (2)0.0361 (5)
C50.3257 (3)0.85002 (9)0.44940 (18)0.0267 (4)
C60.1453 (3)0.88030 (9)0.40028 (18)0.0270 (4)
C70.0116 (3)0.86473 (9)0.31120 (19)0.0308 (4)
C80.1266 (3)0.91584 (9)0.31413 (17)0.0267 (4)
C90.3078 (3)0.93294 (9)0.24875 (17)0.0259 (4)
C100.3792 (4)0.89636 (10)0.15631 (19)0.0345 (5)
C110.5527 (4)0.91622 (11)0.1003 (2)0.0379 (5)
C120.6503 (4)0.97141 (10)0.1374 (3)0.0394 (5)
C130.5705 (4)1.00590 (10)0.2299 (3)0.0395 (5)
H10.64290.88150.64610.0489*
H20.78090.78390.58680.0549*
H30.62580.72580.43810.0506*
H40.33600.76850.34980.0433*
H50.01400.82820.26080.0370*
H60.30960.85810.13190.0413*
H70.60390.89190.03660.0454*
H80.77050.98580.10050.0473*
H90.63861.04430.25470.0474*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02108 (12)0.02079 (12)0.02492 (13)0.00163 (8)0.00777 (8)0.00105 (8)
P10.0235 (3)0.0286 (3)0.0298 (3)0.00159 (18)0.00704 (18)0.00549 (18)
F10.0339 (7)0.0609 (9)0.0441 (8)0.0039 (6)0.0048 (6)0.0282 (7)
F20.0238 (6)0.0595 (9)0.0501 (8)0.0005 (6)0.0075 (5)0.0071 (7)
F30.0243 (6)0.0452 (7)0.0494 (8)0.0015 (5)0.0050 (5)0.0164 (6)
F40.0554 (9)0.0404 (8)0.0704 (10)0.0047 (7)0.0235 (8)0.0159 (7)
F50.0550 (9)0.0471 (8)0.0710 (11)0.0066 (7)0.0268 (8)0.0213 (8)
F60.0451 (8)0.0709 (10)0.0458 (8)0.0083 (7)0.0071 (6)0.0299 (7)
N10.0240 (7)0.0287 (8)0.0289 (8)0.0056 (6)0.0053 (6)0.0000 (7)
N20.0256 (7)0.0233 (8)0.0282 (8)0.0040 (6)0.0094 (6)0.0015 (6)
N30.0246 (7)0.0246 (8)0.0279 (8)0.0027 (6)0.0099 (6)0.0008 (6)
N40.0275 (8)0.0237 (8)0.0307 (8)0.0021 (6)0.0118 (7)0.0025 (6)
C10.0360 (11)0.0469 (13)0.0420 (12)0.0155 (10)0.0168 (9)0.0086 (10)
C20.0388 (12)0.0486 (13)0.0521 (14)0.0233 (11)0.0162 (10)0.0052 (11)
C30.0375 (11)0.0326 (11)0.0567 (14)0.0141 (9)0.0057 (10)0.0042 (10)
C40.0332 (10)0.0275 (10)0.0486 (13)0.0046 (8)0.0086 (9)0.0067 (9)
C50.0220 (8)0.0260 (9)0.0324 (10)0.0017 (7)0.0036 (7)0.0014 (8)
C60.0256 (9)0.0232 (9)0.0330 (10)0.0025 (7)0.0069 (7)0.0016 (7)
C70.0279 (9)0.0277 (10)0.0381 (11)0.0038 (8)0.0095 (8)0.0078 (8)
C80.0250 (8)0.0271 (9)0.0288 (9)0.0005 (7)0.0073 (7)0.0040 (7)
C90.0229 (8)0.0291 (9)0.0265 (9)0.0016 (7)0.0061 (7)0.0015 (7)
C100.0322 (10)0.0392 (11)0.0333 (10)0.0023 (9)0.0100 (8)0.0092 (9)
C110.0368 (11)0.0457 (12)0.0335 (11)0.0041 (10)0.0155 (9)0.0042 (9)
C120.0369 (11)0.0407 (12)0.0449 (13)0.0004 (9)0.0247 (10)0.0031 (9)
C130.0407 (12)0.0303 (10)0.0517 (13)0.0069 (9)0.0257 (10)0.0022 (9)
Geometric parameters (Å, º) top
Cu1—F12.4027 (14)C3—C41.382 (4)
Cu1—N1i2.0698 (15)C4—C51.388 (3)
Cu1—N2i1.9393 (16)C5—C61.463 (3)
Cu1—N31.9405 (15)C6—C71.394 (3)
Cu1—N42.0577 (17)C7—C81.395 (3)
P1—F11.6205 (16)C8—C91.460 (3)
P1—F21.5937 (13)C9—C101.386 (3)
P1—F31.6033 (13)C10—C111.380 (4)
P1—F41.5911 (17)C11—C121.368 (4)
P1—F51.5908 (16)C12—C131.384 (4)
P1—F61.5919 (16)C1—H10.950
N1—C11.346 (3)C2—H20.950
N1—C51.354 (3)C3—H30.950
N2—N31.342 (3)C4—H40.950
N2—C61.345 (3)C7—H50.950
N3—C81.346 (3)C10—H60.950
N4—C91.358 (3)C11—H70.950
N4—C131.345 (3)C12—H80.950
C1—C21.385 (4)C13—H90.950
C2—C31.371 (4)
F1—Cu1—N1i86.91 (6)C1—C2—C3119.1 (3)
F1—Cu1—N2i89.26 (6)C2—C3—C4119.1 (3)
F1—Cu1—N395.51 (6)C3—C4—C5119.0 (2)
F1—Cu1—N495.15 (6)N1—C5—C4122.62 (18)
N1i—Cu1—N2i80.32 (7)N1—C5—C6114.45 (17)
N1i—Cu1—N3171.30 (7)C4—C5—C6122.94 (19)
N1i—Cu1—N4107.82 (7)N2—C6—C5114.80 (18)
N2i—Cu1—N391.34 (7)N2—C6—C7110.23 (17)
N2i—Cu1—N4170.90 (7)C5—C6—C7134.97 (18)
N3—Cu1—N480.32 (7)C6—C7—C8103.05 (17)
F1—P1—F290.45 (8)N3—C8—C7110.27 (17)
F1—P1—F388.14 (7)N3—C8—C9114.66 (17)
F1—P1—F489.73 (9)C7—C8—C9135.07 (19)
F1—P1—F589.48 (8)N4—C9—C8114.25 (17)
F1—P1—F6179.00 (8)N4—C9—C10122.46 (18)
F2—P1—F3178.59 (8)C8—C9—C10123.29 (18)
F2—P1—F490.10 (8)C9—C10—C11119.1 (2)
F2—P1—F590.07 (8)C10—C11—C12119.2 (3)
F2—P1—F690.55 (8)C11—C12—C13118.8 (3)
F3—P1—F489.93 (8)N4—C13—C12123.6 (2)
F3—P1—F589.88 (8)N1—C1—H1118.447
F3—P1—F690.86 (8)C2—C1—H1118.447
F4—P1—F5179.19 (9)C1—C2—H2120.455
F4—P1—F690.15 (9)C3—C2—H2120.458
F5—P1—F690.64 (9)C2—C3—H3120.463
Cu1—F1—P1141.77 (8)C4—C3—H3120.456
Cu1i—N1—C1129.86 (15)C3—C4—H4120.518
Cu1i—N1—C5112.79 (13)C5—C4—H4120.513
C1—N1—C5117.14 (17)C6—C7—H5128.470
Cu1i—N2—N3134.19 (12)C8—C7—H5128.475
Cu1i—N2—C6117.43 (13)C9—C10—H6120.440
N3—N2—C6108.34 (16)C11—C10—H6120.440
Cu1—N3—N2134.43 (13)C10—C11—H7120.375
Cu1—N3—C8117.46 (13)C12—C11—H7120.382
N2—N3—C8108.11 (15)C11—C12—H8120.612
Cu1—N4—C9113.20 (13)C13—C12—H8120.598
Cu1—N4—C13129.88 (14)N4—C13—H9118.220
C9—N4—C13116.83 (17)C12—C13—H9118.227
N1—C1—C2123.1 (3)
F1—Cu1—N1i—C1i88.93 (13)Cu1i—N2—N3—C8177.44 (11)
F1—Cu1—N1i—C5i85.58 (10)Cu1i—N2—C6—C51.66 (19)
N1i—Cu1—F1—P165.41 (14)Cu1i—N2—C6—C7177.98 (9)
F1—Cu1—N2i—N3i93.39 (14)N3—N2—C6—C5179.56 (13)
F1—Cu1—N2i—C6i83.83 (10)N3—N2—C6—C70.08 (19)
N2i—Cu1—F1—P1145.75 (14)C6—N2—N3—Cu1179.64 (14)
F1—Cu1—N3—N287.27 (14)C6—N2—N3—C80.04 (18)
F1—Cu1—N3—C892.31 (11)Cu1—N3—C8—C7179.67 (9)
N3—Cu1—F1—P1122.97 (14)Cu1—N3—C8—C90.68 (19)
F1—Cu1—N4—C991.72 (10)N2—N3—C8—C70.02 (19)
F1—Cu1—N4—C1384.74 (13)N2—N3—C8—C9179.64 (13)
N4—Cu1—F1—P142.23 (14)Cu1—N4—C9—C83.48 (18)
N1i—Cu1—N2i—N3i179.62 (15)Cu1—N4—C9—C10176.67 (11)
N1i—Cu1—N2i—C6i3.16 (10)Cu1—N4—C13—C12176.39 (12)
N2i—Cu1—N1i—C1i178.70 (14)C9—N4—C13—C120.0 (3)
N2i—Cu1—N1i—C5i4.20 (10)C13—N4—C9—C8179.56 (15)
N1i—Cu1—N4—C9179.88 (9)C13—N4—C9—C100.3 (3)
N1i—Cu1—N4—C133.67 (14)N1—C1—C2—C30.4 (4)
N4—Cu1—N1i—C1i5.49 (14)C1—C2—C3—C40.4 (4)
N4—Cu1—N1i—C5i180.00 (9)C2—C3—C4—C50.3 (3)
N2i—Cu1—N3—N22.12 (15)C3—C4—C5—N10.1 (3)
N2i—Cu1—N3—C8178.30 (11)C3—C4—C5—C6179.75 (17)
N3—Cu1—N2i—N3i2.11 (14)N1—C5—C6—N22.1 (3)
N3—Cu1—N2i—C6i179.33 (11)N1—C5—C6—C7178.41 (17)
N3—Cu1—N4—C93.01 (10)C4—C5—C6—N2177.79 (17)
N3—Cu1—N4—C13179.47 (14)C4—C5—C6—C71.7 (4)
N4—Cu1—N3—N2178.43 (15)N2—C6—C7—C80.1 (2)
N4—Cu1—N3—C81.99 (10)C5—C6—C7—C8179.44 (19)
F2—P1—F1—Cu117.33 (14)C6—C7—C8—N30.1 (2)
F3—P1—F1—Cu1162.63 (13)C6—C7—C8—C9179.50 (18)
F4—P1—F1—Cu1107.43 (14)N3—C8—C9—N42.0 (3)
F5—P1—F1—Cu172.73 (14)N3—C8—C9—C10178.19 (14)
Cu1i—N1—C1—C2174.59 (12)C7—C8—C9—N4177.58 (19)
Cu1i—N1—C5—C4175.38 (11)C7—C8—C9—C102.3 (4)
Cu1i—N1—C5—C64.49 (18)N4—C9—C10—C110.2 (3)
C1—N1—C5—C40.1 (3)C8—C9—C10—C11179.59 (15)
C1—N1—C5—C6179.75 (15)C9—C10—C11—C120.1 (3)
C5—N1—C1—C20.3 (3)C10—C11—C12—C130.4 (3)
Cu1i—N2—N3—Cu13.0 (3)C11—C12—C13—N40.4 (4)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3ii0.952.313.257 (3)175
C11—H7···F2iii0.952.543.451 (3)162
C12—H8···F5iv0.952.603.456 (3)150
C13—H9···F3iv0.952.523.226 (3)131
Symmetry codes: (ii) x1, y1/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H9N4)2(F6P)2]
Mr859.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)6.3558 (4), 21.2388 (14), 10.9252 (9)
β (°) 95.753 (2)
V3)1467.36 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.50 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.603, 0.845
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
23498, 3364, 3035
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.05
No. of reflections3364
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.19

Computer programs: RAPID-AUTO (Rigaku, 2002), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected bond lengths (Å) top
Cu1—F12.4027 (14)Cu1—N31.9405 (15)
Cu1—N1i2.0698 (15)Cu1—N42.0577 (17)
Cu1—N2i1.9393 (16)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3ii0.952.313.257 (3)175
C11—H7···F2iii0.952.543.451 (3)162
C12—H8···F5iv0.952.603.456 (3)150
C13—H9···F3iv0.952.523.226 (3)131
Symmetry codes: (ii) x1, y1/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139–11144.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.  Web of Science CrossRef CAS Google Scholar
First citationMishima, A., Fuyuhiro, A., Kumagai, H. & Kawata, S. (2011). Acta Cryst. E67, m1523–m1524.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoro, S., Ohba, T., Fukuhara, K., Takahashi, Y., Akutagawa, T. & Nakamura, T. (2011). Dalton Trans. 40, 2268–2274.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWashizaki, T., Ishikawa, R., Yoneda, K., Kitagawa, S., Kaizaki, S., Fuyuhiro, A. & Kawata, S. (2012). RSC Adv. 2, 12169–12172.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45–47.  Web of Science CSD CrossRef Google Scholar
First citationYoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Katada, M., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459–5461.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m455-m456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds