organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Formyl­phen­­oxy)meth­yl]-3-(4-iso­propyl­phen­yl)acrylo­nitrile

aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

(Received 13 July 2013; accepted 24 July 2013; online 31 July 2013)

In the title compound, C20H19NO2, the dihedral angle between the benzene rings is 77.12 (8)°. The terminal isopropyl group is disordered over two orientations, with site occupancies of 0.720 (14) and 0.280 (14). In the crystal, mol­ecules are linked through a weak C—H⋯O inter­action, forming a zigzag chain along the c-axis direction.

Related literature

For the biological activity of cyano­acrylates, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]); Obniska et al. (2005[Obniska, J., Jurczyk, S., Zejc, A., Kaminski, K., Tatarczynska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170-175.]). For related structures, see: Ye et al. (2009[Ye, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.]); Suresh et al. (2012[Suresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.]); Govindan et al. (2012[Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012). Acta Cryst. E68, o484.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO2

  • Mr = 305.36

  • Monoclinic, P 21 /c

  • a = 13.3276 (9) Å

  • b = 11.6435 (7) Å

  • c = 11.9965 (9) Å

  • β = 111.800 (3)°

  • V = 1728.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 16125 measured reflections

  • 3532 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.179

  • S = 1.09

  • 3532 reflections

  • 231 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.41 3.236 (3) 149
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyanoacrylates and its derivatives have been widely used as agrochemicals (Zhang et al., 2009) and an important intermediate in drugs synthesis (Obniska et al., 2005).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure(Ye et al., 2009; Suresh et al., 2012; Govindan et al., 2012). The dihedral angle between the two benzene rings (C1—C6 & C10—C15) is 77.12 (8)°. The terminal methyl groups are disordered over two positions with the site occupancies of C17 = 0.280 (14) and C17A = 0.720 (14), C18 = 0.280 (14) and C18A = 0.720 (14). The crystal packing is through a weak intermolecular C—H···O interaction.

Related literature top

For the biological activity of cyanoacrylates, see: Zhang et al. (2009); Obniska et al. (2005). For related structures, see: Ye et al. (2009); Suresh et al. (2012); Govindan et al. (2012).

Experimental top

A solution of salicylaldehyde (1 equivalent) and potassium carbonate (1 equivalent) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (Z)-methyl 2-(bromomethyl)-3-(4-isopropylphenyl)acrylate (1 equivalent) was added dropwise. After the completion of the reaction as indicated by TLC, acetonitrile was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass and extracted. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexane (1:9) as solvents. The pure title compound was obtained as colorless solid (94%). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

The site occupancy factors of disordered C atoms in the methyl groups were refined to C17 = 0.280 (14) and C17A = 0.720 (14), C18 = 0.280 (14) and C18A = 0.720 (14). The bond distances C16—C17, C16—C17A, C16—C18 and C16—C18A were restrained to 1.520 (5) Å and the contact distances C17···C18 and C17A···C18A were restrained to 2.48 (1) Å. H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The components of the anisotropic displacement parameters in direction of the bond of C16, C17, C17A and C18A were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
(E)-2-[(2-Formylphenoxy)methyl]-3-(4-isopropylphenyl)acrylonitrile top
Crystal data top
C20H19NO2F(000) = 648
Mr = 305.36Dx = 1.173 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3895 reflections
a = 13.3276 (9) Åθ = 2.4–26.4°
b = 11.6435 (7) ŵ = 0.08 mm1
c = 11.9965 (9) ÅT = 295 K
β = 111.800 (3)°Block, colourless
V = 1728.5 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3532 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω and ϕ scansh = 1615
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 914
Tmin = 0.977, Tmax = 0.985l = 1514
16125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.074P)2 + 0.3076P]
where P = (Fo2 + 2Fc2)/3
3532 reflections(Δ/σ)max = 0.013
231 parametersΔρmax = 0.32 e Å3
12 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H19NO2V = 1728.5 (2) Å3
Mr = 305.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3276 (9) ŵ = 0.08 mm1
b = 11.6435 (7) ÅT = 295 K
c = 11.9965 (9) Å0.30 × 0.25 × 0.20 mm
β = 111.800 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2004 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.025
16125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05612 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
3532 reflectionsΔρmin = 0.18 e Å3
231 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.55620 (17)0.06955 (16)0.3043 (2)0.0650 (6)
C20.5111 (2)0.16986 (18)0.3262 (2)0.0789 (7)
H20.46770.21420.26190.095*
C30.5290 (2)0.2047 (2)0.4401 (3)0.0913 (8)
H30.49770.27200.45360.110*
C40.5937 (2)0.1397 (2)0.5349 (2)0.0878 (7)
H40.60650.16420.61280.105*
C50.64009 (19)0.0388 (2)0.5171 (2)0.0777 (6)
H50.68370.00460.58220.093*
C60.62042 (17)0.00323 (17)0.40049 (19)0.0635 (5)
C70.7365 (2)0.16085 (19)0.4660 (2)0.0791 (7)
H7A0.79740.11280.51160.095*
H7B0.70360.19030.52000.095*
C80.77323 (18)0.25785 (18)0.4086 (2)0.0725 (6)
C90.76564 (19)0.36663 (19)0.4379 (2)0.0759 (6)
H90.73310.37710.49350.091*
C100.79995 (19)0.47258 (18)0.3971 (2)0.0716 (6)
C110.8839 (2)0.4797 (2)0.3558 (3)0.0899 (8)
H110.91950.41320.34820.108*
C120.9151 (2)0.5837 (2)0.3258 (3)0.0987 (9)
H120.97230.58590.29910.118*
C130.8652 (2)0.6843 (2)0.3339 (2)0.0886 (8)
C140.7801 (2)0.6776 (2)0.3723 (2)0.0923 (8)
H140.74290.74410.37600.111*
C150.7491 (2)0.5741 (2)0.4052 (2)0.0852 (7)
H150.69290.57250.43350.102*
C160.9055 (3)0.7981 (2)0.3044 (3)0.1238 (10)
H16A0.98250.78300.32390.149*0.280 (14)
H16B0.95630.77920.26530.149*0.720 (14)
C170.8674 (13)0.8319 (18)0.1750 (6)0.168 (8)0.280 (14)
H17A0.91650.88700.16400.252*0.280 (14)
H17B0.79670.86520.15120.252*0.280 (14)
H17C0.86460.76520.12690.252*0.280 (14)
C180.9075 (17)0.8975 (11)0.3860 (14)0.158 (7)0.280 (14)
H18A0.93760.87250.46810.237*0.280 (14)
H18B0.83510.92470.36800.237*0.280 (14)
H18C0.95090.95840.37380.237*0.280 (14)
C18A0.9463 (8)0.8730 (6)0.4109 (6)0.222 (5)0.720 (14)
H18D0.99050.93240.39750.333*0.720 (14)
H18E0.98860.82830.47960.333*0.720 (14)
H18F0.88650.90690.42500.333*0.720 (14)
C17A0.8161 (7)0.8571 (7)0.2060 (7)0.230 (6)0.720 (14)
H17D0.75430.86410.22840.344*0.720 (14)
H17E0.79710.81290.13350.344*0.720 (14)
H17F0.83960.93210.19310.344*0.720 (14)
C190.5360 (2)0.0363 (2)0.1806 (2)0.0807 (7)
H190.56870.03040.16780.097*
N10.8430 (3)0.1946 (2)0.2453 (3)0.1215 (9)
C200.8136 (2)0.2253 (2)0.3180 (3)0.0851 (7)
O10.65982 (13)0.09621 (12)0.37184 (13)0.0776 (5)
O20.47952 (17)0.08980 (16)0.09395 (17)0.1076 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0713 (13)0.0488 (11)0.0771 (14)0.0039 (10)0.0303 (11)0.0005 (10)
C20.0840 (16)0.0558 (13)0.0971 (18)0.0030 (11)0.0340 (13)0.0002 (12)
C30.0973 (19)0.0639 (15)0.117 (2)0.0050 (14)0.0445 (17)0.0178 (15)
C40.0975 (18)0.0803 (17)0.0898 (18)0.0110 (15)0.0396 (15)0.0307 (14)
C50.0841 (16)0.0692 (15)0.0744 (15)0.0010 (12)0.0231 (12)0.0090 (11)
C60.0716 (13)0.0481 (11)0.0716 (14)0.0064 (10)0.0274 (11)0.0078 (10)
C70.0967 (17)0.0662 (14)0.0671 (14)0.0158 (12)0.0218 (12)0.0022 (11)
C80.0844 (15)0.0597 (13)0.0679 (13)0.0100 (11)0.0219 (12)0.0026 (10)
C90.0844 (15)0.0643 (14)0.0776 (15)0.0101 (12)0.0286 (12)0.0049 (11)
C100.0784 (15)0.0560 (13)0.0769 (14)0.0072 (11)0.0250 (12)0.0054 (10)
C110.0912 (18)0.0581 (14)0.128 (2)0.0027 (12)0.0492 (17)0.0043 (13)
C120.105 (2)0.0661 (16)0.146 (3)0.0101 (14)0.071 (2)0.0057 (15)
C130.0998 (19)0.0587 (15)0.115 (2)0.0108 (13)0.0488 (16)0.0037 (13)
C140.1020 (19)0.0552 (14)0.124 (2)0.0000 (13)0.0466 (17)0.0065 (13)
C150.0939 (17)0.0669 (15)0.1036 (19)0.0067 (13)0.0468 (15)0.0088 (13)
C160.161 (3)0.0624 (16)0.180 (3)0.0003 (17)0.101 (2)0.0119 (16)
C170.130 (12)0.218 (19)0.161 (5)0.096 (12)0.060 (8)0.002 (8)
C180.25 (2)0.081 (7)0.209 (13)0.058 (11)0.160 (16)0.023 (7)
C18A0.260 (9)0.100 (4)0.178 (4)0.115 (6)0.066 (6)0.022 (3)
C17A0.268 (9)0.191 (7)0.136 (5)0.145 (6)0.034 (5)0.096 (5)
C190.0988 (18)0.0642 (14)0.0810 (17)0.0059 (13)0.0354 (14)0.0101 (12)
N10.174 (3)0.0914 (17)0.124 (2)0.0213 (17)0.084 (2)0.0193 (15)
C200.111 (2)0.0588 (14)0.0874 (17)0.0155 (13)0.0386 (16)0.0045 (13)
O10.0981 (11)0.0565 (9)0.0699 (9)0.0167 (8)0.0214 (8)0.0037 (7)
O20.1335 (17)0.1036 (14)0.0868 (13)0.0221 (12)0.0422 (12)0.0279 (10)
Geometric parameters (Å, º) top
C1—C21.383 (3)C13—C141.376 (4)
C1—C61.388 (3)C13—C161.520 (3)
C1—C191.459 (3)C14—C151.379 (3)
C2—C31.359 (3)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.371 (4)C16—C18A1.474 (4)
C3—H30.9300C16—C171.495 (5)
C4—C51.381 (3)C16—C17A1.497 (4)
C4—H40.9300C16—C181.510 (5)
C5—C61.388 (3)C16—H16A0.9800
C5—H50.9300C16—H16B0.9800
C6—O11.367 (2)C17—H17A0.9600
C7—O11.425 (3)C17—H17B0.9600
C7—C81.496 (3)C17—H17C0.9600
C7—H7A0.9700C18—H18A0.9600
C7—H7B0.9700C18—H18B0.9600
C8—C91.328 (3)C18—H18C0.9600
C8—C201.432 (4)C18A—H18D0.9600
C9—C101.462 (3)C18A—H18E0.9600
C9—H90.9300C18A—H18F0.9600
C10—C151.384 (3)C17A—H17D0.9600
C10—C111.384 (3)C17A—H17E0.9600
C11—C121.371 (3)C17A—H17F0.9600
C11—H110.9300C19—O21.206 (3)
C12—C131.368 (3)C19—H190.9300
C12—H120.9300N1—C201.138 (3)
C2—C1—C6119.3 (2)C13—C14—H14119.4
C2—C1—C19119.3 (2)C15—C14—H14119.4
C6—C1—C19121.45 (19)C14—C15—C10121.3 (2)
C3—C2—C1121.1 (2)C14—C15—H15119.3
C3—C2—H2119.5C10—C15—H15119.3
C1—C2—H2119.5C18A—C16—C17A109.9 (4)
C2—C3—C4119.4 (2)C17—C16—C18112.9 (7)
C2—C3—H3120.3C18A—C16—C13111.2 (4)
C4—C3—H3120.3C17—C16—C13117.3 (8)
C3—C4—C5121.4 (2)C17A—C16—C13109.7 (3)
C3—C4—H4119.3C18—C16—C13116.1 (7)
C5—C4—H4119.3C18A—C16—H16A83.2
C4—C5—C6118.8 (2)C17—C16—H16A102.6
C4—C5—H5120.6C17A—C16—H16A136.7
C6—C5—H5120.6C18—C16—H16A102.6
O1—C6—C5124.0 (2)C13—C16—H16A102.6
O1—C6—C1115.98 (18)C18A—C16—H16B116.7
C5—C6—C1120.0 (2)C17A—C16—H16B102.4
O1—C7—C8107.17 (18)C13—C16—H16B106.4
O1—C7—H7A110.3C16—C17—H17A109.5
C8—C7—H7A110.3C16—C17—H17B109.5
O1—C7—H7B110.3C16—C17—H17C109.5
C8—C7—H7B110.3C16—C18—H18A109.5
H7A—C7—H7B108.5C16—C18—H18B109.5
C9—C8—C20122.7 (2)C16—C18—H18C109.5
C9—C8—C7121.9 (2)C16—C18A—H18D109.5
C20—C8—C7115.40 (19)C16—C18A—H18E109.5
C8—C9—C10130.7 (2)H18D—C18A—H18E109.5
C8—C9—H9114.6C16—C18A—H18F109.5
C10—C9—H9114.6H18D—C18A—H18F109.5
C15—C10—C11117.1 (2)H18E—C18A—H18F109.5
C15—C10—C9118.4 (2)C16—C17A—H17D109.5
C11—C10—C9124.4 (2)C16—C17A—H17E109.5
C12—C11—C10120.7 (2)H17D—C17A—H17E109.5
C12—C11—H11119.6C16—C17A—H17F109.5
C10—C11—H11119.6H17D—C17A—H17F109.5
C13—C12—C11122.4 (2)H17E—C17A—H17F109.5
C13—C12—H12118.8O2—C19—C1124.0 (2)
C11—C12—H12118.8O2—C19—H19118.0
C12—C13—C14117.2 (2)C1—C19—H19118.0
C12—C13—C16120.5 (2)N1—C20—C8176.6 (3)
C14—C13—C16122.3 (2)C6—O1—C7118.54 (16)
C13—C14—C15121.2 (2)
C6—C1—C2—C30.3 (3)C11—C12—C13—C140.8 (5)
C19—C1—C2—C3179.2 (2)C11—C12—C13—C16177.6 (3)
C1—C2—C3—C40.5 (4)C12—C13—C14—C152.2 (4)
C2—C3—C4—C50.8 (4)C16—C13—C14—C15176.1 (3)
C3—C4—C5—C60.1 (4)C13—C14—C15—C102.2 (4)
C4—C5—C6—O1178.4 (2)C11—C10—C15—C140.7 (4)
C4—C5—C6—C10.8 (3)C9—C10—C15—C14177.7 (2)
C2—C1—C6—O1178.29 (18)C12—C13—C16—C18A115.9 (6)
C19—C1—C6—O12.2 (3)C14—C13—C16—C18A62.4 (7)
C2—C1—C6—C51.0 (3)C12—C13—C16—C1783.0 (9)
C19—C1—C6—C5178.5 (2)C14—C13—C16—C1798.7 (9)
O1—C7—C8—C9124.1 (2)C12—C13—C16—C17A122.2 (6)
O1—C7—C8—C2054.1 (3)C14—C13—C16—C17A59.5 (7)
C20—C8—C9—C104.7 (4)C12—C13—C16—C18139.3 (10)
C7—C8—C9—C10177.3 (2)C14—C13—C16—C1839.0 (10)
C8—C9—C10—C15156.3 (3)C2—C1—C19—O21.7 (4)
C8—C9—C10—C1126.9 (4)C6—C1—C19—O2178.8 (2)
C15—C10—C11—C120.7 (4)C5—C6—O1—C78.2 (3)
C9—C10—C11—C12176.1 (2)C1—C6—O1—C7172.53 (19)
C10—C11—C12—C130.7 (5)C8—C7—O1—C6174.72 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.413.236 (3)149
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.413.236 (3)149
Symmetry code: (i) x, y1/2, z+1/2.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGovindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012). Acta Cryst. E68, o484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationObniska, J., Jurczyk, S., Zejc, A., Kaminski, K., Tatarczynska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170–175.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.  CSD CrossRef IUCr Journals Google Scholar
First citationYe, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds