organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy­anilinium p-toluene­sulfonate

aDepartment of Physics, Anna University, Chennai 600 025, India
*Correspondence e-mail: krgkrishnan@annauniv.edu

(Received 19 June 2013; accepted 5 July 2013; online 20 July 2013)

The asymmetric unit of the title salt, C6H8NO+·C7H7O3S, contains two cations and two anions. In the crystal, the cations and anions are linked through extensive N—H⋯O and O—H⋯O hydrogen-bonding inter­actions, which result in R44(18) and R21(4) ring motifs, forming a three-dimensional network.

Related literature

For related structures of 4-toluene­sulfonate salts, see: Koshima et al. (2004[Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807-811.]); Biradha & Mahata (2005[Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49-51.]); Sivakumar et al. (2012[Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO+·C7H7O3S

  • Mr = 281.32

  • Triclinic, [P \overline 1]

  • a = 9.5775 (3) Å

  • b = 10.8224 (3) Å

  • c = 14.1445 (4) Å

  • α = 96.787 (2)°

  • β = 109.701 (1)°

  • γ = 91.324 (2)°

  • V = 1367.50 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.953

  • 32207 measured reflections

  • 8651 independent reflections

  • 6679 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.122

  • S = 1.03

  • 8651 reflections

  • 372 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O6i 0.82 1.95 2.7657 (16) 173 (2)
N2—H2C⋯O4i 0.89 (1) 2.06 (1) 2.9441 (18) 170 (2)
N2—H2B⋯O3i 0.89 (1) 2.31 (2) 2.9020 (17) 124 (2)
N2—H2A⋯O3ii 0.90 (1) 1.89 (1) 2.7784 (18) 170 (2)
N2—H2B⋯O5ii 0.89 (1) 2.20 (2) 2.9395 (19) 141 (2)
N1—H1B⋯O5iii 0.89 (1) 2.15 (2) 2.9406 (19) 147 (2)
N1—H1B⋯O6iii 0.89 (1) 2.32 (2) 3.1087 (19) 147 (2)
N1—H1C⋯O2iv 0.89 (1) 1.86 (1) 2.7410 (18) 177 (2)
O8—H8⋯O1 0.82 1.94 2.7216 (17) 160
N1—H1A⋯O1 0.90 (1) 1.95 (1) 2.8007 (17) 158 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title salt (Fig.1) contains two hydroxyanilinium cations [C6H8N1O1]+ and two 4-toluenesulfonate anions [C7H7O3S1]-. The aminophenol molecule exists as hydroxyanilinium cation due to the protonation. The 4-toluenesulfonic acid exists as 4-toluenesulfonate due to a proton transfer. The hydroxyl oxygen atoms O7 and O8 attached to the phenyl ring deviate from the ring plane by 0.0528 (1)° and 0.0157 (1)Å, respectively. The crystal packing is stabilsed by intermolcular N—H···O and O—H···O hydrogen bonds (Table 1, Fig.2) involving R44(18), R12(4) ring motifs.

Related literature top

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005); Sivakumar et al. (2012).

Experimental top

The title compound was obtained by addition of 3-aminophenol and 4-toluenesulfonic acid in an equimolar ratio using methanol as solvent. After a filtration of resulting solution into a clean beaker, which was covered and kept at room temperature for slow evaporation. After a period of 2 weeks, block-like colourless crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

The H atoms of NH2 groups were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms,respectively, with Uiso(H) = 1.5Ueq(C) for CH3 H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
3-Hydroxyanilinium p-toluenesulfonate top
Crystal data top
C6H8NO+·C7H7O3SZ = 4
Mr = 281.32F(000) = 592
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5775 (3) ÅCell parameters from 7098 reflections
b = 10.8224 (3) Åθ = 2.3–30.8°
c = 14.1445 (4) ŵ = 0.25 mm1
α = 96.787 (2)°T = 293 K
β = 109.701 (1)°Block, colourless
γ = 91.324 (2)°0.30 × 0.25 × 0.20 mm
V = 1367.50 (7) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
8651 independent reflections
Radiation source: fine-focus sealed tube6679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 31.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.910, Tmax = 0.953k = 1515
32207 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.346P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8651 reflectionsΔρmax = 0.35 e Å3
372 parametersΔρmin = 0.33 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (2)
Crystal data top
C6H8NO+·C7H7O3Sγ = 91.324 (2)°
Mr = 281.32V = 1367.50 (7) Å3
Triclinic, P1Z = 4
a = 9.5775 (3) ÅMo Kα radiation
b = 10.8224 (3) ŵ = 0.25 mm1
c = 14.1445 (4) ÅT = 293 K
α = 96.787 (2)°0.30 × 0.25 × 0.20 mm
β = 109.701 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
8651 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6679 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.953Rint = 0.031
32207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
8651 reflectionsΔρmin = 0.33 e Å3
372 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79378 (15)0.72105 (13)0.22287 (10)0.0342 (3)
C20.7663 (2)0.82072 (15)0.16737 (13)0.0509 (4)
H20.78820.90230.19990.061*
C30.7056 (2)0.79676 (18)0.06283 (13)0.0595 (5)
H30.68790.86340.02530.071*
C40.67079 (19)0.67706 (18)0.01284 (12)0.0515 (4)
C50.6972 (2)0.57994 (17)0.06995 (12)0.0521 (4)
H50.67340.49850.03750.063*
C60.75833 (18)0.60085 (14)0.17446 (11)0.0435 (3)
H60.77540.53410.21180.052*
C70.6075 (3)0.6510 (2)0.10113 (13)0.0735 (6)
H7A0.50100.64400.12270.110*
H7B0.64240.57440.12360.110*
H7C0.63900.71800.12970.110*
C80.86225 (15)0.26820 (13)0.17460 (10)0.0367 (3)
C90.97997 (17)0.32943 (17)0.16045 (12)0.0495 (4)
H91.06070.36440.21600.059*
C100.9775 (2)0.3387 (2)0.06314 (13)0.0576 (4)
H101.05770.37960.05430.069*
C110.8593 (2)0.28898 (18)0.02095 (12)0.0526 (4)
C120.7423 (2)0.2290 (2)0.00521 (13)0.0596 (5)
H120.66090.19540.06080.072*
C130.74287 (18)0.21754 (18)0.09124 (13)0.0526 (4)
H130.66300.17580.10000.063*
C140.8580 (3)0.3018 (3)0.12599 (15)0.0793 (7)
H14A0.76610.26480.17480.119*
H14B0.93950.26030.13750.119*
H14C0.86770.38860.13260.119*
C150.75233 (16)0.93763 (12)0.64225 (10)0.0366 (3)
C160.60302 (16)0.91742 (13)0.58994 (11)0.0371 (3)
H160.56760.90270.51950.044*
C170.50499 (17)0.91922 (13)0.64370 (12)0.0410 (3)
C180.5603 (2)0.93703 (17)0.74827 (13)0.0548 (4)
H180.49560.93770.78470.066*
C190.7110 (2)0.9538 (2)0.79838 (13)0.0652 (5)
H190.74740.96440.86880.078*
C200.8098 (2)0.95514 (19)0.74635 (13)0.0553 (4)
H200.91170.96750.78060.066*
C210.27809 (14)0.53847 (13)0.42602 (9)0.0326 (3)
C220.31807 (15)0.65362 (13)0.40693 (10)0.0362 (3)
H220.27430.72470.42400.043*
C230.42514 (15)0.66067 (13)0.36166 (10)0.0358 (3)
C240.48849 (15)0.55399 (14)0.33565 (10)0.0389 (3)
H240.56060.55920.30540.047*
C250.44440 (15)0.44001 (14)0.35467 (11)0.0395 (3)
H250.48660.36850.33660.047*
C260.33822 (15)0.43084 (13)0.40027 (10)0.0357 (3)
H260.30830.35410.41320.043*
N10.85435 (15)0.94075 (12)0.58541 (10)0.0397 (3)
N20.17042 (14)0.53203 (13)0.47848 (10)0.0419 (3)
O10.76020 (13)0.81258 (14)0.38830 (9)0.0607 (3)
O21.00677 (13)0.82598 (12)0.38221 (10)0.0594 (3)
O30.89749 (14)0.62868 (11)0.39024 (8)0.0508 (3)
O40.74946 (13)0.33688 (11)0.31395 (9)0.0509 (3)
O51.00949 (12)0.29535 (12)0.36731 (8)0.0513 (3)
O60.82415 (14)0.12609 (10)0.29910 (9)0.0522 (3)
O70.35802 (13)0.90516 (13)0.58862 (9)0.0551 (3)
H70.31040.89670.62620.083*
O80.46157 (13)0.77577 (11)0.34359 (10)0.0525 (3)
H80.54700.77840.34320.079*
S10.87120 (4)0.74922 (3)0.35574 (2)0.03467 (9)
S20.86039 (4)0.25714 (3)0.29790 (3)0.03551 (9)
H1C0.899 (2)1.0158 (12)0.5934 (16)0.066 (6)*
H1A0.811 (2)0.9178 (19)0.5186 (8)0.062 (6)*
H2A0.0884 (16)0.5712 (18)0.4500 (14)0.064 (6)*
H2C0.206 (2)0.5702 (19)0.5421 (9)0.066 (6)*
H2B0.141 (2)0.4533 (11)0.4761 (16)0.069 (6)*
H1B0.928 (2)0.891 (2)0.6078 (19)0.092 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (6)0.0332 (7)0.0337 (6)0.0013 (5)0.0155 (5)0.0024 (5)
C20.0696 (11)0.0362 (8)0.0451 (8)0.0021 (7)0.0172 (7)0.0060 (6)
C30.0797 (12)0.0550 (10)0.0438 (9)0.0098 (9)0.0171 (8)0.0179 (8)
C40.0536 (9)0.0647 (11)0.0354 (7)0.0083 (8)0.0147 (7)0.0041 (7)
C50.0653 (10)0.0458 (9)0.0406 (8)0.0026 (7)0.0164 (7)0.0067 (6)
C60.0576 (9)0.0340 (7)0.0384 (7)0.0036 (6)0.0165 (6)0.0025 (6)
C70.0775 (13)0.1009 (17)0.0358 (8)0.0106 (12)0.0123 (8)0.0051 (9)
C80.0357 (6)0.0386 (7)0.0367 (6)0.0019 (5)0.0155 (5)0.0004 (5)
C90.0382 (7)0.0692 (11)0.0396 (7)0.0076 (7)0.0122 (6)0.0067 (7)
C100.0505 (9)0.0800 (13)0.0469 (9)0.0038 (8)0.0217 (7)0.0131 (8)
C110.0571 (9)0.0631 (11)0.0393 (8)0.0100 (8)0.0186 (7)0.0063 (7)
C120.0554 (10)0.0741 (13)0.0395 (8)0.0054 (9)0.0092 (7)0.0079 (8)
C130.0438 (8)0.0642 (11)0.0459 (8)0.0128 (7)0.0159 (7)0.0069 (7)
C140.0955 (16)0.1021 (18)0.0428 (10)0.0034 (14)0.0267 (10)0.0109 (10)
C150.0476 (7)0.0280 (6)0.0378 (7)0.0018 (5)0.0197 (6)0.0031 (5)
C160.0465 (7)0.0315 (7)0.0371 (7)0.0051 (5)0.0184 (6)0.0072 (5)
C170.0502 (8)0.0330 (7)0.0472 (8)0.0023 (6)0.0250 (6)0.0096 (6)
C180.0688 (11)0.0593 (10)0.0480 (9)0.0016 (8)0.0352 (8)0.0078 (8)
C190.0767 (13)0.0838 (14)0.0357 (8)0.0047 (11)0.0225 (8)0.0020 (8)
C200.0539 (9)0.0676 (11)0.0404 (8)0.0054 (8)0.0141 (7)0.0007 (7)
C210.0298 (5)0.0386 (7)0.0303 (6)0.0009 (5)0.0119 (4)0.0042 (5)
C220.0362 (6)0.0357 (7)0.0399 (7)0.0062 (5)0.0162 (5)0.0071 (5)
C230.0348 (6)0.0393 (7)0.0344 (6)0.0013 (5)0.0117 (5)0.0098 (5)
C240.0361 (6)0.0496 (8)0.0336 (6)0.0018 (6)0.0168 (5)0.0014 (6)
C250.0389 (7)0.0396 (7)0.0379 (7)0.0061 (5)0.0133 (5)0.0036 (5)
C260.0355 (6)0.0326 (7)0.0362 (6)0.0015 (5)0.0097 (5)0.0024 (5)
N10.0427 (6)0.0377 (7)0.0415 (6)0.0027 (5)0.0189 (5)0.0026 (5)
N20.0398 (6)0.0464 (8)0.0474 (7)0.0022 (5)0.0244 (6)0.0089 (6)
O10.0479 (6)0.0841 (9)0.0462 (6)0.0099 (6)0.0192 (5)0.0171 (6)
O20.0465 (6)0.0594 (8)0.0633 (8)0.0198 (5)0.0110 (5)0.0007 (6)
O30.0629 (7)0.0467 (6)0.0389 (5)0.0019 (5)0.0112 (5)0.0101 (5)
O40.0560 (6)0.0547 (7)0.0506 (6)0.0180 (5)0.0296 (5)0.0042 (5)
O50.0436 (6)0.0681 (8)0.0385 (5)0.0068 (5)0.0109 (4)0.0042 (5)
O60.0699 (8)0.0373 (6)0.0604 (7)0.0009 (5)0.0379 (6)0.0036 (5)
O70.0474 (6)0.0701 (8)0.0574 (7)0.0041 (5)0.0281 (5)0.0147 (6)
O80.0503 (6)0.0459 (6)0.0711 (8)0.0014 (5)0.0294 (6)0.0210 (6)
S10.03290 (16)0.03659 (18)0.03343 (16)0.00323 (12)0.01232 (12)0.00138 (12)
S20.03677 (17)0.03538 (18)0.03731 (17)0.00095 (12)0.01806 (13)0.00041 (13)
Geometric parameters (Å, º) top
C1—C61.374 (2)C16—H160.9300
C1—C21.387 (2)C17—O71.3543 (19)
C1—S11.7576 (14)C17—C181.380 (2)
C2—C31.384 (2)C18—C191.374 (3)
C2—H20.9300C18—H180.9300
C3—C41.376 (3)C19—C201.381 (3)
C3—H30.9300C19—H190.9300
C4—C51.377 (3)C20—H200.9300
C4—C71.507 (2)C21—C261.3760 (19)
C5—C61.382 (2)C21—C221.3783 (19)
C5—H50.9300C21—N21.4641 (16)
C6—H60.9300C22—C231.3849 (18)
C7—H7A0.9600C22—H220.9300
C7—H7B0.9600C23—O81.3617 (17)
C7—H7C0.9600C23—C241.385 (2)
C8—C91.378 (2)C24—C251.380 (2)
C8—C131.381 (2)C24—H240.9300
C8—S21.7682 (14)C25—C261.3830 (19)
C9—C101.384 (2)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.378 (2)N1—H1C0.885 (9)
C10—H100.9300N1—H1A0.895 (9)
C11—C121.377 (3)N1—H1B0.893 (10)
C11—C141.504 (2)N2—H2A0.895 (9)
C12—C131.383 (2)N2—H2C0.892 (9)
C12—H120.9300N2—H2B0.886 (9)
C13—H130.9300O1—S11.4497 (11)
C14—H14A0.9600O2—S11.4370 (11)
C14—H14B0.9600O3—S11.4444 (12)
C14—H14C0.9600O4—S21.4435 (11)
C15—C161.369 (2)O5—S21.4511 (11)
C15—C201.375 (2)O6—S21.4558 (11)
C15—N11.4617 (18)O7—H70.8200
C16—C171.3923 (19)O8—H80.8200
C6—C1—C2120.23 (14)O7—C17—C16116.90 (13)
C6—C1—S1120.08 (11)C18—C17—C16119.50 (15)
C2—C1—S1119.68 (11)C19—C18—C17119.91 (15)
C3—C2—C1118.87 (15)C19—C18—H18120.0
C3—C2—H2120.6C17—C18—H18120.0
C1—C2—H2120.6C18—C19—C20121.41 (16)
C4—C3—C2121.79 (16)C18—C19—H19119.3
C4—C3—H3119.1C20—C19—H19119.3
C2—C3—H3119.1C15—C20—C19117.71 (16)
C3—C4—C5118.09 (15)C15—C20—H20121.1
C3—C4—C7121.74 (17)C19—C20—H20121.1
C5—C4—C7120.17 (17)C26—C21—C22122.64 (12)
C4—C5—C6121.47 (15)C26—C21—N2119.15 (12)
C4—C5—H5119.3C22—C21—N2118.18 (12)
C6—C5—H5119.3C21—C22—C23118.24 (13)
C1—C6—C5119.52 (14)C21—C22—H22120.9
C1—C6—H6120.2C23—C22—H22120.9
C5—C6—H6120.2O8—C23—C22116.68 (13)
C4—C7—H7A109.5O8—C23—C24122.94 (12)
C4—C7—H7B109.5C22—C23—C24120.38 (13)
H7A—C7—H7B109.5C25—C24—C23119.83 (12)
C4—C7—H7C109.5C25—C24—H24120.1
H7A—C7—H7C109.5C23—C24—H24120.1
H7B—C7—H7C109.5C24—C25—C26120.79 (13)
C9—C8—C13119.39 (14)C24—C25—H25119.6
C9—C8—S2120.82 (11)C26—C25—H25119.6
C13—C8—S2119.77 (11)C21—C26—C25118.11 (13)
C8—C9—C10119.68 (15)C21—C26—H26120.9
C8—C9—H9120.2C25—C26—H26120.9
C10—C9—H9120.2C15—N1—H1C112.1 (14)
C11—C10—C9121.79 (16)C15—N1—H1A113.8 (13)
C11—C10—H10119.1H1C—N1—H1A106.9 (19)
C9—C10—H10119.1C15—N1—H1B110.6 (17)
C12—C11—C10117.65 (15)H1C—N1—H1B105 (2)
C12—C11—C14121.49 (18)H1A—N1—H1B108 (2)
C10—C11—C14120.85 (18)C21—N2—H2A112.7 (13)
C11—C12—C13121.62 (16)C21—N2—H2C112.2 (14)
C11—C12—H12119.2H2A—N2—H2C104.0 (19)
C13—C12—H12119.2C21—N2—H2B109.9 (14)
C8—C13—C12119.86 (16)H2A—N2—H2B106.4 (19)
C8—C13—H13120.1H2C—N2—H2B111 (2)
C12—C13—H13120.1C17—O7—H7109.5
C11—C14—H14A109.5C23—O8—H8109.5
C11—C14—H14B109.5O2—S1—O3111.93 (8)
H14A—C14—H14B109.5O2—S1—O1112.03 (8)
C11—C14—H14C109.5O3—S1—O1112.64 (8)
H14A—C14—H14C109.5O2—S1—C1108.04 (7)
H14B—C14—H14C109.5O3—S1—C1106.42 (6)
C16—C15—C20122.37 (14)O1—S1—C1105.28 (7)
C16—C15—N1118.85 (12)O4—S2—O5113.19 (7)
C20—C15—N1118.79 (14)O4—S2—O6112.69 (7)
C15—C16—C17119.05 (13)O5—S2—O6110.65 (8)
C15—C16—H16120.5O4—S2—C8107.33 (7)
C17—C16—H16120.5O5—S2—C8106.67 (6)
O7—C17—C18123.59 (14)O6—S2—C8105.79 (7)
C6—C1—C2—C31.3 (3)C17—C18—C19—C201.0 (3)
S1—C1—C2—C3179.86 (14)C16—C15—C20—C191.0 (3)
C1—C2—C3—C40.6 (3)N1—C15—C20—C19179.00 (17)
C2—C3—C4—C50.4 (3)C18—C19—C20—C150.8 (3)
C2—C3—C4—C7178.76 (19)C26—C21—C22—C231.2 (2)
C3—C4—C5—C60.7 (3)N2—C21—C22—C23176.98 (12)
C7—C4—C5—C6178.48 (18)C21—C22—C23—O8179.78 (12)
C2—C1—C6—C51.0 (2)C21—C22—C23—C240.7 (2)
S1—C1—C6—C5179.85 (13)O8—C23—C24—C25178.89 (13)
C4—C5—C6—C10.0 (3)C22—C23—C24—C250.2 (2)
C13—C8—C9—C100.4 (3)C23—C24—C25—C260.5 (2)
S2—C8—C9—C10178.85 (14)C22—C21—C26—C250.9 (2)
C8—C9—C10—C110.5 (3)N2—C21—C26—C25177.28 (12)
C9—C10—C11—C120.0 (3)C24—C25—C26—C210.0 (2)
C9—C10—C11—C14179.1 (2)C6—C1—S1—O2126.15 (13)
C10—C11—C12—C130.6 (3)C2—C1—S1—O254.99 (14)
C14—C11—C12—C13179.7 (2)C6—C1—S1—O35.78 (14)
C9—C8—C13—C120.2 (3)C2—C1—S1—O3175.36 (13)
S2—C8—C13—C12178.26 (15)C6—C1—S1—O1113.99 (13)
C11—C12—C13—C80.7 (3)C2—C1—S1—O164.87 (14)
C20—C15—C16—C172.5 (2)C9—C8—S2—O4108.94 (14)
N1—C15—C16—C17177.51 (13)C13—C8—S2—O469.52 (15)
C15—C16—C17—O7176.70 (13)C9—C8—S2—O512.66 (16)
C15—C16—C17—C182.2 (2)C13—C8—S2—O5168.88 (13)
O7—C17—C18—C19178.30 (17)C9—C8—S2—O6130.52 (14)
C16—C17—C18—C190.5 (3)C13—C8—S2—O651.02 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6i0.821.952.7657 (16)173 (2)
N2—H2C···O4i0.89 (1)2.06 (1)2.9441 (18)170 (2)
N2—H2B···O3i0.89 (1)2.31 (2)2.9020 (17)124 (2)
N2—H2A···O3ii0.90 (1)1.89 (1)2.7784 (18)170 (2)
N2—H2B···O5ii0.89 (1)2.20 (2)2.9395 (19)141 (2)
N1—H1B···O5iii0.89 (1)2.15 (2)2.9406 (19)147 (2)
N1—H1B···O6iii0.89 (1)2.32 (2)3.1087 (19)147 (2)
N1—H1C···O2iv0.89 (1)1.86 (1)2.7410 (18)177 (2)
O8—H8···O10.821.942.7216 (17)160
N1—H1A···O10.90 (1)1.95 (1)2.8007 (17)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H8NO+·C7H7O3S
Mr281.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5775 (3), 10.8224 (3), 14.1445 (4)
α, β, γ (°)96.787 (2), 109.701 (1), 91.324 (2)
V3)1367.50 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.910, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
32207, 8651, 6679
Rint0.031
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.122, 1.03
No. of reflections8651
No. of parameters372
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6i0.821.952.7657 (16)173 (2)
N2—H2C···O4i0.892 (9)2.062 (10)2.9441 (18)170 (2)
N2—H2B···O3i0.886 (9)2.311 (19)2.9020 (17)124 (2)
N2—H2A···O3ii0.895 (9)1.892 (10)2.7784 (18)170 (2)
N2—H2B···O5ii0.886 (9)2.201 (16)2.9395 (19)141 (2)
N1—H1B···O5iii0.893 (10)2.149 (16)2.9406 (19)147 (2)
N1—H1B···O6iii0.893 (10)2.319 (16)3.1087 (19)147 (2)
N1—H1C···O2iv0.885 (9)1.857 (10)2.7410 (18)177 (2)
O8—H8···O10.821.942.7216 (17)160
N1—H1A···O10.895 (9)1.951 (12)2.8007 (17)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1.
 

Acknowledgements

The authors thank thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationBiradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807–811.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds