organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Di­phenyl­phosphanyl-1-methyl-1H-benzimidazole

aNorth Carolina A&T State University, 1601 E Market St., Department of Chemistry, Greensboro, NC 27411, USA
*Correspondence e-mail: zassefa@ncat.edu

(Received 8 July 2013; accepted 24 July 2013; online 31 July 2013)

In the title compound, C20H18N2P, the P atom is bonded to the two phenyl and imidazole groups, with an average P—C bond length of 1.828 (2) Å. The three C—P—C bond angles have values consistent with a tetra­hedral geometry around the P atom with the fourth site occupied by a H atom. Crystal packing is through van der Waals inter­actions.

Related literature

For the first synthesis of the title compound and related systems, see: Moore & Whitesides (1982[Moore, S. S. & Whitesides, G. M. (1982). J. Org. Chem. 47, 1489-1493.]). For multimode coordination of di­phenyl­phosphine-substituted benzimidazoles featuring ethyl­ene linkers, see: Hahn et al. (2010[Hahn, F. E., Naziruddin, A. R., Hepp, A. & Pape, T. (2010). Organometallics, 29, 5283-5288.]). For amino-group linkers, see: Braunstein et al. (1997[Braunstein, P., Pietsch, J., Chauvin, Y., DeCian, A. & Fischer, J. (1997). J. Organomet. Chem. 529, 387-393.]). For the coordination of the N,P-type ligand (1-benzyl-2-imidazol­yl)di­phenyl­phos­phine (BzimPh2P) with several metal ions, see: Burini et al. (2000[Burini, A., Fackler, J. P., Galassi, R., Grant, T. A., Omary, M. A., Rawashdeh-Omary, M. A., Pietroni, B. R. & Staples, R. J. (2000). J. Am. Chem. Soc. 122, 11264-11265.]). For silver complexes with the same ligand, see: Bachechi et al. (2001[Bachechi, F., Burini, A., Fontani, M., Galassi, R., Macchioni, A., Pietroni, B. R., Zanello, P. & Zuccaccia, C. (2001). Inorg. Chim. Acta, 323, 45-54.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2P

  • Mr = 317.33

  • Triclinic, [P \overline 1]

  • a = 9.574 (2) Å

  • b = 9.904 (3) Å

  • c = 10.513 (3) Å

  • α = 74.215 (7)°

  • β = 67.172 (7)°

  • γ = 70.346 (7)°

  • V = 853.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 200 K

  • 0.50 × 0.50 × 0.05 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.992

  • 8036 measured reflections

  • 2973 independent reflections

  • 2497 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.06

  • 2973 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: JMol (Hanson, 2010[Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250-1260.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Over the past four decades attention has been given to bi-functional ligands with regards to bringing two metal atoms in close proximity. In particular, interest has been given to the N, P-type ligands. These ligands follow the Lewis soft acid/base chemistry when coordinating with group 11 metals. Although N is to some extent a lesser soft base than P, (N is a stronger σ-donor and poorer π-acceptor than P) its ability to bind with the softer group 11 metals such as gold (I) is well documented. This multi-mode coordination has proven to bring homo- and heteronuclear atoms together with short distances. These ligands are thought to offer stability for metal – metal interactions. Diphenylphosphine-substituted benzimidazoles featuring ethylene or methylene linkers between the benzimidazole and the phosphine groups have been studied in few instances by Hahn et al. (2010) as are with amino linkers by Braunstein et al. (1997). Burini et al. (2000) have extensively studied the N, P type ligand, (1-benzyl-2-imidazolyl)diphenylphosphine (BzimPh2P) to understand the behaviour of coordination with various metal systems. The coordination of the ligand with gold (I), silver (I), copper (I), rhodium (I), iridium (I), mercury (II), zinc (II), and cadmium (II) metal ions has been studied utilizing the monodentate and bidentate features of the ligand. Through continued work Bachechi et al. (2001) have studied the X-ray crystal structures of the silver complexes with the same ligand. Although the synthesis of the title compound has been reported by Moore et al. (1982) surprisingly there has been no structural and coordination work of the this potentially bidentate system.

Related literature top

For the first synthesis of the compound and related systems, see: Moore & Whitesides (19826). For multimode coordination of diphenylphosphine-substituted benzimidazoles featuring ethylene linkers, see: Hahn et al. (20105). For amino-group linkers, see: Braunstein et al. (19972). For the coordination of the N,P-type ligand (1-benzyl-2-imidazolyl)diphenylphosphine (BzimPh2P) with several metal ions, see: Burini et al. (2000). For silver complexes with the same ligand, see: Bachechi et al. (2001).

Experimental top

The compound was synthesized by reacting 1-methylbenzimidazole with chlorodiphenylphosphine in the presence of n-BuLi at 195 K. Single crystals were obtained from warm hexanes solution.

Computing details top

Data collection: SMART Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: JMol (Hanson, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. Thermal ellipsoids for non- hydrogen atoms are drawn at 50% probability level.
2-Diphenylphosphanyl-1-methyl-1H-benzimidazole top
Crystal data top
C20H18N2PZ = 2
Mr = 317.33F(000) = 334
Triclinic, P1Dx = 1.235 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.574 (2) ÅCell parameters from 3787 reflections
b = 9.904 (3) Åθ = 2.2–24.0°
c = 10.513 (3) ŵ = 0.16 mm1
α = 74.215 (7)°T = 200 K
β = 67.172 (7)°Plate, colourless
γ = 70.346 (7)°0.50 × 0.50 × 0.05 mm
V = 853.6 (4) Å3
Data collection top
Bruker SMART X2S
diffractometer
2973 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
automatic scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.924, Tmax = 0.992k = 1111
8036 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2237P]
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H18N2Pγ = 70.346 (7)°
Mr = 317.33V = 853.6 (4) Å3
Triclinic, P1Z = 2
a = 9.574 (2) ÅMo Kα radiation
b = 9.904 (3) ŵ = 0.16 mm1
c = 10.513 (3) ÅT = 200 K
α = 74.215 (7)°0.50 × 0.50 × 0.05 mm
β = 67.172 (7)°
Data collection top
Bruker SMART X2S
diffractometer
2973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2497 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.992Rint = 0.027
8036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
2973 reflectionsΔρmin = 0.18 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.78385 (6)0.78051 (5)0.17374 (6)0.05124 (19)
N10.70104 (17)0.53236 (16)0.18024 (16)0.0448 (4)
N20.73242 (17)0.53550 (18)0.37950 (16)0.0511 (4)
C10.73869 (19)0.6038 (2)0.24516 (19)0.0449 (4)
C20.6711 (2)0.4084 (2)0.27610 (19)0.0461 (4)
C30.6890 (2)0.4095 (2)0.4008 (2)0.0489 (5)
C40.6339 (3)0.2909 (2)0.2604 (2)0.0617 (5)
H40.62250.28780.17550.074*
C50.6143 (3)0.1788 (3)0.3722 (3)0.0731 (6)
H50.59110.09650.36310.088*
C60.6276 (3)0.1836 (3)0.4966 (3)0.0754 (7)
H60.60990.10600.57210.090*
C70.6658 (3)0.2977 (3)0.5147 (2)0.0668 (6)
H70.67590.30010.60030.080*
C90.9911 (2)0.73075 (19)0.1591 (2)0.0454 (4)
C101.0919 (2)0.5953 (2)0.1370 (2)0.0503 (5)
H101.05390.52220.12850.060*
C111.2477 (2)0.5647 (2)0.1273 (2)0.0516 (5)
H111.31540.47080.11290.062*
C121.3044 (2)0.6700 (2)0.1383 (2)0.0513 (5)
H121.41100.64910.13200.062*
C131.2059 (2)0.8058 (2)0.1585 (2)0.0613 (6)
H131.24530.87910.16460.074*
C141.0496 (2)0.8365 (2)0.1700 (2)0.0568 (5)
H140.98210.93020.18550.068*
C150.7894 (2)0.79884 (18)0.0053 (2)0.0468 (4)
C160.9256 (2)0.7847 (2)0.1200 (2)0.0578 (5)
H161.02450.75960.10670.069*
C170.9192 (3)0.8067 (2)0.2525 (3)0.0740 (7)
H171.01330.79770.33030.089*
C180.7758 (3)0.8418 (2)0.2731 (3)0.0763 (7)
H180.77160.85490.36460.092*
C190.6397 (3)0.8576 (2)0.1605 (3)0.0718 (7)
H190.54100.88270.17420.086*
C200.6462 (2)0.8373 (2)0.0282 (2)0.0578 (5)
H200.55160.84970.04880.069*
H10.6977 (18)0.8932 (17)0.2303 (16)0.034 (4)*
C80.7688 (3)0.5830 (3)0.4799 (2)0.0778 (7)
H8A0.75440.51310.56710.117*
H8B0.69860.67880.49880.117*
H8C0.87790.58930.44130.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0393 (3)0.0487 (3)0.0715 (4)0.0111 (2)0.0183 (2)0.0191 (2)
N10.0434 (8)0.0496 (9)0.0467 (8)0.0197 (7)0.0167 (7)0.0035 (7)
N20.0408 (9)0.0710 (11)0.0437 (9)0.0111 (8)0.0152 (7)0.0154 (8)
C10.0306 (9)0.0546 (11)0.0493 (11)0.0093 (8)0.0109 (8)0.0138 (8)
C20.0373 (10)0.0504 (10)0.0470 (10)0.0125 (8)0.0125 (8)0.0030 (8)
C30.0342 (9)0.0585 (11)0.0471 (11)0.0068 (8)0.0116 (8)0.0071 (9)
C40.0679 (14)0.0596 (12)0.0630 (13)0.0293 (11)0.0232 (11)0.0004 (10)
C50.0784 (16)0.0574 (13)0.0799 (17)0.0289 (11)0.0242 (13)0.0062 (11)
C60.0694 (15)0.0636 (14)0.0727 (17)0.0180 (12)0.0197 (13)0.0160 (12)
C70.0553 (13)0.0822 (16)0.0469 (12)0.0070 (11)0.0174 (10)0.0013 (11)
C90.0422 (10)0.0453 (10)0.0560 (11)0.0147 (8)0.0185 (8)0.0119 (8)
C100.0459 (11)0.0459 (10)0.0682 (13)0.0160 (8)0.0203 (9)0.0158 (9)
C110.0473 (11)0.0486 (10)0.0603 (12)0.0091 (8)0.0214 (9)0.0096 (9)
C120.0430 (10)0.0607 (12)0.0564 (12)0.0194 (9)0.0237 (9)0.0007 (9)
C130.0604 (13)0.0569 (12)0.0865 (16)0.0288 (10)0.0359 (12)0.0077 (11)
C140.0539 (12)0.0441 (10)0.0845 (15)0.0140 (9)0.0312 (11)0.0148 (10)
C150.0397 (10)0.0321 (9)0.0700 (13)0.0100 (7)0.0214 (9)0.0045 (8)
C160.0466 (11)0.0498 (11)0.0705 (14)0.0014 (9)0.0218 (10)0.0098 (10)
C170.0731 (16)0.0611 (13)0.0688 (15)0.0051 (11)0.0226 (12)0.0104 (11)
C180.107 (2)0.0487 (12)0.0802 (17)0.0059 (13)0.0538 (17)0.0058 (11)
C190.0771 (17)0.0552 (13)0.102 (2)0.0204 (12)0.0572 (16)0.0038 (12)
C200.0460 (11)0.0485 (11)0.0820 (15)0.0189 (9)0.0268 (11)0.0018 (10)
C80.0765 (16)0.111 (2)0.0616 (14)0.0232 (14)0.0293 (12)0.0298 (14)
Geometric parameters (Å, º) top
P1—C151.823 (2)C10—H100.9500
P1—C91.8304 (19)C11—C121.376 (3)
P1—C11.8321 (19)C11—H110.9500
P1—H11.281 (15)C12—C131.374 (3)
N1—C11.312 (2)C12—H120.9500
N1—C21.394 (2)C13—C141.386 (3)
N2—C11.378 (2)C13—H130.9500
N2—C31.381 (3)C14—H140.9500
N2—C81.457 (3)C15—C161.387 (3)
C2—C31.389 (3)C15—C201.392 (3)
C2—C41.392 (3)C16—C171.373 (3)
C3—C71.395 (3)C16—H160.9500
C4—C51.381 (3)C17—C181.386 (3)
C4—H40.9500C17—H170.9500
C5—C61.377 (4)C18—C191.375 (4)
C5—H50.9500C18—H180.9500
C6—C71.376 (3)C19—C201.373 (3)
C6—H60.9500C19—H190.9500
C7—H70.9500C20—H200.9500
C9—C101.382 (3)C8—H8A0.9800
C9—C141.390 (2)C8—H8B0.9800
C10—C111.386 (3)C8—H8C0.9800
C15—P1—C9103.70 (8)C12—C11—C10120.12 (18)
C15—P1—C199.42 (8)C12—C11—H11119.9
C9—P1—C1100.85 (8)C10—C11—H11119.9
C15—P1—H1113.2 (7)C13—C12—C11119.64 (17)
C9—P1—H1115.7 (7)C13—C12—H12120.2
C1—P1—H1121.4 (7)C11—C12—H12120.2
C1—N1—C2104.89 (16)C12—C13—C14120.51 (17)
C1—N2—C3106.83 (15)C12—C13—H13119.7
C1—N2—C8127.27 (19)C14—C13—H13119.7
C3—N2—C8125.87 (18)C13—C14—C9120.28 (18)
N1—C1—N2112.64 (17)C13—C14—H14119.9
N1—C1—P1125.23 (15)C9—C14—H14119.9
N2—C1—P1122.03 (14)C16—C15—C20118.3 (2)
C3—C2—C4119.95 (18)C16—C15—P1124.29 (15)
C3—C2—N1110.33 (16)C20—C15—P1117.29 (16)
C4—C2—N1129.68 (18)C17—C16—C15120.7 (2)
N2—C3—C2105.29 (16)C17—C16—H16119.7
N2—C3—C7132.60 (19)C15—C16—H16119.7
C2—C3—C7122.1 (2)C16—C17—C18120.2 (2)
C5—C4—C2117.9 (2)C16—C17—H17119.9
C5—C4—H4121.1C18—C17—H17119.9
C2—C4—H4121.1C19—C18—C17119.7 (2)
C6—C5—C4121.4 (2)C19—C18—H18120.2
C6—C5—H5119.3C17—C18—H18120.2
C4—C5—H5119.3C20—C19—C18120.0 (2)
C7—C6—C5122.0 (2)C20—C19—H19120.0
C7—C6—H6119.0C18—C19—H19120.0
C5—C6—H6119.0C19—C20—C15121.0 (2)
C6—C7—C3116.6 (2)C19—C20—H20119.5
C6—C7—H7121.7C15—C20—H20119.5
C3—C7—H7121.7N2—C8—H8A109.5
C10—C9—C14118.61 (17)N2—C8—H8B109.5
C10—C9—P1123.80 (13)H8A—C8—H8B109.5
C14—C9—P1117.59 (14)N2—C8—H8C109.5
C9—C10—C11120.84 (17)H8A—C8—H8C109.5
C9—C10—H10119.6H8B—C8—H8C109.5
C11—C10—H10119.6

Experimental details

Crystal data
Chemical formulaC20H18N2P
Mr317.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.574 (2), 9.904 (3), 10.513 (3)
α, β, γ (°)74.215 (7), 67.172 (7), 70.346 (7)
V3)853.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.50 × 0.50 × 0.05
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.924, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
8036, 2973, 2497
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.06
No. of reflections2973
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.18

Computer programs: SMART Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), JMol (Hanson, 2010), publCIF (Westrip, 2010).

 

Acknowledgements

Support for this research from National Science Foundation (CHE-0959406) and the NOAA Educational Partnership Program award number NA06OAR4810187 to NCAT State University as well as support from the donors of the Petroleum Research Fund (ACS–PRF) are kindly acknowledged.

References

First citationBachechi, F., Burini, A., Fontani, M., Galassi, R., Macchioni, A., Pietroni, B. R., Zanello, P. & Zuccaccia, C. (2001). Inorg. Chim. Acta, 323, 45–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunstein, P., Pietsch, J., Chauvin, Y., DeCian, A. & Fischer, J. (1997). J. Organomet. Chem. 529, 387–393.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurini, A., Fackler, J. P., Galassi, R., Grant, T. A., Omary, M. A., Rawashdeh-Omary, M. A., Pietroni, B. R. & Staples, R. J. (2000). J. Am. Chem. Soc. 122, 11264–11265.  Web of Science CSD CrossRef CAS Google Scholar
First citationHahn, F. E., Naziruddin, A. R., Hepp, A. & Pape, T. (2010). Organometallics, 29, 5283–5288.  Web of Science CSD CrossRef CAS Google Scholar
First citationHanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoore, S. S. & Whitesides, G. M. (1982). J. Org. Chem. 47, 1489–1493.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds