organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-5-fluoro­benzaldehyde

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 5 July 2013; accepted 7 July 2013; online 13 July 2013)

In the title compound, C7H4BrFO, the benzaldehyde O atom is found to be trans to the 2-bromo substituent. In the crystal, short Br⋯F inter­actions between the bromine and fluorine substituents are observed at distances of 3.1878 (14), 3.3641 (13) and 3.3675 (14) Å. Offset face-to-face π-stacking inter­actions are also observed for both of the independent mol­ecules in the asymmetric unit running parallel to the crystallographic b axis, characterized by centroid–centroid distances of 3.8699 (2) and 3.8699 (2) Å.

Related literature

For information on the synthesis of 2-bromo-5-fluoro­benzaldehyde, see: Dubost et al. (2011[Dubost, E., Fossey, C., Cailly, T., Rault, S. & Fabis, F. (2011). J. Org. Chem. 76, 6414-6420.]). For vibrational spectroscopic analysis and ab initio structure calculations on 2-bromo-5-fluoro­benzaldehyde, see: Hiremath & Sundius (2009[Hiremath, C. S. & Sundius, T. (2009). Spectrochim. Acta Part A, 74, 1260-1267.]). For the use of 2-bromo-5-fluoro­benzaldehyde in organic synthesis of biologically active compounds, see: Chen et al. (2013[Chen, D. S., Dou, G. L., Li, Y. L., Liu, Y. & Wang, X. S. (2013). J. Org. Chem. 78, 5700-5704.]). For additional information on halogenated aromatic aldehydes in crystal structures, see: Byrn et al. (1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]); Moorthy et al. (2003[Moorthy, J. N., Venkatakrishnan, P., Mal, P., Dixit, S. & Venugopalan, P. (2003). Cryst. Growth Des. 3, 581-585.]). For information on halogen–halogen inter­actions in crystal structures, see: Pedireddi et al. (1994[Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4BrFO

  • Mr = 203.01

  • Monoclinic, P 21 /c

  • a = 15.3593 (6) Å

  • b = 3.8699 (2) Å

  • c = 23.4189 (9) Å

  • β = 106.330 (1)°

  • V = 1335.84 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.09 mm−1

  • T = 125 K

  • 0.36 × 0.16 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.218, Tmax = 0.838

  • 20203 measured reflections

  • 4080 independent reflections

  • 3468 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.03

  • 4080 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Ab initio electronic structure calculations have predicted that the lower energy conformer of 2-bromo-5-fluorobenzaldehyde is the one in which the benzaldehyde oxygen is trans to the 2-bromo substituent (Hiremath & Sundius, 2009). The crystal structure of 2-bromo-5-fluorobenzaldehyde reported here is consistent with this finding. The compound may be synthesized by selective ortho-bromination of the appropriate benzaldoxime (Dubost et al., 2011). The substance has found laboratory application in the synthesis of quinazolinones which are known to show antitumor activity (Chen et al., 2013). Crystal structures of halogenated aromatic aldehydes have been previously reported (Moorthy et al., 2003), and they are also known in clathrates (Byrn et al.,1993).

The titular compound crystallizes with two molecules of 2-bromo-5-fluorobenzaldehyde in the asymmetric unit (Fig. 1). The benzaldehyde oxygen is trans to the 2-bromo substituent, with O1—C1—C2—C3 and O2—C8—C9—C10 torsional angles of 174.3 (2)° and 170.2 (2)°, respectively. Several short intermolecuar halogen-halogen interactions can be seen in the structure between fluorine and bromine atoms. Within the asymmetric unit, the F1···Br2 distance of 3.1878 (14) Å is significantly shorter than the sum of the van der Waals radii of bromine and fluorine, 3.40 Å (Pedireddi et al., 1994). Somewhat longer, the F2···Br1i distance 3.3641 (13) and F2···Br1ii distance 3.3675 (14) Å are about the same as the sum of the van der Waals radii of fluorine and bromine (Fig 2.)

The aromatic compound packs in the solid state with an offset face-to-face π-stacking motif parallel to the crystallographic b-axis (Fig 2.). Each independent molecule in the asymmetric unit π-stacks with itself. This π-stacking motif is characterized by a centroid-to-centroid distance of 3.8699 (2) Å, centroid-to-plance distance of 3.371 (2) Å, and ring-offset of 1.901 (3) Å for molecule 1 and centroid-to-centroid distance of 3.8699 (2) Å, centroid-to-plance distance of 3.431 (2) Å, and ring-offset of 1.790 (3) Å for molecule 2.

Related literature top

For information on the synthesis of 2-bromo-5-fluorobenzaldehyde, see: Dubost et al. (2011). For vibrational spectroscopic analysis and ab initio structure calculations on 2-bromo-5-fluorobenzaldehyde, see: Hiremath & Sundius (2009). For the use of 2-bromo-5-fluorobenzaldehyde in organic synthesis of biologically active compounds, see: Chen et al. (2013). For additional information on halogenated aromatic aldehydes in crystal structures, see: Byrn et al. (1993); Moorthy et al. (2003). For information on halogen–halogen interactions in crystal structures, see: Pedireddi et al. (1994).

Experimental top

2-bromo-5-fluorobenzaldehyde was purchased from Aldrich Chemical Company, USA, and was recrystallized from chloroform.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl C-atoms. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. F1···Br2 distance 3.1878 (14) Å. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the offset face-to-face π-stacking in the structure of title compound, characterized by a centroid-to-centroid distance of 3.8699 (2) Å, centroid-to-plance distance of 3.371 (2) Å, and ring-offset of 1.901 (3) Å for molecule 1 and centroid-to-centroid distance of 3.8699 (2) Å, centroid-to-plance distance of 3.431 (2) Å, and ring-offset of 1.790 (3) Å for molecule 2. F1···Br2 distance 3.1878 (14) Å, F2···Br1i distance 3.3641 (13), and F2···Br1ii distance 3.3675 (14) Å. Displacement ellipsoids are shown at the 50% probability level. Symmetry codes: (i) x + 1, y + 1, z; (ii) -x + 1, y + 1/2, -z + 1/2.
2-Bromo-5-fluorobenzaldehyde top
Crystal data top
C7H4BrFOF(000) = 784
Mr = 203.01Dx = 2.019 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9913 reflections
a = 15.3593 (6) Åθ = 2.6–30.5°
b = 3.8699 (2) ŵ = 6.09 mm1
c = 23.4189 (9) ÅT = 125 K
β = 106.330 (1)°Plate, colourless
V = 1335.84 (10) Å30.36 × 0.16 × 0.03 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2121
Tmin = 0.218, Tmax = 0.838k = 55
20203 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.4137P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C7H4BrFOV = 1335.84 (10) Å3
Mr = 203.01Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.3593 (6) ŵ = 6.09 mm1
b = 3.8699 (2) ÅT = 125 K
c = 23.4189 (9) Å0.36 × 0.16 × 0.03 mm
β = 106.330 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3468 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.838Rint = 0.033
20203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 1.83 e Å3
4080 reflectionsΔρmin = 0.82 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.080111 (13)0.22202 (5)0.216581 (8)0.01891 (6)
Br20.462736 (14)0.76345 (5)0.083534 (10)0.02508 (6)
F10.25127 (9)0.6309 (4)0.02624 (6)0.0291 (3)
F20.85470 (8)1.1648 (4)0.15460 (6)0.0280 (3)
O10.05661 (10)0.8333 (4)0.05688 (7)0.0262 (3)
O20.60148 (11)1.3284 (5)0.24807 (7)0.0319 (4)
C10.01416 (13)0.6545 (5)0.09806 (9)0.0192 (4)
H1A0.04360.57950.12650.023*
C20.08121 (12)0.5479 (5)0.10601 (8)0.0154 (3)
C30.13221 (13)0.3679 (5)0.15590 (8)0.0156 (3)
C40.22246 (13)0.2828 (5)0.16300 (9)0.0194 (4)
H4A0.25640.16460.19770.023*
C50.26256 (14)0.3727 (5)0.11871 (9)0.0219 (4)
H5A0.32410.31640.12250.026*
C60.21117 (14)0.5449 (5)0.06927 (9)0.0206 (4)
C70.12254 (13)0.6377 (5)0.06165 (8)0.0181 (4)
H7A0.08980.76010.02710.022*
C80.57143 (14)1.1450 (6)0.20481 (9)0.0226 (4)
H8A0.51181.05450.19780.027*
C90.62435 (13)1.0572 (5)0.16259 (8)0.0166 (3)
C100.58708 (13)0.8909 (5)0.10820 (9)0.0176 (3)
C110.63924 (15)0.8169 (5)0.06990 (9)0.0217 (4)
H11A0.61250.70550.03300.026*
C120.73049 (14)0.9061 (5)0.08565 (9)0.0218 (4)
H12A0.76730.85450.06020.026*
C130.76605 (13)1.0719 (5)0.13929 (9)0.0191 (4)
C140.71611 (13)1.1487 (5)0.17800 (8)0.0181 (3)
H14A0.74351.26210.21460.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02187 (10)0.01889 (9)0.01725 (9)0.00061 (7)0.00756 (7)0.00286 (7)
Br20.01723 (10)0.02099 (11)0.03344 (12)0.00366 (7)0.00124 (8)0.00262 (8)
F10.0273 (7)0.0388 (7)0.0277 (6)0.0023 (6)0.0182 (5)0.0033 (6)
F20.0148 (6)0.0395 (7)0.0314 (7)0.0053 (5)0.0095 (5)0.0010 (6)
O10.0215 (7)0.0328 (8)0.0237 (7)0.0061 (6)0.0051 (6)0.0075 (6)
O20.0253 (8)0.0419 (9)0.0317 (9)0.0034 (7)0.0130 (7)0.0137 (7)
C10.0164 (8)0.0208 (9)0.0212 (9)0.0006 (7)0.0064 (7)0.0012 (7)
C20.0140 (8)0.0145 (8)0.0174 (8)0.0019 (6)0.0038 (7)0.0007 (6)
C30.0175 (8)0.0134 (8)0.0168 (8)0.0017 (6)0.0062 (7)0.0009 (6)
C40.0171 (9)0.0176 (9)0.0224 (9)0.0011 (7)0.0039 (7)0.0010 (7)
C50.0160 (9)0.0207 (9)0.0298 (10)0.0002 (7)0.0080 (8)0.0013 (8)
C60.0222 (10)0.0216 (9)0.0219 (9)0.0034 (7)0.0126 (8)0.0017 (7)
C70.0196 (9)0.0179 (8)0.0164 (8)0.0032 (7)0.0044 (7)0.0011 (7)
C80.0164 (9)0.0259 (10)0.0267 (10)0.0005 (8)0.0081 (8)0.0012 (8)
C90.0152 (8)0.0151 (8)0.0206 (9)0.0006 (6)0.0066 (7)0.0014 (7)
C100.0145 (8)0.0144 (8)0.0221 (9)0.0000 (6)0.0023 (7)0.0016 (7)
C110.0260 (10)0.0190 (9)0.0190 (9)0.0016 (8)0.0047 (8)0.0007 (7)
C120.0250 (10)0.0224 (9)0.0212 (9)0.0026 (8)0.0115 (8)0.0024 (7)
C130.0143 (9)0.0214 (9)0.0221 (9)0.0001 (7)0.0061 (7)0.0038 (7)
C140.0158 (8)0.0187 (8)0.0196 (9)0.0017 (7)0.0048 (7)0.0007 (7)
Geometric parameters (Å, º) top
Br1—C31.9021 (18)C5—C61.376 (3)
Br2—C101.8985 (19)C5—H5A0.9500
Br2—F13.1878 (14)C6—C71.370 (3)
F1—C61.362 (2)C7—H7A0.9500
F2—C131.355 (2)C8—C91.485 (3)
F2—Br1i3.3641 (13)C8—H8A0.9500
F2—Br1ii3.3675 (14)C9—C101.398 (3)
O1—C11.217 (3)C9—C141.399 (3)
O2—C81.217 (3)C10—C111.390 (3)
C1—C21.482 (3)C11—C121.389 (3)
C1—H1A0.9500C11—H11A0.9500
C2—C31.396 (3)C12—C131.379 (3)
C2—C71.405 (3)C12—H12A0.9500
C3—C41.389 (3)C13—C141.374 (3)
C4—C51.391 (3)C14—H14A0.9500
C4—H4A0.9500
C10—Br2—F1171.36 (6)C6—C7—H7A120.7
C6—F1—Br2110.32 (11)C2—C7—H7A120.7
C13—F2—Br1i165.26 (12)O2—C8—C9122.51 (19)
C13—F2—Br1ii97.22 (10)O2—C8—H8A118.7
Br1i—F2—Br1ii68.67 (3)C9—C8—H8A118.7
O1—C1—C2123.25 (18)C10—C9—C14118.44 (17)
O1—C1—H1A118.4C10—C9—C8123.47 (17)
C2—C1—H1A118.4C14—C9—C8118.09 (17)
C3—C2—C7118.59 (17)C11—C10—C9121.34 (18)
C3—C2—C1123.09 (16)C11—C10—Br2117.59 (15)
C7—C2—C1118.31 (17)C9—C10—Br2121.06 (14)
C4—C3—C2121.66 (17)C12—C11—C10119.94 (19)
C4—C3—Br1117.11 (14)C12—C11—H11A120.0
C2—C3—Br1121.23 (14)C10—C11—H11A120.0
C3—C4—C5119.19 (18)C13—C12—C11117.98 (18)
C3—C4—H4A120.4C13—C12—H12A121.0
C5—C4—H4A120.4C11—C12—H12A121.0
C6—C5—C4118.62 (18)F2—C13—C14118.27 (18)
C6—C5—H5A120.7F2—C13—C12118.38 (17)
C4—C5—H5A120.7C14—C13—C12123.35 (18)
F1—C6—C7118.63 (18)C13—C14—C9118.94 (18)
F1—C6—C5117.97 (18)C13—C14—H14A120.5
C7—C6—C5123.39 (18)C9—C14—H14A120.5
C6—C7—C2118.54 (18)
O1—C1—C2—C3174.3 (2)O2—C8—C9—C149.3 (3)
O1—C1—C2—C74.5 (3)C14—C9—C10—C110.1 (3)
C7—C2—C3—C41.3 (3)C8—C9—C10—C11179.40 (19)
C1—C2—C3—C4177.61 (18)C14—C9—C10—Br2179.19 (14)
C7—C2—C3—Br1177.71 (14)C8—C9—C10—Br20.3 (3)
C1—C2—C3—Br13.4 (3)C9—C10—C11—C120.5 (3)
C2—C3—C4—C51.4 (3)Br2—C10—C11—C12179.70 (15)
Br1—C3—C4—C5177.64 (15)C10—C11—C12—C130.9 (3)
C3—C4—C5—C60.3 (3)Br1i—F2—C13—C1474.6 (5)
Br2—F1—C6—C7148.75 (15)Br1ii—F2—C13—C1458.25 (18)
Br2—F1—C6—C530.4 (2)Br1i—F2—C13—C12105.5 (4)
C4—C5—C6—F1179.91 (18)Br1ii—F2—C13—C12121.91 (16)
C4—C5—C6—C71.0 (3)C11—C12—C13—F2178.98 (18)
F1—C6—C7—C2179.81 (17)C11—C12—C13—C140.8 (3)
C5—C6—C7—C21.1 (3)F2—C13—C14—C9179.45 (17)
C3—C2—C7—C60.0 (3)C12—C13—C14—C90.4 (3)
C1—C2—C7—C6178.90 (18)C10—C9—C14—C130.0 (3)
O2—C8—C9—C10170.2 (2)C8—C9—C14—C13179.52 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H4BrFO
Mr203.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)125
a, b, c (Å)15.3593 (6), 3.8699 (2), 23.4189 (9)
β (°) 106.330 (1)
V3)1335.84 (10)
Z8
Radiation typeMo Kα
µ (mm1)6.09
Crystal size (mm)0.36 × 0.16 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.218, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
20203, 4080, 3468
Rint0.033
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections4080
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 0.82

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, D. S., Dou, G. L., Li, Y. L., Liu, Y. & Wang, X. S. (2013). J. Org. Chem. 78, 5700–5704.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubost, E., Fossey, C., Cailly, T., Rault, S. & Fabis, F. (2011). J. Org. Chem. 76, 6414–6420.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHiremath, C. S. & Sundius, T. (2009). Spectrochim. Acta Part A, 74, 1260–1267.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoorthy, J. N., Venkatakrishnan, P., Mal, P., Dixit, S. & Venugopalan, P. (2003). Cryst. Growth Des. 3, 581–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationPedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds